
Vertex-Weighted Matching in
Two-Directional Orthogonal Ray Graphs

C. Gregory Plaxton ∗

September 20, 2013

Abstract

Let G denote an n-vertex two-directional orthogonal ray graph. A bicolored 2D represen-
tation of G requires only O(n) space, regardless of the number of edges in G. Given such a
compact representation of G, and a (possibly negative) weight for each vertex, we show how
to compute a maximum weight matching of G in O(n log2 n) time. The classic problem of
scheduling weighted unit tasks with release times and deadlines is a special case of this prob-
lem, and we obtain an O(n log n) time bound for this special case. As an application of our
more general result, we obtain an O(n log2 n)-time algorithm for computing the VCG out-
come of a sealed-bid unit-demand auction in which each item has two associated numerical
parameters (e.g., third-party “quality” and “seller reliability” scores) and each bid specifies the
amount an agent is willing to pay for any item meeting specified lower bound constraints with
respect to these two parameters.

∗Department of Computer Science, University of Texas at Austin, 2317 Speedway, Stop D9500, Austin, Texas
78712–1757. Email: plaxton@cs.utexas.edu. This research was supported by NSF Grant CCF–1217980.

1 Introduction
Certain natural classes of graphs can be represented using a constant number of words of storage
for each vertex, and no additional storage for each edge, since the edges are represented implicitly:
Given the representation of two vertices u and v, it is possible to determine in constant time whether
there is an edge between u and v. For example, consider the class of bipartite graphs where each
“left vertex” corresponds to a unit job (i.e., a job requiring one unit of processing time) with a
specified integer release time and deadline, each “right vertex” corresponds to a unit-time slot on a
shared resource with a specified integer timestamp, and there is an edge between left vertex u and
right vertex v if and only if the timestamp of the slot associated with v lies in the interval specified
by the release time and deadline of the job associated with u. Such a bipartite graph is said to be
“convex”.

For such “compactly representable” classes of graphs, it is interesting to revisit the complexity
of fundamental graph problems. By working directly with the compact representation, we seek to
outperform traditional algorithms designed for the standard adjacency list representation. In this
paper, we revisit the complexity of vertex-weighted matching problems on certain compactly rep-
resentable classes of bipartite graphs. All of the algorithms that we develop have time complexity
that is quasilinear (i.e., within a polylogarithmic factor of linear) in the number of vertices.

Matching algorithms for convex bipartite graphs have received significant attention in the liter-
ature. In the following discussion, U denotes the set of left vertices, and V denotes the set of right
vertices, of a given convex bipartite graph. Glover presented a simple greedy algorithm [8] for
maximum-cardinality convex bipartite matching that admits an O(|V | + |U | log |U |)-time imple-
mentation using an elementary priority queue data structure. Later, van Emde Boas used a fast pri-
ority queue to obtain an O(|V |+ |U | log log |U |)-time implementation of Glover’s algorithm [22].
Lipski and Preparata [10] used Tarjan’s fast union-find data structure [21] to devise a different al-
gorithm running in timeO(|U |+ |V |α(|V |)), where α is a functional inverse of Ackermann’s algo-
rithm. Gabow and Tarjan [6] show that this application of union-find falls into a category admitting
a linear-time implementation, thereby reducing the Lipski-Preparata time bound to O(|U | + |V |).
Another line of work focused on eliminating the dependence of the running time on |V | [7, 16],
at the expense of introducing a mild technical assumption regarding the input representation. This
research culminated in the O(|U |)-time algorithm of Steiner and Yeomans [20].

In terms of vertex-weighted matching algorithms for convex bipartite graphs, most prior re-
search has focused on the “left-weighted” special case in which all of the right vertices have zero
weight, which corresponds to the classic problem of scheduling weighted unit jobs with release
times and deadlines. (In the notation of Section 2, this corresponds to the LMWM and LMWMCM
problems, which are essentially equivalent.) Dekel and Sahni [5] present a parallel algorithm for
left-weighted convex bipartite matching that uses O(|U |2) processors and O(log2 |U |) time, and
which is based on a sequential algorithm with O(|U |2) complexity. Brodal et al. [2] present a
data structure based on the Dekel-Sahni algorithm for the problem of maintaining a maximum
cardinality matching in a dynamic convex bipartite graph. Lipski and Preparata [10] use the ma-
troid greedy framework to develop a left-weighted convex bipartite matching algorithm with time
complexity O(|U |2 + |U | · |V |). Plaxton [14] discusses a similar algorithm based on the matroid
greedy framework, and shows how to implement this algorithm in O(|U | log |U | + |V | log2 |V |)
time using a data structure based on augmented trees. With additional preprocessing, and making
the same technical assumption regarding the input representation as in Steiner and Yeomans [20],

1

Plaxton improves this bound to O(|U |+ k log2 k), where k ≤ min{|U |, |V |} denotes the size of a
maximum cardinality matching.

Katriel [9] presents an O(|E|+ |V | log |U |)-time algorithm for the right-weighted special case
of vertex-weighted matching in convex bipartite graphs. (Here E denotes the edge set of the
graph.) Katriel obtains the same time bound algorithm for the general vertex-weighted matching
problem in convex bipartite graphs, under the restriction that the input graph G = (U, V,E) admits
a matching of size |U |. Since the input size is Θ(|U |+|V |), and |E| could be as large as Θ(|U |·|V |),
these algorithms have quadratic complexity.

In this paper, we present quasilinear vertex-weighted matching algorithms for a class of bipar-
tite graphs that properly contains the class of convex bipartite graphs. The bipartite graphs that we
study admit a representation in which each vertex (left or right) has an x-value and a y-value, and
there is an edge from a left vertex u to a right vertex v if and only if the x-value of u is at most
the x-value of v and the y-value of u is at most the y-value of v. Such a bipartite graph is called a
two-dimensional orthogonal ray graph, or 2DORG (see Section 4 for a more formal definition). It
is easy to see how to represent a convex bipartite graph as a 2DORG: Using the job-slot terminol-
ogy introduced earlier, we can set the x-value (resp., y-value) of each left vertex to the release time
(resp., negation of the deadline) of the associated job, and we can set the x-value (resp., y-value) of
each right vertex to the timestamp (resp., negation of the timestamp) of the associated slot. On the
other hand, the class of 2DORGs is substantially richer than the class of convex bipartite graphs.
For example, it is known that the class of 2DORGs properly contains the class of interval bigraphs,
which in turn properly contains the class of convex bipartite graphs [17].

We now discuss the key techniques underlying our results. A starting point for our work is
the elegant linear-time algorithm of Chang [3] for computing a maximum cardinality matching
(MCM) of a chordal bipartite graph. The class of chordal bipartite graphs properly contains the
class of 2DORGs [17]. Chang’s algorithm runs in O(m+ n) time on an input graph with m edges
and n vertices. Recall that in the present work we are seeking running times that are quasilinear in
n. We obtain anO(n log n)-time implementation of Chang’s algorithm by making use of a suitably
augmented binary search tree (BST). Our augmented BST data structure may be viewed as a special
case of the priority search tree data structure of McCreight [11]. (For a good introduction to the
topic of augmented BST data structures, see Cormen et al. [4, Chapter 14].)

Most of the technical work in our paper is geared towards leveraging the aforementioned
O(n log n)-time MCM algorithm for 2DORGs to obtain anO(n log2 n)-time vertex-weighted match-
ing algorithms for 2DORGs. Here we exploit the vertex-weighted matching framework of Spencer
and Mayr [19]. This is a divide-and-conquer framework for reducing vertex-weighted matching to
unweighted matching. The framework is valid for general (bipartite or nonbipartite) graphs. As
in the case of Chang’s algorithm discussed in the previous paragraph, the original Spencer-Mayr
framework is not geared towards obtaining running times that are quasilinear in the number of
vertices. Rather, the original framework seeks fast running times for general graphs; these bounds
depend on m and n and are not quasilinear in n, even for sparse graphs. We identify a small
number of basic primitives that suffice to support the Spencer-Mayr framework, and show how
to implement each of these primitives in O(n log n) time on 2DORGs. One such primitive is the
O(n log n)-time MCM algorithm discussed in the previous paragraph. Given a current matching,
another key primitive identifies all of the vertices that can be reached from some unmatched left
vertex via an alternating path of unmatched and matched edges. As in the case of our MCM al-
gorithm for 2DORGs, our O(n log n)-time 2DORG implementation of the latter primitive is based

2

on augmented BSTs. Once we establish that all of the primitives associated with the Spencer-Mayr
framework admit O(n log n)-time implementations on 2DORGs, we find that the resulting divide-
and-conquer recurrence solves to give an overall running time of O(n log2 n) for vertex-weighted
matching in 2DORGs.

A practical motivation for the work of the present paper is to better understand the class of
sealed-bid unit-demand auctions for which it is possible to compute a suitable outcome in time
that is quasilinear in the number of vertices. In certain real-time applications of combinatorial
auctions, it is crucial to employ mechanisms with low time complexity. For example, in the realm
of sponsored search auctions, each search query triggers a combinatorial auction in which a (po-
tentially large) number of bidders vie for a collection of ad slots; such an auction needs to be
resolved rapidly so that the search results can be provided in a timely manner. We use our vertex-
weighted matching algorithm for 2DORGs to compute a VCG allocation for a certain class of
sealed-bid unit-demand auctions in O(n log2 n) time, and we show how to compute the VCG
prices in O(n log n) additional time.

The remainder of the paper is organized as follows. Section 2 provides some basic defini-
tions and lemmas. Section 3 introduces ordered and elimination-ordered representation schemes.
Section 4 presents our main result, an O(n log2 n)-time algorithm to compute a maximum weight
matching of any n-vertex 2DORG. Appendix A reviews the relevant aspects of the Spencer-Mayr
vertex-weighted matching framework, and adapts this framework to our setting. Appendix B
presents an O(n log n)-time algorithm for the special case of left-weighted matching on convex bi-
partite graphs. Appendix C presents several useful lemmas. Appendix D describes an O(n log2 n)-
time algorithm for computing the VCG outcome of a 2DORG-related class of sealed-bid unit-
demand auctions.

2 Preliminaries
A matching of a graph G = (V,E) is a subset E ′ of E such that the 2|E ′| endpoints of the edges
in E ′ are all distinct. A maximum cardinality matching (MCM) of G is a matching M of G such
that |M | ≥ |M ′| for all matchings M ′ of G. If each edge of G has an associated weight, we define
the weight of a matching M , denoted w(M), as the sum of the weights of its associated edges. A
maximum weight matching (MWM) of G is a matching M of G such that w(M) ≥ w(M ′) for all
matchings M ′ of G. A maximum weight MCM (MWMCM) of G is an MCM M of G such that
w(M) ≥ w(M ′) for all MCMs M ′ of G.

This paper addresses matching problems on vertex-weighted graphs. The vertex weights induce
edge weights; we are primarily interested in the case where the weight of an edge between a vertex
u and a vertex v is taken to be the sum of the weights of u and v. A matching M of a vertex-
weighted graph is an MWM (resp., MWMCM) of G if it is an MWM (resp., MWMCM) of the
corresponding edge-weighted graph.

A graph G is bipartite if the vertex set of G can be partitioned into two sets U and V such that
every edge of G has one endpoint in U and one endpoint in V . In the present paper, we address
bipartite graph problems where a particular bipartition of the vertices is specified as part of the
input. Throughout the remainder of the paper, we use the term bipartite graph to refer to a triple
(U, V,E) where U is a set of “left” vertices, V is a set of “right” vertices, and every edge in E has
one endpoint in U and one endpoint in V .

3

The primary goal of this paper is to develop fast MWM algorithms for certain classes of vertex-
weighted bipartite graphs. We analyze our algorithms in the RAM model, and we assume that each
vertex weight can be represented using a constant number of machine words. It will prove to be
useful to first develop fast algorithms for simpler problems in which the weights of either the left
vertices, or the right vertices, are effectively zeroed out. With this in mind, we define an LMWM
(resp., RMWM) of a vertex-weighted bipartite graph G as an MWM of the corresponding edge-
weighted graph where the weight of an edge between a left vertex u and a right vertex v is given
by the weight of u (resp., v). The terms LMWMCM and RMWMCM are defined analogously.

It is easy to see that we can compute an LMWM of a given bipartite graph G = (U, V,E)
by first deleting all of the negative-weight left vertices, and then computing an LMWM of the
resulting bipartite graph.

Given a matching M of a bipartite graph G that is not an MCM of G, Berge’s lemma [1,
Theorem 1] implies the existence of a matching M ′ of G such that |M ′| = |M | + 1 and the set of
vertices matched in M is properly contained in the set of vertices matched in M ′. Applying this
idea repeatedly, we find that if M is a matching of a bipartite graph G = (U, V,E), there is an
MCM M ′ of G that matches all of the vertices matched in M . It follows that if every left vertex
has nonnegative weight, then any LMWMCM is an LMWM.

Combining the observations of the two preceding paragraphs, we see that an LMWM of a
given bipartite graph G = (U, V,E) can be obtained by deleting all of the negative-weight left
vertices, and then computing an LMWMCM of the resulting bipartite graph. Thus the LMWM
and LMWMCM problems are essentially the same. In the remainder of the paper, we discuss only
the LMWMCM problem. Symmetric remarks hold for the RMWM and RMWMCM problems.

Spencer and Mayr [19] attribute the following lemma, which is straightforward to prove, to
Mendelsohn and Dulmage [12]; Spencer and Mayr also provide a proof.

Lemma 2.1. Let M and M ′ be two MCMs of a bipartite graph G = (U, V,E). Then there is an
MCM of G that matches the set of left vertices matched in M to the set of right vertices matched
in M ′.

Lemma 2.1 plays an important role in the Spencer-Mayr vertex-weighted matching framework
discussed in Appendix A, since it yields a reduction from the problem of vertex-weighted bipartite
matching to the restricted case in which only the vertices on one side of the bipartition have nonzero
weight. This reduction is restated below using the terminology of the present paper.

Lemma 2.2. Let M be an LMWMCM of a vertex-weighted bipartite graph G = (U, V,E), let U ′

be the set of left vertices of G that are matched in M , and let G′ be the subgraph of G induced by
U ′ ∪ V . Then any RMWMCM of G′ is an MWMCM of G.

Proof. Immediate from Lemma 2.1.

For any class C of graphs, and any integers m and n, we let Cm,n denote the set of all graphs
in C with at most m edges and at most n vertices.

A representation scheme ξ for a class C of graphs specifies a set reps(ξ,G) of possible repre-
sentations for any given graph G in the class.

Let ξ denote a representation scheme for a class C of graphs. Scheme ξ is said to have space
complexity at most f(m,n) if, for any graph G in Cm,n, the space used by any representation
in reps(ξ,G) is at most f(m,n). Thus, for example, the standard adjacency list representation

4

scheme has space complexityO(m+n). Scheme ξ is said to have MCM complexity at most f(m,n)
if there is an f(m,n)-time algorithm which, given any representation in reps(ξ,G) of a graph G in
Cm,n, computes an MCM of G. The MWM (resp., LMWMCM, RMWMCM, MWMCM) complexity
of ξ is defined similarly, except that the input to the f(m,n)-time algorithm also specifies the
vertex weights.

We say that a class C of graphs is hereditary if any induced subgraph of a graph in C also
belongs to C. A representation scheme for a hereditary class C of graphs has induced subgraph
complexity at most f(m,n) if there is an f(m,n)-time algorithm which, given any representation
in reps(ξ,G) of a graph G = (V,E) in Cm,n, and any specified subset V ′ of V , computes a
representation in reps(ξ,G′) where G′ denotes the subgraph of G induced by V ′.

Lemma 2.3. Let ξ denote a representation scheme for a hereditary class of bipartite graphs. If
ξ has induced subgraph, LMWMCM, and RMWMCM complexity at most f(m,n), then ξ has
MWMCM complexity O(f(m,n)).

Proof. Immediate from Lemma 2.2.

Let ξ be a representation scheme for a class C of bipartite graphs. Scheme ξ is said to have
left-to-right search complexity at most f(m,n) if there exists an f(m,n)-time algorithm which,
given any representation in reps(ξ,G) of a graph G in Cm,n, and any matching M of G, computes
the set of all vertices that are reachable from some unmatched left vertex via an alternating path of
unmatched and matched edges. The right-to-left search complexity of ξ is defined symmetrically.
The search complexity of ξ is at most f(m,n) if the left-to-right search complexity and right-to-left
search complexity of ξ are each at most f(m,n).

3 Ordered Representation Schemes
An ordering of a bipartite graph G specifies a total order over the set of left vertices of G, and a
total order over the set of right vertices of G.

A representation of a bipartite graphG is ordered if it specifies an ordering ofG, and allows the
relative order of any two left (resp., right) vertices to be determined in constant time. A representa-
tion scheme ξ for a class C of bipartite graphs is ordered if for every G in C, every representation
in reps(ξ,G) is ordered.

Let ξ be an ordered representation scheme for a hereditary class C of bipartite graphs. We say
that ξ has left-to-right delete-min complexity f(n) if there exists an f(n)-time algorithm A which,
given a representation R in reps(ξ,G) for some graph G in C with at most n vertices, and a left
vertex u of G, performs the following operation, which we denote delete-min(u): (1) if u has one
or more incident edges, then letting v denote the least right vertex adjacent to u (with respect to the
total order defined over the right vertices), and letting G′ denote G with right vertex v removed, A
returns v and modifies R to obtain a representation in reps(ξ,G′); (2) if u has no incident edges,
then A returns nil and leaves R unchanged. The right-to-left delete-min complexity of ξ is defined
symmetrically, along with the associated operation delete-min(v). The delete-min complexity of
ξ is at most f(n) if the left-to-right and right-to-left delete-min complexity of ξ are each at most
f(n). The following lemma is straightforward to prove.

5

Lemma 3.1. Let ξ be an ordered representation scheme for a hereditary class of bipartite graphs.
If ξ has left-to-right (resp., right-to-left) delete-min complexity f(n), then ξ has left-to-right (resp.,
right-to-left) search complexity O(nf(n)). Thus if ξ has delete-min complexity at most f(n), then
ξ has search complexity O(nf(n).

A bipartite graph is chordal bipartite if each cycle of length at least six has a chord. (Remark:
A chordal bipartite graph need not be chordal because chordless cycles of length four are permit-
ted.) The class of chordal bipartite graphs has been extensively studied, and various alternative
characterizations are known. One such characterization is that a bipartite graph G is chordal bipar-

tite if and only if G is
[

1 1
1 0

]
-free, which means that G admits an ordering such that for any pair

of left vertices u and u′ such that u < u′, and any pair of right vertices v and v′ such that v < v′, if
u is adjacent to v, u is adjacent to v′, and u′ is adjacent to v, then u′ is adjacent to v′. In the present
paper, we refer to such an ordering as an elimination ordering.

A representation of a chordal bipartite graph G is elimination-ordered if it specifies an elim-
ination ordering of G. A representation scheme ξ for a class C of chordal bipartite graphs is
elimination-ordered if for every graph G in C, each representation in reps(ξ,G) is elimination-
ordered.

Three lemmas related to elimination-ordered representation schemes are stated and proven in
Appendix C. Lemma C.1 is based on the MCM algorithm of Chang [3]. Lemmas C.2 and C.3 are
useful for dealing with negative vertex weights.

4 Two-Directional Orthogonal Ray Graphs
A bipartite graph G = (U, V,E) is called an orthogonal ray graph (ORG) if there exists a horizon-
tal ray (i.e., a closed half-line parallel to the x-axis) corresponding to each left vertex, and a vertical
ray (i.e., a closed half-line parallel to the y-axis) corresponding to each right vertex, such that a left
vertex u is adjacent to a right vertex v if and only if the two corresponding rays intersect. If all of
the horizontal rays go in the same direction (e.g., to the right), and all of the vertical rays go in the
same direction (e.g., down), then we say that the ORG is a two-directional ORG (2DORG)

Various equivalent characterizations of the class of 2DORGs are known. Shrestha, Tayu, and
Ueno [17] show that a graph is a 2DORG if and only if G admits a biadjacency matrix that is[
∗ 1
1 0

]
-free. In the notation of the present paper, this is equivalent to saying that G admits an

ordering for which, for all pairs of left vertices u and u′ such that u < u′, and all pairs of right
vertices v and v′ such that v < v′, if u is adjacent to v′ and u′ is adjacent to v, then u′ is adjacent
to v′. Notice that such an ordering is an elimination ordering, and hence every 2DORG is chordal
bipartite. On the other hand, not every chordal bipartite graph is a 2DORG [18, Lemma 3.4.11].

Soto [18, Lemma 3.4.9] notes that a bipartite graph is a 2DORG if and only if it is a bicolored
2D-graph, that is, there exists a red point in the plane for each left vertex, and a blue point in the
plane for each right vertex, such that there is an edge from left vertex u to right vertex v if and only
if each component of the red point associated with u is at most the corresponding component of the
blue point associated with v. This characterization suggests a natural bicolored 2D representation
of a 2DORG in which each vertex is represented by a red or blue point in the x-y plane. (The

6

original definition also suggests such a representation, where the point corresponding to a vertex
is given by the endpoint of the corresponding ray.)

Soto [18, Lemma 3.4.1] also points out that every bicolored 2D-graph admits a bicolored
rook representation, that is, a bicolored 2D representation satisfying the following additional con-
straints, where n denotes the number of vertices in the graph: (1) no two of the n points share
a common x-value, or a common y-value; (2) the points are all drawn from the set [n]2, where
n denotes the number of vertices and [n] denotes {i | 0 ≤ i < n}. Furthermore, as shown by
Soto, such a bicolored rook representation can be obtained from any bicolored 2D representation
in O(n log n) time using a straightforward sorting procedure.

We now define a useful elimination-ordered representation scheme, denoted ξ∗, for the class of
2DORGs. Under scheme ξ∗, our representation of an n-vertex 2DORG G consists of a bicolored
2D representation plus two additional data structures. Like a bicolored rook representation, we
require the bicolored 2D representation of G to satisfy the constraint that no two of the n points
share a common x-value, or a common y-value. However, we do not require all of the points to
be drawn from [n]2; instead, we enforce the relaxed requirement that each coordinate is an integer
that can be stored in a constant number of machine words. (Under the standard RAM model
assumption, the word size is sufficiently large to store any integer in [n].) Before describing the
two additional data structures associated with our representation, we define an ordering of G and
prove that it is an elimination ordering. We define a total order < over the set of left vertices as
follows: u < u′ if and only if y(u′) < y(u). We define a total order < over the set of right vertices
as follows: v < v′ if and only if x(v) < x(v′). The following lemma establishes that this ordering
is an elimination ordering.

Lemma 4.1. Let G = (U, V,E) be a 2DORG, and let R belong to reps(ξ∗, G). If u < u′, v < v′,
(u, v′) belongs to E, and (u′, v) belongs to E, then (u′, v′) belongs to E.

Proof. We need to prove that x(u′) ≤ x(v′) and y(u′) ≤ y(v′).
Since (u′, v) belongs to E, we have x(u′) ≤ x(v). Since v < v′, we have x(v) < x(v′). Hence

x(u′) < x(v′).
Since (u, v′) belongs to E, we have y(u) ≤ y(v′). Since u < u′, we have y(u′) < y(u). Hence

y(u′) < y(v′).

We now describe the two additional data structures associated with our representation of G
under scheme ξ∗. These data structures may be viewed as special cases of the priority search tree
data structure of McCreight [11]. The first is a red-black tree that stores all of the left vertices
in increasing order with respect to the total order <. This red-black tree is augmented (see [4,
Chapter 14] for an introduction to augmented binary search trees) by maintaining, at each node α,
an integer “min” field equal to the minimum, over all left vertices u stored in the subtree rooted at
node α, of x(u). It is straightforward to maintain the min field while supporting the standard dic-
tionary operations in logarithmic time. This data structure allows us to support the delete-min(v)
operation in logarithmic time, where v is an arbitrary right vertex.

The second data structure is a similar red-black tree that stores all of the right vertices in
increasing order with respect to the total order<. This red-black tree is augmented by maintaining,
at each node α, an integer “max” field equal to the maximum, over all right vertices v stored in
the subtree rooted at node α, of y(v). As in the case of the first data structure, it is straightforward
to maintain the max field while supporting the standard dictionary operations in logarithmic time.

7

This second data structure allows us to support the delete-min(u) operation in logarithmic time,
where u is an arbitrary left vertex.

Lemma 4.2. The representation scheme ξ∗ for the class of 2DORGs has space and induced sub-
graph complexity O(n), delete-min complexity O(log n), search and MCM complexity O(n log n),
and LMWMCM, RMWMCM, MWMCM, and MWM complexity O(n log2 n).

Proof. The O(n) bound on space complexity is immediate from the definition of ξ∗. For the O(n)
bound on induced subgraph complexity, notice that we can form each of the two augmented red-
black tree data structures associated with a specified induced subgraph as follows: (1) traverse the
corresponding red-black tree for the original graph to extract the desired sorted sequence of ver-
tices; (2) arrange this sorted sequence of vertices into a perfectly balanced red-black tree structure
(e.g., the same structure as is achieved in a binary heap); (3) fill in the values of the auxiliary fields
in a bottom-up manner.

As indicated in our description of ξ∗, the two augmented red-black tree structures allow us
to support arbitrary delete-min(u) and delete-min(v) operations in logarithmic time. Thus the
delete-min complexity of ξ∗ is O(log n).

Lemma 3.1 implies that the search complexity of ξ∗ is O(n log n), and Lemma C.1 implies that
the MCM complexity of ξ∗ is O(n log n).

Applying Lemma A.2 with f(m,n) = O(n log n), we find that the LMWMCM and RMWMCM
complexity of ξ∗ is O(n log2 n). Applying Lemma 2.3 with f(m,n) = O(n log2 n), we find that
the MWMCM complexity of ξ∗ is O(n log2 n).

It remains to bound the MWM complexity of ξ∗. Let C denote the class of all 2DORGs, and let
C ′ denote the class of all graphs G′ of the form extend(G,U ′, V ′) where G = (U, V,E) belongs
to C, U ′ is a subset of U , and V ′ is a subset of V . By applying Lemma C.3 with f0(m,n) =
f1(m,n) = O(n), f2(m,n) = f3(m,n) = O(n log n), and f4(n) = f5(n) = O(log n), we
find that there is an elimination-ordered representation scheme with dummies ξ′ for C ′ with space
and induced subgraph complexityO(n), search complexityO(n log n), and delete-min complexity
O(log n). Thus, reasoning in the same manner as we did above for ξ∗, we find that ξ′ has MCM
complexity O(n log n), and LMWMCM, RMWMCM, and MWMCM complexity O(n log2 n).

Lemma C.3 also implies that if we are given a representation in reps(ξ∗, G) of a graph G =
(U, V,E) in C, a subset U ′ of U , and a subset V ′ of V , then we can compute a representation
in reps(ξ′, G′) where G′ = extend(G,U ′, V ′) in O(n) time. Since ξ′ has MWMCM complexity
O(n log2 n), Lemma A.3 implies that ξ∗ has MWM complexity O(n log2 n).

Theorem 1. Assume that we are given a bicolored 2D-graph representation of an n-vertex, vertex-
weighted 2DORG G such that each x-value, y-value, or weight is an O(1)-word integer. Then an
MWM of G can be computed in O(n log2 n) time.

Proof. Since any two O(1)-word integers can be compared in constant time, we can construct
a representation in reps(ξ∗, G) in O(n log n) time. Since representation scheme ξ∗ has MWM
complexity O(n log2 n) by Lemma 4.2, the claim of the theorem follows.

References
[1] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,

43:842–844, 1957.

8

[2] G. S. Brodal, L. Georgiadis, K. A. Hansen, and I. Katriel. Dynamic matchings in convex bi-
partite graphs. In Proceedings of the 32nd International Symposium on Mathematical Foun-
dations of Computer Science, pages 406–417, August 2007.

[3] M.-S. Chang. Algorithms for maximum matching and minimum fill-in on chordal bipar-
tite graphs. In Proceedings of the 7th Annual International Symposium on Algorithms and
Computation, LNCS 1178, pages 146–155, December 1996.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, MA, 3rd edition, 2009.

[5] E. Dekel and S. Sahni. A parallel matching algorithm for convex bipartite graphs and appli-
cations to scheduling. Journal of Parallel and Distributed Computing, 1:185–205, 1984.

[6] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences, 30:209–221, 1985.

[7] G. Gallo. An O(n log n) algorithm for the convex bipartite matching problem. Operations
Research Letters, 3:31–34, 1984.

[8] F. Glover. Maximum matching in convex bipartite graphs. Naval Research Logistic Quar-
terly, 14:313–316, 1967.

[9] I. Katriel. Matchings in node-weighted convex bipartite graphs. INFORMS Journal on Com-
puting, 20:205–211, 2008.

[10] W. Lipski, Jr. and F. P. Preparata. Efficient algorithms for finding maximum matchings in
convex bipartite graphs and related problems. Acta Informatica, 15:329–346, 1981.

[11] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14:257–276, 1985.

[12] N. S. Mendelsohn and A. L. Dulmage. Some generalizations of the problem of distinct
representatives. Canadian Journal of Mathematics, 10:230–241, 1958.

[13] N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan, T. Rough-
garden, É. Tardos, and V Vazirani, editors, Algorithmic Game Theory, chapter 9. Cambridge
University Press, Cambridge, Massachussetts, 2007.

[14] C. G. Plaxton. Fast scheduling of weighted unit jobs with release times and deadlines. In
Proceedings of the 35th Annual International Colloquium on Automata, Languages, and Pro-
gramming, LNCS 5125, pages 222–233, July 2008.

[15] A. E. Roth and M. A. O. Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Cambridge University Press, New York, NY, 1990.

[16] M. G. Scutellà and G. Scevola. A modification of Lipski-Preparata’s algorithm for the maxi-
mum matching problem on bipartite convex graphs. Ricerca Operativa, 46:63–77, 1988.

[17] A. M. S. Shrestha, S. Tayu, and S. Ueno. On orthogonal ray graphs. Discrete Applied
Mathematics, 158:1650–1659, 2010.

9

[18] J. A. Soto. Contributions on Secretary Problems, Independents Sets of Rectangles and Re-
lated Problems. PhD thesis, Department of Mathematics, Massachusetts Institute of Tech-
nology, June 2011.

[19] T. H. Spencer and E. W. Mayr. Node weighted matching. In Proceedings of the 11th Annual
International Colloquium on Automata, Languages, and Programming, LNCS 172, pages
454–464, July 1984.

[20] G. Steiner and J. S. Yeomans. A linear time algorithm for determining maximum matchings
in convex, bipartite graphs. Computers and Mathematics with Applications, 31:91–96, 1996.

[21] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22:215–225, 1975.

[22] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.
Information Processing Letters, 6:80–82, 1977.

A A Vertex-Weighted Matching Framework
Spencer and Mayr [19] present a framework for reducing vertex-weighted matching to maximum
cardinality matching, in both bipartite graphs and general graphs. Their work assumes an adja-
cency list representation of the input graph. In this section, we adapt the bipartite graph results of
Spencer and Mayr to allow for other representation schemes.

Let G = (U, V,E) be a vertex-weighted bipartite graph. Fix an order of the left vertices of G
from “lightest” to “heaviest” by sorting by weight, breaking ties arbitrarily. For any integer ` such
that 0 ≤ ` ≤ |U |, let lmwmcms(G, `) denote the set of all LMWMCMs M of G such that all of
the |U | − ` heaviest left vertices of G are matched in M .

Using the notation of the present paper, we now describe the recursive routine that lies at the
heart of the Spencer-Mayr vertex-weighted matching framework. This routine, call it A, takes as
input a bipartite graph G = (U, V,E) and an integer ` such that 1 ≤ ` ≤ |U | and lmwmcms(G, `)
is nonempty, and returns an LMWMCM in lmwmcms(G, `). Thus, by calling routine A with the
parameter ` set to |U |, we obtain an LMWMCM ofG. A symmetric approach can be used to obtain
an RMWMCM of G.

Spencer and Mayr analyze the time complexity of routineA under the assumption that the input
bipartite graph G is provided in adjacency list format. In the proof of the following lemma, we re-
visit the formulation of the recurrence associated with routine A in order to bound its performance
with respect to other representation schemes.

Lemma A.1. Let ξ denote a representation scheme for a hereditary class C of bipartite graphs.
Let T (m,n, `) denote the worst-case time complexity of the recursive routine A of Spencer and
Mayr when the input consists of a representation in reps(ξ,G) of a bipartite graph G = (U, V,E)
in Cm,n, and a positive integer ` that is at most |U | (resp., |V |). If ξ has induced subgraph, MCM,
and left-to-right (resp., right-to-left) search complexity at most f(m,n), then the LMWMCM (resp.,
RMWMCM) complexity of ξ is at most T (m,n, |U |) (resp., T (m,n, |V |)), where T (m,n, 1) =

10

O(f(m,n)) and for ` > 1, T (m,n, `) is at most the maximum, over all nonnegative integers m0,
n0, m1, and n1 such that m0 +m1 ≤ m and n0 + n1 ≤ n, of

T (m0, n0, d`/2e) + T (m1, n1, d`/2e) +O(f(m,n)).

Proof. We address only the LMWMCM version of the lemma; a symmetric argument applies for
the RMWMCM version.

By the correctness of routine A, which is established in Spencer and Mayr, and the definition
of T (m,n, `), we conclude that the LMWMCM complexity of ξ is at most T (m,n, n).

Remark: In order to verify some of the claims made below concerning the operations performed
within routine A, the reader may wish to consult the pseudocode given in Spencer and Mayr [19,
Figure 2], where this routine is referred to as RBPMP. (The acronym RBPMP stands for “restricted
bipartite positive matching problem”. In our terminology, RBPMP corresponds to LMWMCM, or
symmetrically, to RMWMCM.)

When ` = 1, routineA computes an MCMM ofG. IfM matches all ofU , routineA terminates
and returnsM . Otherwise, lettingG′ denote the induced subgraph ofG formed by deleting fromG
the lightest vertex in U , routine A returns an MCM of G′. Since the induced subgraph and MCM
complexity of ξ are assumed to be at most f(m,n), we conclude that T (m,n, 1) = O(f(m,n)).

When ` > 1, routine A computes an MCM of G by performing two top-level recursive calls,
to be discussed in greater detail below, along with a constant number of operations in each of the
following categories.

1. Forming a representation in reps(ξ,G′) of some induced subgraph G′ of G. Since the in-
duced subgraph complexity of ξ is assumed to be at most f(m,n), the cost of such an
operation is at most f(m,n).

2. Given a representation in reps(ξ,G′) of some induced subgraph G′ of G, computing an
MCM of G′. Since the MCM complexity of ξ is assumed to be at most f(m,n), the cost of
such an operation is at most f(m,n).

3. Given a representation in reps(ξ,G′) of some induced subgraph G′ of G, and an MCM M of
G′, computing the set of all vertices in G′ that are reachable from an unmatched left vertex
(with respect to M) via an alternating path of unmatched-matched edges. Since the left-to-
right search complexity of ξ is assumed to be at most f(m,n), the cost of such an operation
is at most f(m,n).

4. Operations that are easily performed in O(n) time: identifying the d`/2e lightest vertices in
U ; taking the union of three matchings of total size at most n; determining how many of the
left vertices in a given induced subgraph of G belong to the set of ` lightest left vertices in
G.

Since f(m,n) = Ω(n), we deduce that the total cost of a constant number of operations in the
above categories is O(f(m,n)). The two top-level recursive calls performed by routine A have
arguments (G0, `0) and (G1, `1), respectively, where G0 and G1 denote disjoint induced subgraphs
of G and `0 and `1 are each at most d`/2e. The claimed upper bound on T (m,n, `) for ` > 1
follows.

11

Lemma A.2. Let ξ denote a representation scheme for a hereditary class of bipartite graphs with
induced subgraph, MCM, and left-to-right (resp., right-to-left) search complexity at most f(m,n).
Assume that for all nonnegative integers m, m0, m1, n, n0, n1 such that m0 + m1 ≤ m and
n0 +n1 ≤ n, we have f(m0, n0)+f(m1, n1) ≤ f(m,n). Then the LMWMCM (resp., RMWMCM)
complexity of ξ is O(f(m,n) log n).

Proof. This lemma follows by solving the recurrence associated with Lemma A.1. The claimed
solution is easily verified by induction.

In the special case of the adjacency list representation scheme for the class of all bipartite
graphs, which is the case considered by Spencer and Mayr, the preceding lemma implies LMWMCM
and RMWMCM complexity O(m log n). In the applications addressed in Section 4 and Ap-
pendix B of the present paper, we use Lemma A.2 in the context of compact representation schemes
for which f(m,n) is quasilinear in n.

The MWM and MWMCM problems are different in the presence of negative-weight vertices.
Spencer and Mayr provide a simple technique to eliminate negative weight vertices through the
introduction of dummy vertices. In this paper, we will apply the same technique in the context
of restricted classes of bipartite graphs. For now we introduce the technique in the context of
arbitrary bipartite graphs. For any bipartite graph G = (U, V,E), any subset U ′ of U , and any
subset V ′ of V , let extend(G,U ′, V ′) denote the graph G′ obtained from G by adding |U ′| + |V ′|
“dummy”vertices, each with exactly one incident edge, as follows: for each left vertex u in U ′, a
dummy right vertex is added with an edge to u; for each right vertex v in V ′, a dummy left vertex
is added with an edge to v. The transformation associated with the following simple lemma is
justified by Spencer and Mayr; we include a proof below.

Lemma A.3. Let G = (U, V,E) be a vertex-weighted bipartite graph, let U ′ (resp., V ′) denote the
set of all vertices in U (resp., V) with negative weight. Let G′ denote the vertex-weighted bipartite
graph extend(G,U ′, V ′) where: the weight of each vertex in (U − U ′) ∪ (V − V ′) is the same as
in G; the weight of each vertex in U ′ ∪ V ′ is zero; the weight of each dummy vertex is the negation
of the weight in G of its unique neighbor. Let M be an MWMCM of G′. Then M ∩ E is an MWM
of G.

Proof. Let us call a matching M0 of G good if for every unmatched vertex u in U − U ′ and every
unmatched vertex v in V − V ′, the edge (u, v) does not belong to E.

Let A denote the set of all MCMs of G′. Let B denote the set of all good matchings of G.
For any matching M0 in A, let f(M0) denote M0 ∩ E, and observe that f(M0) belongs to B.
For any matching M1 in B, let g(M1) denote the matching of G′ obtained from M1 by adding
as many edges incident on dummy vertices as possible, and observe that g(M1) belongs to A.
Furthermore, for any matching M0 in A, we have g(f(M0)) = M0. Hence f defines a one-to-one
correspondence from A to B.

Let the sum of the negative vertex weights in G be −W . Observe that for any matching M0

in A, the weight of M0 exceeds the weight of f(M0) by exactly W . Since f defines a one-to-one
correspondence from A to B, and since M is a maximum-weight element of A, we conclude that
f(M) is a maximum-weight element of B. Since the weight of any vertex in (U −U ′)∪ (V − V ′)
is nonnegative, some MWM of G belongs to B. Thus f(M) is an MWM of G, as required.

12

B Convex Bipartite Graphs
A bipartite graph G = (U, V,E) is convex if there exists a total order < over the set of right
vertices V such that for any left vertex u, and any right vertices v, v′, and v′′, if v < v′ < v′′ and
u is adjacent to v and v′′, then u is adjacent to v′. It is straightforward to prove that the class of
convex bipartite graphs is properly contained in the class of 2DORGs. Any convex bipartite graph
admits an interval-value representation in which each left vertex has an associated interval, each
right vertex has an associated value, and a left vertex u is adjacent to a right vertex v if and only if
the value associated with v belongs to the interval associated with u.

Lemma B.1. There exists an ordered representation scheme ξ for the class of convex bipar-
tite graphs with space, induced subgraph, left-to-right search, and MCM complexity O(n), and
LMWMCM complexity O(n log n). Furthermore, given an interval-value representation of a con-
vex bipartite graph G, it is possible to compute a representation in reps(ξ,G) in O(n log n) time.

Proof. Let ξ′ denote the interval-value representation scheme for the class of convex bipartite
graphs. We obtain the desired ordered representation scheme ξ by sorting the left vertices by the
maxima of their associate intervals, breaking ties arbitrarily, and by sorting the right vertices by
their associated values. The time to convert from ξ′ to ξ is clearly O(n log n). As part of this
conversion, we also replace (if possible) the endpoints of each interval associated with a left vertex
with values that correspond to suitable right vertices; for example, if the minimum endpoint of the
interval is x, then we replace x with the minimum value of any right vertex that is at least x. This
can be done in O(n) time via merging. The space and induced graph complexity of ξ is clearly
O(n). Representation scheme ξ is suitable for applying the O(|U | + |V |)-time MCM algorithm
discussed in Section 1; hence the MCM complexity of ξ is O(n).

Just as the aforementioned MCM algorithm is based on union-find, we can use union-find to
establish anO(n) bound on the left-to-right search complexity of ξ. The idea is to maintain a queue
of left vertices that have been “discovered” but have not yet had their outgoing edges “explored”.
Recall that left-to-right search is performed with respect to a given matching, call it M . Initially,
the queue contains the left vertices that are unmatched in M , and the right vertices are arranged
in a doubly-linked list of singleton union-find trees, in sorted order. As the search progresses,
and vertices on the right are discovered, each maximal contiguous sequence of discovered right
vertices is maintained as a single entry consisting of a union-find tree containing the vertices in this
sequence. The search terminates when the queue of left vertices is empty. While it is nonempty,
a left vertex u is removed from the queue, and find operations are performed corresponding to
the endpoints of the associated interval. It is then straightforward to explore the relevant section
of the linked list of union-find trees containing the right vertices to locate all as yet undiscovered
right vertices lying in the interval associated with u, and to update the list of union-find trees
appropriately. Whenever a right vertex v is discovered for the first time, we check whether it is
matched inM . If so, the match of v is added to the queue of discovered left vertices. As in the case
of the MCM algorithm discussed in Section 1, the special structure of this union-find application
results in a linear time bound.

The claimedO(n log n) bound on the LMWMCM complexity of ξ follows by Lemma A.2.

Theorem 2. Assume that we are given an interval-value representation of an n-vertex, vertex-
weighted convex bipartite graphG = (U, V,E) such that each interval endpoint, value, and weight
is an O(1)-word integer. Then an LMWMCM of G can be computed in O(n log n) time.

13

Proof. Immediate from Lemma B.1.

C Additional Lemmas
The following lemma is an easy consequence of the MCM algorithm of Chang [3]. Since this
algorithm is straightforward to state and analyze, we do so below using the notations of the present
paper.

Lemma C.1. Suppose ξ is an elimination-ordered representation scheme for a hereditary class of
chordal bipartite graphs. If ξ has either left-to-right or right-to-left delete-min complexity at most
f(n), then ξ has MCM complexity O(nf(n)).

Proof. By symmetry, it suffices to consider the case where the left-to-right delete-min complexity
is at most f(n). Consider the following algorithm. Initialize matching M to the empty matching.
Then process left vertices from lowest to highest with respect to the elimination order. To process
a left vertex u, perform a delete-min(u) operation. If this operation returns a right vertex v (as
opposed to nil), then add edge (u, v) to M . After processing all of the left vertices, we claim that
M is an MCM.

To prove the claim, let k denote the highest integer such that some MCM of G matches the
k lowest left vertices in the same way as M , and let M ′ denote an MCM of G that matches the
k lowest left vertices in the same way as M . If k is equal to the number of left vertices, then
M = M ′, and we conclude that M is an MCM, as required. Otherwise, let u denote the least left
vertex that is matched differently in M ′ than in M . In each of the following two cases, we derive
a contradiction by exhibiting an MCM M ′′ that matches the k + 1 lowest left vertices in the same
way as M .

Case 1: u is unmatched in M ′. Thus u is matched to some right vertex v in M . The definition
of M ′ implies that v is matched to some left vertex u′ in M ′ such that u < u′. But then we obtain
a contradiction with M ′′ = M ′ − (u′, v) + (u, v).

Case 2: u is matched to right vertex v′ in M ′. Thus the delete-min(u) operation performed
when processing u does not return nil , since the minimum is taken over a set of right vertices
that includes v′, and so is nonempty. Hence this operation returns a right vertex v. Since M and
M ′ match u differently, we conclude that v < v′. If v is unmatched in M ′, then we obtain a
contradiction with M ′′ = M ′ − (u, v′) + (u, v). Thus v is matched to some left vertex u′ in M ′,
where u < u′. By the elimination ordering property, we conclude that u′ is adjacent to v′, which
yields a contradiction with M ′′ = M ′ − (u, v′)− (u′, v) + (u, v) + (u′, v′).

The next two lemmas are used to handle negative vertex weights.

Lemma C.2. Let G be a chordal bipartite graph, and let graph G′ be obtained from G by adding
a new left vertex u (resp., right vertex v) that is adjacent to exactly one right (resp., left) vertex.
Then we can extend an elimination ordering of G to an elimination ordering of G′ by prepending
u (resp., v) to the ordered list of left (resp., right) vertices.

Proof. Immediate from the definition of an elimination ordering.

14

Below we consider representation schemes for classes of graphs that include “dummy” vertices
in the sense discussed in Appendix A. We say that such a scheme is a representation scheme with
dummies. For a representation scheme with dummies, we require the representation of a graph to
encode the dummy/non-dummy status of each vertex.

Lemma C.3. Let C be a class of chordal bipartite graphs. Let ξ be an elimination-ordered rep-
resentation scheme for C with space complexity at most f0(m,n), induced subgraph complexity
at most f1(m,n), left-to-right search complexity at most f2(m,n), right-to-left search complexity
at most f3(m,n), left-to-right delete-min complexity at most f4(n), and right-to-left delete-min
complexity at most f5(n). Let C ′ denote the class of all graphs G′ of the form extend(G,U ′, V ′)
where G = (U, V,E) belongs to C, U ′ is a subset of U , and V ′ is a subset of V . Then there
is an elimination-ordered representation scheme with dummies ξ′ for C ′ with space complexity
O(f0(m,n) + n), induced subgraph complexity O(f1(m,n) + n), left-to-right search complexity
O(f2(m,n) + n), right-to-left search complexity O(f3(m,n) + n), left-to-right delete-min com-
plexity O(f4(n)), and right-to-left delete-min complexity O(f5(n)). Furthermore, given a repre-
sentation in reps(ξ,G) of a graph G = (U, V,E) in C, a subset U ′ of U , and a subset V ′ of V , we
can compute a representation in reps(ξ′, G′) where G′ = extend(G,U ′, V ′) in O(f0(m,n) + n)
time.

Proof. Let G = (U, V,E) belong to C, let R be a representation in reps(ξ,G), let U ′ be a subset
of U , let V ′ be a subset of V , and let G′ = extend(G,U ′, V ′). We construct the desired ξ′ as
follows. For each representation R in reps(ξ,G), the set reps(ξ′, G′) includes a representation R′

that extends R by incorporating a simple adjacency list representation of the dummy vertices and
their incident edges.

The elimination ordering associated with R′ is obtained by prepending the dummy left (resp.,
right) vertices to the sorted list of left (resp., right) vertices associated with the elimination ordering
of R. The correctness of this approach follows from repeated application of Lemma C.2.

The complexity claims made in the lemma with respect to ξ′ are all straightforward to verify.

D A Unit-Demand Auction
Consider an auction in which many different items are for sale. Assume that a bidding agent
assigns a separate value to each item, and is interested in acquiring at most one item. Such an
agent is said to have unit-demand preferences. In a unit-demand auction, the bid of an agent takes
the same form as a unit-demand preference function: The agent specifies an offer for each item,
with the understanding that the bid can win at most one item.

A Vickrey-Clarke-Groves (VCG) mechanism can be used to determine a suitable outcome
— allocation and pricing — for any sealed-bid unit-demand auction. (The reader is referred to
the survey of Nisan [13] for an introduction to mechanism design, including VCG mechanisms.)
The set of possible VCG allocations corresponds to the set of maximum-weight matchings in the
bipartite graph that encodes the unit-demand bids: there is a left vertex for each agent; there is a
right vertex for each item; if the unit-demand bid of agent u includes an offer for item v, then there
is an edge (u, v) with weight equal to u’s offer for v. (In the current presentation we make the

15

standard assumption that the edge weights are all nonnegative; this assumption is not essential, but
it simplifies our discussion.)

The VCG mechanism guarantees efficiency, individual rationality, and strategyproofness. Strat-
egyproofness ensures that an agent u is motivated to submit a unit-demand bid equal to the actual
preferences of u. In the context of unit-demand auctions, the VCG mechanism also achieves envy-
freedom: No agent can achieve a higher utility by receiving a different allocation at the specified
prices. It is known that the envy-free price vectors form a complete lattice with respect to the
pointwise minimum and maximum operations. Hence there is a unique minimum envy-free price
vector; this price vector is known to coincide with the VCG prices. (The reader is referred to Roth
and Sotomayor [15, Chapter 8] for proofs of various foundational results related to unit-demand
auctions.)

The purpose of this section is to consider the special case of unit-demand auctions where the
agent preferences correspond to a vertex-weighted 2DORG: there is a left vertex for each agent;
there is a right vertex for each item; each item has two associated values that we refer to as an
x-value and a y-value (e.g., third-party “quality” and “seller reliability” scores); the bid of an agent
u is encoded as a triple (w, x′, y′) which means that u is willing to pay w for any item with x-value
at least x′ and y-value at least y′. Thus the bid graph corresponds to a 2DORG with weights on the
left vertices, and Theorem 1 implies that a VCG allocation can be computed in O(n log2 n) time.
Below we argue that, given such a VCG allocation, the VCG prices can be computed O(n log n)
time.

In order to compute the VCG prices in O(n log n) time, we exploit the aforementioned charac-
terization of the VCG price vector as the minimum envy-free price vector. Our plan is to start with
a price of zero for each item and iteratively increase individual prices — while maintaining the
invariant that no item price exceeds the VCG price — until an envy-free price vector is reached.
Assuming that the desired invariant can be maintained, we are assured that the final prices are
equal to the VCG prices. In order to maintain the invariant, each time we raise the price of an item
v from p to p′, we establish that the price of item v is at least p′ in any envy-free solution. We
increase the item prices in two phases, as described below.

In the first phase, we set the tentative price of each item v to the maximum vertex weight of
any nonallocated agent u who is bidding on item v (i.e., any agent u such that the x-value of v is
at least that of u and the y-value of v is at least that of u). This can be accomplished by processing
all of the nonallocated agents in nonincreasing order of their bids (i.e., vertex weights). To process
a nonallocated agent u with associated vertex weight w, we repeatedly perform delete-min(u)
operations until nil is returned, setting the tentative price of each item returned by this sequence
of operations to w. The total time complexity of this phase is O(n log n). Since the VCG prices
are envy-free, it is easy to see that the tentative price of an item v at the end of the first phase is at
most its VCG price.

In the second phase, we further increase the tentative prices as necessary to ensure that the
allocated agents are envy-free. We begin by restoring the bid graph to its state prior to phase
one. We maintain a priority queue containing all of the allocated agents, where the priority of
an agent is given by the current tentative price of its allocated item. We iteratively remove and
process a highest-priority allocated agent u from the priority queue. To process such an agent u,
we repeatedly perform delete-min(u) operations until nil is returned, setting the tentative price of
each item returned by this sequence of operations to the tentative price of the item allocated to u. It
is easy to argue that the sequence of prices associated with all of tentative price updates performed

16

by the algorithm (across all iterations) is nonincreasing, and that whenever an allocated agent u is
removed from the priority queue, the tentative prices of each remaining item (i.e., each item that
has yet to be deleted from the bid graph) is at most the tentative price of the item allocated to u. It
follows that no tentative price is ever decreased, and that the tentative price of the item allocated
to u has attained its final value by the time u is removed from the priority queue. Recall that
whenever we increase the tentative price of an item v from p to p′, we need to argue that the VCG
price of item v is at least p′. This claim is easy to establish by induction on the number of price
increases: if in processing an item u with allocated item v we increase the price of an item v′ from
p to p′, it is because the tentative price of v is p′, and hence the induction hypothesis implies that the
VCG price of v is at least p′, and hence envy-freedom implies that the VCG price of v′ is at least
p′. Since the tentative price of an item is increased at most once, the total time complexity of all
operations associated with the priority queue is O(n log n). Since each delete-min(u) operation
has O(log n) time complexity, and the number of such operations performed is O(n), the overall
time complexity of the second phase is O(n log n).

To complete our proof, it remains only to argue that upon termination of the second phase,
the prices are envy-free. The definition of the first phase ensures that every nonallocated agent is
envy-free (i.e., is content with not receiving an item) at the end of the first phase. Since prices
do not decrease in the second phase, every nonallocated agent remains envy-free at the end of the
second phase. Now consider an arbitrary allocated agent u and assume that item v is allocated
to u. Let item v have tentative price p when u is removed from the priority queue. Since the
sequence of price updates performed by the algorithm is nonincreasing, any item v′ deleted prior
to the processing of u has final price at least p. Furthermore, the processing of agent u ensures that
any item v′ not deleted prior to the processing of u, and that meets the bidding constraints of u
(i.e., such that edge (u, v′) belongs to the bid graph), has final price exactly p. Thus u is envy-free
(i.e., is content with receiving item v) upon termination of the second phase. We conclude that our
two-phase algorithm computes the VCG prices.

For the sake of concreteness, we have focused the foregoing discussion on the special case of
unit-demand auctions with a 2DORG structure. Our arguments immediately generalize to give the
following theorem.

Theorem 3. Let ξ denote a representation scheme for a hereditary class of bipartite graphs with
delete-min complexity f(n). Assume that we are given a representation in reps(ξ,G) of a bipartite
graph G = (U, V,E) along with an LMWM of G. Interpreting G as a bid graph for a unit-demand
auction, the VCG prices for the items in V can be computed in O(nf(n) + n log n) time.

In auction settings it is often desirable to allow a seller to specify a reserve price, that is, a lower
bound on the selling price. For unit-demand auctions, reserve prices can be modeled by introducing
a suitable dummy bidder for each item. Using Lemma C.3 in conjunction with Theorem 3, it is easy
to argue that reserve prices can be accommodated in our setting without affecting the asymptotic
time complexity of the auction.

17

