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Bounded Representations of Interval

and Proper Interval Graphs⋆

Martin Balko⋆⋆, Pavel Klav́ık⋆ ⋆ ⋆, and Yota Otachi†

Abstract. Klav́ık et al. [arXiv:1207.6960] recently introduced a gener-
alization of recognition called the bounded representation problem which
we study for the classes of interval and proper interval graphs. The input
gives a graph G and in addition for each vertex v two intervals Lv and Rv

called bounds. We ask whether there exists a bounded representation in
which each interval Iv has its left endpoint in Lv and its right endpoint
in Rv. We show that the problem can be solved in linear time for interval
graphs and in quadratic time for proper interval graphs.

Robert’s Theorem states that the classes of proper interval graphs
and unit interval graphs are equal. Surprisingly the bounded represen-
tation problem is polynomially solvable for proper interval graphs and
NP-complete for unit interval graphs [Klav́ık et al., arxiv:1207.6960]. So
unless P = NP, the proper and unit interval representations behave very
differently.

The bounded representation problem belongs to a wider class of
restricted representation problems. These problems are generalizations
of the well-understood recognition problem, and they ask whether there
exists a representation of G satisfying some additional constraints. The
bounded representation problems generalize many of these problems.

1 Introduction

In the recent data-filled world, visualization and graph drawing is becoming an
increasingly more important topic. One is frequently asked to work with a huge
object and to understand its structure. In some cases, it is useful to visualize the
object in a way which reveals its structure. A prime example of this is the class
of interval graphs which is one of the oldest and best-understood graph classes.
An interval graph G can contain many edges, so a standard drawing is not very
understandable. But it has an interval representation R which is a collection of
closed intervals {Iv : v ∈ V (G)} representing the vertices of the graph such that
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Iu ∩ Iv 6= ∅ if and only if uv ∈ E(G). This representation nicely describes the
structure of the edges. We denote the class of interval graphs by INT.

Interval graphs were first introduced by Hajós [10] in 1957. They caught
quickly an attention of many researchers, for instance Benzer [1] used them in
his experimental study of the DNA structure. The first polynomial-time recog-
nition algorithms were given already in 1960’s [9, 8]. After a decade, Booth and
Lueker [3] finally described a linear-time recognition algorithm based on a new
tree-structure called PQ-trees, applicable also to other problems such as pla-
narity. Nowadays, there are over several hundred papers dealing with many as-
pects of interval graphs.

An interval representation is called proper if Iu ⊆ Iv implies Iu = Iv, i.e.,
no interval is a proper subset of another interval. And it is called unit if all
intervals are of unit length. We consider two important subclasses of interval
graphs: proper interval graphs (PROPER INT) are graphs which admit proper
interval representations, and similarly for unit interval graphs (UNIT INT). The
well-known theorem of Roberts [18] states that PROPER INT = UNIT INT.

1.1 The Bounded Representation Problem

Several recent papers study restricted representation problems in which we ask
whether there exists, say, an interval representation of an input graph G satisfy-
ing some additional constraints; see for example [16, 11, 12, 2, 17]. In this paper,
we study for the classes INT and PROPER INT one such problem called bounded
representation, recently introduced by Klav́ık et al. [13]. This problem is related
to many other restricted representation problems; see Section 1.2 for details.

For an arbitrary interval I, we denote its left endpoint by ℓ(I) and its right
endpoint by r(I). Let Lv and Rv be two intervals defined for each v ∈ V (G). A
representation R is called a bounded representation if ℓ(Iv) ∈ Lv and r(Iv) ∈ Rv

for each v ∈ V (G). The bounded representation problem is the following decision
problem:

Problem: The Bounded Representation Problem – BoundRep(C)
Input: A graph G and two intervals Lv and Rv for each v ∈ V (G).

Output: Is there a bounded representation R of the class C?

In the further text, we refer to the intervals Lv as left bounds and to the intervals
Rv as right bounds, or just simply bounds. See Fig. 1a for an example of an
BoundRep instance. It is easy to see that the bounded representation problem
generalizes recognition; if all the bounds are set to (−∞,+∞), they pose no
restriction at all. We also allow trivial bounds consisting of single points.

1.2 Other Restricted Representation Problems

We review other restricted representation problems and discuss their relation to
the bounded representation problem. The problems were considered for different
intersection classes of graphs which we do not define formally; see the references
for details. We note that all these problems generalize the recognition problem
(Recog). See Fig. 1b for the relations between the problems.
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Fig. 1. (a) A bounded representation R of the class INT is given for a graph K3. There
exists no bounded proper interval representation since Iw is always a proper subset of
Iu and Iv. (b) The Hasse diagram for different restricted representation problemsi. If
P ≤ P

′, then the problem P can be solved using the problem P
′.

Partial Representation Extension. This problem denoted by RepExt was
introduced by Klav́ık et al. [16]. The input prescribes together with G an in-
tersection representation R′ of an induced subgraph G′. The goal is to find a
representation R of the entire G which extends R′, i.e., it assigns the same sets
to the vertices of G′ as R′. The problem can be solved in polynomial time for
interval graphs [16, 2, 15], proper and unit interval graphs [13], function and per-
mutation graphs [12] and circle graphs [4]. For chordal graphs in the setting of
subtree-in-a-tree graphs, several versions of the problem were considered in [14],
and almost all of them are NP-complete. It is known that planar graphs have
several intersection representations (contact representations of discs, etc.), but
extending these representations is NP-hard [7].

The bounded representation problem generalizes partial representation ex-
tension, since one can prescribed singleton bounds for the intervals of G′ and
(−∞,+∞) for the remaining bounds. (We note that the bounded representation
problem can be considered also for many other classes of graphs.)

Inclusion Restrictions. Function graphs are intersection graphs of continuous
functions defined on [0, 1]. In [12], the following problem was considered and
proved to be NP-complete. The input prescribes some functions partially, i.e.,
on partial domains [a, b] ⊆ [0, 1]. The goal is to extend them to the full domain
[0, 1].

We consider more generally three different problems Inclusion, SubSet,
and SuperSet for interval graphs. In all problems, the input gives two intervals
Av and Bv for each vertex v ∈ V (G). The goal is to construct a representation
such that Av ⊆ Iv ⊆ Bv. Further for SubSet, we put all Av = ∅, and for
SuperSet, we put all Bv = (−∞,∞). It is easy to see that these problems can
be reduced to the bounded representation problems, and Inclusion can solve
RepExt.

Simultaneous Representations. This problem denoted by Sim was intro-
duced and solved for several classes by Jampani et al. [11]. The input consists
of two graphs G1 and G2 with some common vertices. The goal is to construct
their representations R1 and R2 such that the common vertices are represented
the same. Bläsius et al. [2] reduce RepExt(INT) to Sim(INT), and thus solve the
first problem in linear time. On the other hand, when the problem is generalized
to k input graphs, the best known result for many classes is an FPT algorithm
in the number of common vertices based on the partial representation exten-
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sion [16, 4]. We are not aware of any relation of the simultaneous representations
problem to the other considered problems.

Motivation. There are two very good motivations for studying the restricted
representation problems. The first motivation is that they might be applicable.
For instance, one might want to construct some specific representation of the
given graph G. Using these restrictions, one can force the representation to be
constructed in this way. The other motivation is that to solve these problems
much better structural understanding is required. For classes like interval graphs,
the structure of all representations is well understood and one can just use PQ-
trees to solve the problems. For other classes like unit interval graphs [13] or circle
graphs [4], the new structural results were developed which might be fruitful also
for other purposes. In mathematics, it is generally desirable to have problems
which force one to get better understanding of the objects.

1.3 Our Results

In this paper, we prove the following two theorems. For BoundRep(INT), we
assume that the endpoints of the bounds are sorted from left to right, so we can
work with the bounds efficiently. Otherwise, we need extra time O(n log n) in
the beginning.

Theorem 1. The problem BoundRep(INT) with sorted endpoints of the bounds
can be solved in time O(n+m) where n is the number of vertices and m is the
number of edges.

The algorithm of Theorem 1 is almost the same as the algorithm for
RepExt(INT) of [16, 15]. So the techniques developed for the partial represen-
tation extension problem can be directly applied to more general problems.

Theorem 2. The problem BoundRep(PROPER INT) can be solved in time
O(n2) where n is the number of vertices.

We note that it was already observed in [16] that the classes of proper and
unit interval graphs behave differently with respect to the partial representa-
tion problem; unit interval graphs put additional restrictions is the form of pre-
cise rational positions. In [13], the problem RepExt(UNIT INT) was solved in
quadratic time by linear programming. So it seemed that this difference is only
in some additional numerical problems posed by unit intervals. Theorem 2 shows
together with the result of [13, Proposition 2] that this understanding is funda-
mentally wrong (unless P = NP, of course):

Theorem 3 (Klav́ık et al. [13]). The problem BoundRep(UNIT INT) is NP-
complete.

The problem is reduced from 3-partition and the hard part is to derive a
correct ordering ◭ of the components from left to right; if the ordering is pre-
scribed, one can solve the problem in quadratic time. The main difference for
proper interval graphs is Proposition 2 which allows us to derive this ordering
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◭. The remainder of the algorithm works similarly as in [13], only some places
are more technical since we have to deal with both left and right bounds; in the
case of unit interval graphs, we can work only with left bounds since the position
ℓ(Iv) determines the position r(Iv).

2 Preliminaries

For a graph G, we denote by V (G) the set of its vertices and by E(G) the
set of its edges. We use N [u] for the closed neighborhood of the vertex u, i.e,
N [u] = {v ∈ V (G) : uv ∈ E(G)} ∪ {u}.

A (partial) ordering is a transitive, reflexive and antisymmetric relation. A
pre-ordering is just a transitive and reflexive relation, so several elements can
be equal in a pre-ordering. An ordering/pre-ordering is called linear if every two
elements are comparable.

For an arbitrary subset S of the real line, we define ℓ(S) = inf{x : x ∈ S}
and r = sup{x : x ∈ S}. By ⋖, we denote the subset ordering where S ⋖ T for
two subsets S and T if and only if r(S) ≤ ℓ(T ); in other words S is completely
on the left of T .

Endpoint Pre-orderings. There are two very natural ways how one can work
with intervals and interval representations. The first option is to assign to each
interval I two rational numbers ℓ(I) and r(I). The second option which we prefer
in this paper is just to consider the ordering < of the endpoints as they appear
from left to right. The reason is that this ordering contains all information about
intersections of intervals; precise rational positions are not needed, we can just
work with a topology of the representation. We note that this is not the case
of unit interval representations, for which one has to consider precise rational
number positions.

In the case of general interval graphs, one can assume that no two endpoints
share their positions. For bounded representations, this is not true anymore since
the bounds might force shared positions. In this case, ≤ is a linear pre-ordering,
with some sets of endpoints being equal in it. We say that an endpoint z is in
between of x and y if x ≤ z ≤ y. If two endpoints x and y share position, we
denote it by x = y, and by x < y we denote that x is strictly on the left of y. It
is important to state that if x < y, then one can add in between of x and y an
arbitrary number of endpoints in any pre-ordering. If x = y, then only endpoints
sharing the position with x and y can be added in between.

If we work with representations just as with left-to-right pre-orderings of the
endpoints, then how can we decide whether the endpoints lie in the bounds?
Our assumption on the input is that we are given a linear pre-ordering of the
endpoints of the bounds Lv and Rv. The solution gives a bounded representation
R in the form of a joined pre-ordering ≤ of the endpoints of the bounds and
the intervals. The bounds constraints just say that ℓ(Lv) ≤ ℓ(Iv) ≤ r(Lv) and
ℓ(Rv) ≤ r(Iv) ≤ r(Rv).

Simplifying Bounds. For each interval Iv, we want ℓ(Iv) ≤ r(Iv). So we assume
each pair Lv and Rv satisfies ℓ(Lv) ≤ ℓ(Rv) and r(Lv) ≤ r(Rv). Otherwise we
modify the instance by putting ℓ(Rv) := ℓ(Lv), resp. r(Lv) := r(Rv).
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3 Bounded Representations of Interval Graphs

In this section we establish Theorem 1 which states that the problem
BoundRep(INT) can be solved in time O(n + m) (given the pre-ordering of
the endpoints of the bounds). First, we give a characterization of bounds for
which the bounded representation exists. Then we describe the algorithm which
checks this characterization, and since it is constructive, it can construct the
bounded representation if it exists. We note that our approach is very similar
to [15].

3.1 Characterization of Fulkerson and Gross

Fulkerson and Gross [8] gave the following characterization:

Lemma 1 (Fulkerson and Gross). A graph G is an interval graph if and
only if there exists a linear ordering < of the maximal cliques of G such that for
every vertex v ∈ V (G) the cliques containing v appear consecutively in <.

Proof (Sketch). We sketch this proof since it is important to understand the
characterization. Let R be an interval representation. For each maximal clique
C, we consider

⋂

v∈C Iv, and according to Helly’s theorem this intersection is
non-empty. We pick an arbitrary point from this intersection, and we call it a
clique-point and denote it by cp(C). Since these intersections are for different
maximal cliques pairwise distinct, the clique-points are linearly ordered from left
to right. It is routine to check that this is the ordering < from Lemma 1.

On the other hand, given an ordering < of the maximal cliques, we place
clique-points arbitrarily in this ordering. Then for each vertex v, we put

ℓ(Iv) = min{cp(C) : v ∈ C}, and r(Iv) = max{cp(C) : v ∈ C}, (1)

i.e., we place Iv on top of the clique-points of cliques containing v. We obtain a
correct interval representation of G. ⊓⊔

3.2 Orderings of Maximal Cliques Compatible with the Bounds

We want to construct a bounded representation in a similar manner, first by
placing the clique-points from left to right and then by constructing the intervals
using (1). But to ensure that the resulting representation is bounded, we cannot
place the clique-points arbitrarily. For a maximal clique C, we denote by JC
the set of possible positions where cp(C) can be placed; see Appendix A for the
precise definition.

But now if JC ⋖ J ′
C , we know that cp(C) has to be always placed on the left

of cp(C′); so ⋖ on the sets JC gives the partial ordering of the cliques from left
to right which we denote ⋖ as well.

Proposition 1. There exists a bounded representation R if and only if there is
an ordering < of the maximal cliques which is consecutive in every vertex v and
extends ⋖.
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Proof (Sketch). The constraints are necessary. We place the clique-points greed-
ily from left to right according to the ordering <. When we place cp(C), we place
it on the right of the previously placed clique-point and in JC . For contradiction
suppose that no such point of JC . We obtain a contradiction with the consecu-
tivity property or the ordering ⋖. The full proof is in Appendix A. ⊓⊔

3.3 The Algorithm

To solve BoundRep(INT), we proceed in the following main steps.

(1) We find maximal cliques of G, using the algorithm of Rose et al. [19] in time
O(n+m).

(2) We compute the sets JC , this can be done by a single sweep from left to right
in time O(n +m). This gives us the partial ordering ⋖ of maximal cliques
according to which the clique-points have to appear on the real line.

(3) Test whether there is a linear ordering < of the maximal cliques which ex-
tends ⋖ and for each vertex the maximal cliques containing it appear con-
secutively. This can be done using [15, Section 2].

(4) If there is a suitable reordering < of ⋖, then we place the clique-points as
in the proof of Proposition 1. Using (1) we construct a correct bounded
representation R of G.

Note that if we only want to decide BoundRep(INT) without constructing
a representation, then the last step can be omitted. For the first step, the input
graph has to be chordal and then the total size of all cliques is O(n+m).

The constructed representation with cp(C) ∈ JC is correct since we have
ℓ(Iv) ∈ Lv and r(Iv) ∈ Rv for each v ∈ V (G). Moreover R is an interval repre-
sentation of G, since every clique-point lies exactly in the intervals representing
the vertices of the corresponding maximal clique. Thus we can summarize the
results.

Proof (Theorem 1). The proof follows the steps described in the beginning of
the section. The correctness of the algorithm is ensured by Proposition 1. We
already observed that for a given pre-ordering ≤ of the endpoints of the bounds
from left to right, the construction of the reordering < of ⋖ can be done in
time O(m + n). Since the representation R can be also constructed in linear
time with respect to the size of G, we see that the whole algorithm runs in time
O(m+ n). ⊓⊔

4 Bounded Representations of Proper Interval Graphs

In this section, we establish Theorem 2 which states that the bounded represen-
tation problem of proper interval graphs can be solved in time O(n2). Proper
interval representations give two important orderings: the ordering ◭ of the
components, and the ordering ⊳ of the intervals of the components. We first
describe them in details and then we show how they can be used in solving of
the BoundRep(PROPER INT) problem.

7



4.1 Component Orderings ◭

Let R be any representation of G and let C be a connected component. Then
⋃

v∈C Iv is a closed interval of the real line. Since the intervals corresponding to
the components are pairwise disjoint, the components are ordered as C1 ◭ · · · ◭
Cc. Notice that for different representations we may get different orderings ◭,
and when no restriction is posed on the representation, we can use each of the
c! possible orderings.

Suppose that uv /∈ E(G). We ask what conditions the bounds have to satisfy
to determine that Iu⋖Iv in any bounded representation of G. Since the intervals
Iu and Iv do not intersect, it is sufficient to prove that ℓ(Iu) is always to the left
of r(Iv). This is clearly satisfied if and only if Lu ⋖Rv.

For a given instance of the bounded representation problem, our goal is to
determine some ordering ◭ in which a bounded representation exists. To do so,
we derive a relation ◭′ such that the ordering ◭ of every bounded representation
R has to extend ◭′. Let C and C′ be two distinct components of G. We put
C ◭′ C′ if there exists a pair u ∈ C and v ∈ C′ such that Lu ⋖Rv.

The following proposition (whose proof can be found in Appendix B) states
that respecting the ordering ◭′ is already sufficient for solving the bounded
representation problem:

Proposition 2. A bounded representation of G in an ordering ◭ extending ◭′

exists if and only if there exists a bounded representation of G.

Proof (Sketch). We argue only the non-obvious direction. Suppose that C and
C′ are two components incomparable in ◭′. In such a case, their bounds have
to be hugely overlapping. There are two cases one has to deal with:

– All bounds of C and C′ are pairwise intersecting. Then due to Helly’s theo-
rem, we can represent C and C′ in any ordering in this intersection.

– Only bounds of, say, C are pairwise intersecting. But then due to Helly’s
theorem, we can represent C either on the left of the left-most bound of C′,
or on the right of the right-most bound of C. We still leave enough space for
C′ to be represented.

Then we repeatedly apply this local reordering of incomparable components till
we modify the given bounded representation in the prescribed ordering ◭ which
extends ◭′. See Appendix B for further details. ⊓⊔

We note that a similar proposition is not correct for unit interval graphs. The
problem is that a component has some minimal size which it requires in every
representation, so it cannot be placed in this arbitrary small common intersection
of the bounds. Actually Klav́ık et al. [13, Theorem 1] proved that finding the cor-
rect ordering ◭ is the NP-complete part of the problem BoundRep(UNIT INT).
For a prescribed ordering ◭, one can solve the bounded representation problem
of unit interval graphs in quadratic time.

4.2 Vertex Orderings E

Two vertices u and v are called indistinguishable if N [u] = N [v]. So being
indistinguishable defines an equivalence relation on V (G), and the classes of this
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equivalence are called groups of indistinguishable vertices. For every intersection
representation, the vertices of each group can be represented the same, and so
indistinguishable vertices are not very interesting from the structural point of
view. This is not the case for the bounded representation problem (or any other
problem of restricted representation), in which indistinguishable vertices can be
given distinct bounds and thus are forced to be represented differently.

Vertex Orderings. Let R be any proper interval representation, and assume
for a second that no two intervals of R are the same. Then the intervals are
ordered from left to right, and we denote this ordering by ⊳. The ordering ⊳

is the ordering of the left endpoints, and at the same time the ordering of the
right endpoints. In ⊳, each group of indistinguishable vertices has to appear
consecutively. Deng et al. [6] characterize possible orderings ⊳ for connected
proper interval graphs:

Lemma 2 (Deng et al.). For a connected proper interval graph, the ordering
⊳ is uniquely determined up to local reordering of the groups of indistinguishable
vertices and the complete reversal.

In other words, there exists a partial ordering < in which exactly the pairs
of indistinguishable vertices are incomparable. Then each ⊳ is a linear extension
of < or its reversal. Corneil et al. [5] describe a simple linear-time algorithm for
computing <.

Now we allow having several same intervals in the representation R since
the bounds might force this situation. The representation R then gives a linear
pre-ordering E. When we construct bounded representations, we place intervals
as the same if and only if this is forced by the bounds. It is easy to observe that
if Iu = Iv, then the vertices u and v are indistinguishable.

Constraints Given by Bounds. In the case of bounded representations, the
order of some pairs of the indistinguishable vertices can be prescribed by the
bounds. Suppose that we restrict ourself to just a single component C of the
input graph G and ignore the rest. Similarly to above, we produce a relation ⊳′

of the vertices of C.
Let u and v be two indistinguishable vertices of C. We put u E′ v if and only

if Lu ⋖Lv or Ru⋖Rv; so E′ is a union of the subset order ⋖ℓ of the left bounds
and the subset order ⋖r of the right bounds. Notice that the pre-ordering E′

does not have to be a partial ordering and that u E′ v implies u E v for any
representation R.

Now, since we do not want to work with pre-ordering E, we construct a
reduced graph C′ with modified bounds. The following proposition states that
this construction does not change solution of the problem.

Proposition 3. There exists a bounded representation of C with an ordering
extending < if and only if there exists a bounded representation of C′ in an
ordering ⊳ which extends both < and ⊳′.

Proof (Sketch). The construction of C′ is done in two steps. First, we consider
strongly connected components defined by E′, and they have to be represented
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by the same intervals. Therefore, we unify the bounds of their intervals to force
this.

To prove the correctness of the reduction, we reorder groups in C according
to ⊳. For each group, we apply a similar greedy procedure as in Proposition 1.
For the detailed proof see Appendix C. ⊓⊔

4.3 The Algorithm

The algorithm works as follows:

(1) We compute the ordering ◭′ of components, and construct a linear ordering
◭ extending ◭′.

(2) We proceed the components according to ◭ from left to right: C1 ◭ · · · ◭ Cc.

(3) When processing the component Ci:

– Compute the partial ordering <, using [5].

– For < and its reversal do the following: for each group Γ of indistin-
guishable vertices, compute ⊳′, its strongly connected components, the
reduced graph C′

i and its ordering ⊳.

– Place the endpoints according to ⊳ from left to right, on the right side
of the representation of Ci−1 greedily as far to the left as possible.

– Construct a representation of Ci, by copying the intervals ISi
.

It remains to argue details concerning specific implementation and correct-
ness which is easily implied by Proposition 2 and Proposition 3. See Appendix D
for details.

5 Conclusions

In this paper, we give a polynomial time algorithm for the classes of interval
and proper interval graphs for a recently introduced problem BoundRep. The
main result of this paper is a rather surprising discovery that the bounded rep-
resentation problem distinguishes the classes of proper and unit interval graphs:
BoundRep(PROPER INT) is polynomially solvable but BoundRep(UNIT INT)
is NP-complete [13]. We believe that is a very interesting problem to further
investigate differences between the structures of proper and unit interval repre-
sentations; this paper gives a good reason to do so.

Open Problems. We conclude with two open problems.

Problem 1. Is it possible to solve BoundRep(PROPER INT) in time O(n +m)
(with a given left-to-right ordering of the bounds)?

The current bottleneck of our algorithm is the computation of E from E′

which is the only step requiring time O(n2).

Problem 2. What is the complexity of the BoundRep problem for other classes
such as circular-arc graphs, circle graphs?

Currently, the only known results are for the classes INT, PROPER INT, and
UNIT INT. Even attacking some simpler problems for these classes might be very
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interesting. For instance, solving the partial representation extension problem for
circular-arc graphs could be a major advancement in the area of the restricted
representation problems.

References

1. Benzer, S.: On the topology of the genetic fine structure. Proc. Nat. Acad. Sci.
U.S.A. 45, 1607–1620 (1959)

2. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. In: SODA ’13 (2013)

3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–
379 (1976)

4. Chaplick, S., Fulek, R., Klav́ık, P.: Extending partial representations of circle
graphs. Accepted to GD. (2013)

5. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time
recognition of unit interval graphs. Inf.Process.Lett 55(2), 99–104 (1995)

6. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

7. Dorbec, P., Kratochv́ıl, J., Montassier, M.: Contact representations of planar graph:
Rebuilding is hard. Submitted. (2013)

8. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math.
15, 835–855 (1965)

9. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Can. J. Math. 16, 539–548 (1964)
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A Appendix: Proof of Proposition 1

Let G be a given graph. For a maximal clique C ⊆ G, we set

JC =





⋂

u∈V (C)

[ℓ(Lu), r(Ru)]



 \





⋃

v/∈V (C)

[r(Lv), ℓ(Rv)]





i to denote the set of all the possible candidates for clique points cp(C) with
respect to the given restrictions on the intervals of the representation. (Where the
interval [r(Lv), ℓ(Rv)] is empty if r(Lv) > ℓ(Rv).) If the set JC is empty, then it
is clearly not possible to place cp(C) and thus there is no interval representation
of G which satisfies the given restrictions.

We now prove Proposition 1 which says that there exists a bounded repre-
sentation R if and only if there is an ordering < of maximal cliques which is
consecutive in every vertex v and extends the subset ordering ⋖ on the sets JC
(which can be also understood as a partial ordering of the maximal cliques).

Proof (Proposition 1). If there is no such extension <, then using Lemma 1 we
see that G does not have an interval representation which satisfies the bounds,
because the conditions forced by ⋖ are clearly necessary.

On the other hand, suppose that G is a graph which has an interval represen-
tation satisfying the bounds. Then according to Lemma 1 there is a reordering <
which extends ⋖. To construct an interval representationR of G we first greedily
place the clique points according to < from left to right always as far to the left
as possible.

All that is left is to show that the greedy procedure cannot fail. Assume, for
the sake of contradiction, that the procedure fails for the clique point cp(C).
Since cp(C) cannot be placed at all, there are some clique points placed on the
right of r(JC) (or possibly on r(JC)). Let cp(B) be the leftmost of them. Since
cp(B) was placed before cp(C) we have B < C and thus C ⋖ B cannot hold.
Therefore we know that ℓ(JB) < r(JC).

Following the greedy procedure we see that cp(B) was not placed to the left
of r(JC), because all the possible locations there were blocked by previously
placed clique points or by intervals [r(Lv), ℓ(Rv)] where v /∈ V (B). There is at
least one clique point placed to the right of ℓ(JB), because otherwise we would
place cp(B) to ℓ(JB) or right next to it. Let cp(A) be the rightmost clique-point
placed between ℓ(JB) and cp(B).

We claim that every point between cp(A) and r(JC) has to be covered by
intervals [r(Lv), ℓ(Rv)] where v /∈ V (B). Otherwise we would place cp(B) to the
uncovered point, which is in JB , since cp(A) is between ℓ(JB) and cp(B). Let S
be the set of such intervals and let C be the set of maximal cliques containing
at least one vertex from S. Note that since S induces a connected subgraph of
G, all the cliques in C appear consecutively in <, because every pair of adjacent
vertices from S is contained in some maximal clique from C.
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From the assumptions made, it is clear that A and C are in C, but B is not
and A < B < C holds. However consecutiveness of C and A < B imply C < B
which gives us a contradiction. ⊓⊔

All that is left is to describe the construction of a suitable interval represen-
tation of G provided that the partial ordering ⋖ was extended to < in the third
step of the algorithm.

To obtain such representation R it suffices to let

ℓ(Iv) = min ({r(Lv)} ∪ {cp(C) | v ∈ V (C)})

and

r(Iv) = max ({ℓ(Rv)} ∪ {cp(C) | v ∈ V (C)})

for every vertex v of G.
Then from the fact that cp(C) ∈ JC we have ℓ(Iv) ∈ Lv and r(Iv) ∈ Rv.

Therefore the restrictions on the representing intervals are satisfied. Moreover
R is an interval representation of G, since every clique-point lies exactly in the
intervals representing the vertices of the corresponding maximal clique.

B Appendix: Proof of Proposition 2

In this part we prove that a bounded representation of G in an ordering ◭

extending ◭′ exists if and only if there exists a bounded representation of G.

An interval I is called trivial if ℓ(I) = r(I) and non-trivial otherwise. Two
non-trivial intervals I and J are intersecting non-trivially, if I ∩J is non-trivial.
If I is trivial and J is non-trivial, then I∩J is non-trivial if ℓ(J) < ℓ(I) = r(I) <
r(J).

Before proving Proposition 2, we need to establish some basic properties.
For the following, let C and C′ be two incomparable components in ◭′. Let B
be the collection of all bounds of intervals in C, and similarly B′ for C′.

Lemma 3. Every bound B ∈ B non-trivially intersects every bound B′ ∈ B′.

Proof. If B is Lu and B′ is Rv, or vice versa, then the statement clearly holds; if
B and B′ would not intersect, or would intersect trivially, we get that Lu⋖Rv and
C ◭′ C′. Now, say we have two left bounds B = Lu and B′ = Lv, and suppose
for contradiction Lu ⋖ Lv. Since ℓ(Lv) ≤ ℓ(Rv), we get that also Lu ⋖Rv and
so C ◭′ C′, contradiction. We proceed similarly for the two right bounds. ⊓⊔

Lemma 4. If the bounds B are not pairwise non-trivially intersecting, then the
bounds B′ are pairwise non-trivially intersecting.

Proof. Let Lu be the leftmost left bound of C (minimizing r(Lu)) and let Rv be
the rightmost right bound of C (maximizing ℓ(Rv)). We know that Lu ⋖Rv. If
B′ ∈ B′, then according to Lemma 3 we have ℓ(B′) < r(Lu) ≤ ℓ(Rv) < r(B′).
So all bounds of B′ are intersecting non-trivially. ⊓⊔
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Lemma 5. Suppose that there exists a bounded representation R which places C
and C′ next to each other in ◭. Then there exists another bounded representation
R′ with the only difference that the order of C and C′ is swapped.

Proof. We represent the remaining components in R′ exactly as in R, so we
only need to deal with C and C′. We can assume that C ◭ C′ in R. Let x
be the rightmost endpoint of the component on the left of C, and let y be the
leftmost endpoint of the component on the right of C. (Or −∞, resp. ∞, if such
an endpoint does not exist.)

There are three possible cases how the bounds B and B′ are intersecting.

– Case 1: The bounds B are pairwise non-trivially intersecting and the bounds
B′ are as well. Then by Lemma 3 all bounds of B∪B′ are pairwise non-trivially
intersecting. So by the Helly property, there exists a non-trivial interval J
contained in all bounds B ∪ B′ such that x < ℓ(J) < r(J) < y. Since R
exists, there exists some ordering of the endpoints in which the components
C and C′ are representable. We can represent in R′ the components C and
C′ in this ordering inside J which gives a correct bounded representation of
G.

– Case 2: The bounds B are not pairwise non-trivially intersecting and the
bounds B′ are. Let Lu and Rv be the same as in the proof of Lemma 4. Also,
in the proof we argued that there exists a non-trivial interval J contained in
every bound of B′ such that ℓ(J) < r(Lu) ≤ ℓ(Rv) < r(J). So it is possible
to place the entire representation of C′ strictly in between of x and r(Lu),
in the same ordering as in R. And we represent C on the right of it, again
in the same ordering. (This is possible since each bound ends on the right of
r(Lu).)

– Case 3: The same as above, but we represent C on the right of J , and we
compress C′ on the left of it.

For the cases 1 to 3, we construct a correct bounded representation R′ in the
required ordering ◭. Lemma 4 states that Case 4 in which both B and B′ are
not pairwise non-trivially intersecting cannot occur. ⊓⊔

Proof (Proposition 2). The implication from left to right is obvious, R is one
of the bounded representations of G. For the other implication, let ◭ be the
ordering of the components in R, and modify R by repeated application of
Lemma 5 to make it in the ordering C1 ◭ · · · ◭ Cc. Now suppose that R starts
by C1, . . . , Ci−1 but the following is not Ci as in ◭. We take Ci in ◭ and by
repeated application of Lemma 5, we shift it next to Ci−1. To do so, we need
to show that Ci is incomparable to all components between Ci−1 and Ci in ◭.
But if there would be Cj which would be comparable, then Cj ◭

′ Ci, and so the
ordering ◭ would not extend ◭′. ⊓⊔

C Appendix: Proof of Proposition 3

Let us remind the statement of Proposition 3. It says that there exists a bounded
representation of C with an ordering extending < if and only if there exists a
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bounded representation of C′ in an ordering ⊳ which extends both < and ⊳′.
Before the proof of this statement we need to introduce some notation.

Reduced Graph. We have a pre-ordering E′, and some intervals might be
forced to be represented the same. We are going to construct a reduced graph
C′ such that it can be represented in a strict ordering ⊳. We consider one group
Γ of indistinguishable vertices and use the relation ⊳′ to define an oriented
graph H on Γ ; we put (u, v) ∈ E(H) if and only if u ⊳′ v. Let S be a strongly
connected component of H . Then its vertices have to be represented by the same
interval in R. The strongly connected components are partially ordered by the
remaining edges ofH going in between of them, let S1 < · · · < Sk be an arbitrary
topological sorting. Then the constructed pre-ordering ⊳ orders the vertices of
Γ :

S1 ⊳ S2 ⊳ · · · ⊳ Sk,

where all vertices of each Si are equal in E.

Let C′ be the contracted graph, in which vertices of each group are replaced
by the vertices S1, . . . , Sk. The idea is to force the vertices of each Si to be
represented by the same interval. We are going to represent the entire Si by
a single interval ISi

. To do that we need to define bounds compatible with all
vertices of Si, and so we put

LSi
=

⋂

u∈Si

Lu, and RSi
=

⋂

u∈Si

Ru.

Then the constructed pre-ordering E becomes a linear ordering ⊳ for C′, so
the representation of C′ has pairwise distinct intervals. So in the constructed
representation of C′, we can replace the interval ISi

with several equal intervals,
representing the vertices of Si, and we obtain a correct bounded representation
of C.

Group Reordering. Before proving this Proposition 3, we state one important
property. Let Γ be a group of indistinguishable vertices and let R be a represen-
tation with the ordering ⊳. Notice that the vertices of Γ appear consecutively
in ⊳. We study which points of the real line are taken by all intervals of Γ and
which by some interval of Γ . We define

∩Γ =
⋂

v∈Γ

Iv, and ∪Γ =
⋃

v∈Γ

Iv.

Since intervals of the real line satisfy the Helly property and Γ forms a clique in
G, we get that both ∩Γ and ∪Γ are closed intervals such that ∩Γ ⊆ ∪Γ .

Lemma 6. If u is adjacent to Γ , then Iu intersects ∩Γ . And if u is non-adjacent
to Γ , then Iu ∩ ∪Γ = ∅.

Proof. Since Γ is a group of indistinguishable vertices, then u is either adjacent
to everything or nothing, the rest easily follows. ⊓⊔
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Let Γ and Γ ′ be two groups. If the vertices in these groups are pairwise
adjacent, we get that ∩Γ intersects ∩Γ ′, and if they are pairwise non-adjacent,
we get that ∪Γ ∩ ∪Γ ′ is empty.

Lemma 7. Let R be a representation of G and let Γ be a group of indistinguish-
able vertices. Let R′ be a representation constructed from R by placing intervals
I ′u of Γ such that ∩Γ ⊆ I ′u ⊆ ∪Γ with the same ordering of the left and right
endpoints. Then R′ is a correct proper interval representation of G.

Proof. The representation R′ is proper, and it is easy to see that intersections
are preserved. ⊓⊔

Proof (Proposition 3). Again, one direction is clear. We can construct represen-
tation of C as above by copying the intervals ISi

. For the other direction, let
⊳ be an ordering from the statement and let R be a representation of C. We
proceed the groups of C in an arbitrary order and construct a representation of
C′ according to ⊳ using Lemma 7.

For a group Γ with the vertices S1 ⊳ · · · ⊳ Sk, we want to place the intervals
ISi

in between of ∩Γ and ∪Γ in this order. Let ℓi (resp. ri) be the left (resp.
right) endpoint of ISi

. We want to place the left endpoints in [ℓ(∪Γ ), ℓ(∩Γ )] and
the right endpoint in [r(∩Γ ), r(∪Γ )] both according to the ordering ⊳, and we
can do this independently.

We consider the following only for the left endpoints ℓ1, . . . , ℓk and we place
the right endpoints r1, . . . , rk in [r(∩Γ ), r(∪Γ )] using exacly the same argument.
Let L1, . . . ,Lk be the left bounds of S1, . . . , Sk. We assume that each Li is a
subset of [ℓ(∪Γ ), ℓ(∩Γ )]; otherwise we consider only the intersections of the
bounds with this interval. (Notice that even for these restricted bounds we get
the constraints ⊳′.) We place the left endpoints in [ℓ(∪Γ ), ℓ(∩Γ )] greedily from
left to right from ℓ1 to ℓk while respecting their bounds.

Suppose that this placing procedure fails when we attempt to place ℓi. Then
we show that there is a contradiction with ⊳ extending ⊳′. Since we successfully
placed ℓi−1 and we cannot place ℓi, we have r(Li) ≤ ℓi−1. The reason why ℓi−1

was not placed more to the left by the greedy algorithm is that this position is
blocked by some previously placed left endpoint. Let ℓj be the leftmost placed
endpoint such that r(Li) ≤ ℓj . Since ℓj was placed as far to the left as possible
and the position immediately on the left of r(Li) is not blocked by any other
left endpoint, we get r(Li) ≤ ℓ(Lj).

It remains to relate this to the original bounds of C, and to show that it
contradicts the definition of E. Let u ∈ Si be a vertex such that r(Lu) is minimal
and choose v ∈ Sj such that ℓ(Lv) is maximal. Then we get r(Lu) ≤ ℓ(Lv), and
so u ⊳′ v. This contradicts the constructed topological sort which places Sj

before Si, since there is an edge going from Si to Sj . ⊓⊔

D Appendix: Proof of Theorem 2

In this part the reader can find details of the proof of Theorem 2, which says
that the problem BoundRep(PROPER INT) can be solved in time O(n2) where
n is the number of vertices.
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Lemma 8. A linear ordering ◭ extending ◭′ can be computed in time O(n+m).

Proof. Let C1, . . . , Cc be the components of G. We define for each component
two numbers called a lower handle and an upper handle:

LH(Ci) = min{r(Lv) : v ∈ V (Ci)}, and UH(Ci) = max{ℓ(Rv) : v ∈ V (Ci)}.

In this setting, we get that Ci ◭
′ Cj if and only if LH(Ci) ≤ UH(Cj).

It is proved in [15, Section 2.2] that one can find a linear ordering◭ extending
◭′ using these handles. We first compute a linear ordering ≺ of all the handles
from left to right, and to deal with ties we first place the lower handles in any
order and then the upper handles in any order. Since the endpoints of the bounds
are given sorted, we can compute this using a single sweep from left to right.

Now we use this ordering and construct ◭ by repeated finding of minimal
elements. We look at the first element in ≺. If it is a lower handle LH(Ci), then
there cannot be any other lower handle LH(Cj) such that LH(Cj) ≺ UH(Ci), and
then Ci is a minimal element. And if the first element is an upper handle UH(Ci),
then Ci is a minimal element. If there is no minimal element, the algorithm fails.
If there is some minimal element Ci, we append it to the constructed ◭ and
remove both handles of Ci from ≺. In total, this algorithm can be implemented
in time O(n+m). For details and a proof of correctness, see [15]. ⊓⊔

Lemma 9. For a partial ordering < (resp. its reversal) of [5], we can compute
any ⊳ extending < (resp. its reversal) and ⊳′ in time O(n2).

Proof. We argue only for <, for reversal the argument is the same. We proceed
separately for each group Γ , for which < gives no restriction. We represent the
constraints given by ⊳′ as an oriented graph H over Γ , as described above. We
start by finding strongly connected components S1, . . . , Sk. Then we contract
the strongly connected components, and find any topological sorting of the con-
tracted graph. Everything can be done in linear time with respect to the size of
the graph H which is O(n2). ⊓⊔

Consider all representations of the reduced graph C′
i in an ordering⊳. We call

a bounded representation R of C′
i in the ordering ⊳ the left-most representation,

if it minimizes the right-most endpoint of C′
i over all bounded representationsR′

of C′
i. To be more precise, we denote the right-most endpoint of the component

C′
i by r(C′

i) in R and by r′(C′
i) in R′. Then R is the left-most representation

if r(C′
i) ≤ r′(C′

i) for every bounded representation of R′. Since we are working
with left-to-right orderings instead of precise rational positions, we just require
that for any bound x such that r′(C′

i) ≤ x, we also have r(C′
i) ≤ x.

Lemma 10. If there exists a representation of the reduced graph C′
i in an or-

dering ⊳, then the left-most representation exists, it is unique and it can be
computed in time O(n).

Proof. For a given ordering ⊳, there are only finitely many ways how one can
insert the bounds into the left-to-right ordering of the endpoints of the bounds;
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so there are finitely many different bounded representations. We consider the
structure Rep of all bounded representations in the ordering ⊳, and we know
that there is at least one such representation. We are going to show that they
form a meet semilattice with infimum operation defined as follows. Then the
left-most representation corresponds to the infimum of the entire semilattice,
and thus we know it always exists and it is unique.

For two representations R,R′ ∈ Rep, we define the infimum R ∧ R′ as the
representation R such that ℓi = min{ℓi, ℓ′i} and ri = min{ri, r′i}. In other words,
the lattice is defined by the ordering ≤ in which R ≤ R′ if and only if it is less
or equal in each endpoint, and then this is the natural way to define infimum.

It is quite clear that R satisfies the bounds. Also, it is straightforward to
check that R is a correct proper interval representation of C′

i; for each vertex we
have two possible orderings ℓℓrr or ℓrℓr if we place R together with R′. So for
a pair of vertices u and v, we have four possibilities in total and we just need to
check that the intersections are preserved for all of them.

We can construct the left-most representation in time O(n) as follows. First,
we compute a common ordering of the left and right endpoints from left to
right. We know from E that ℓ1 ≤ · · · ≤ ℓn. Into these orderings, we insert right
endpoints one-by-one, and we insert ri right before the left endpoint ℓj where vj
is the smallest non-neighbor of vi such that vi ⊳ vj . This ordering is uniquely
determined by E and any representation constructed in this ordering is a correct
representation of G.

Now, we process the endpoints from left to right and we always place them
greedily as far to the left as possible. Doing so, we respect the bounds, so ℓi is
inserted only in Lvi and ri only in Rvi . If we insert a right endpoint ri, and the
previously inserted endpoint was ℓj, then we put ri = min{ℓj, ℓ(Ri)}. Otherwise,
we insert the endpoint x strictly on the right of the previously inserted endpoint y
such that x ≥ ℓ(B) where B is the bound for x; so we might insert it immediately
next to y, or at the position ℓ(B) if the bound is further to the right.

Since the representation is constructed according to the common ordering,
it is a correct proper interval representation of G. We prove by induction that
the representation is the left-most representation, and thus it satisfies the right
endpoints of the bounds. (The left endpoints are clearly satisfied by the con-
struction.) The first endpoint is placed directly on the bound, so it is clearly
the left-most. Now suppose that after placing an endpoint x the representation
is not the left-most anymore, but it was the left-most right before placing the
endpoint x. But this is not possible since we clearly place x as far to the left
as possible, while satisfying the common ordering and the left endpoints of the
bounds. ⊓⊔

Proof (Theorem 2). We are ready to prove the main theorem. Clearly, if no
bounded representation exists, the algorithm has to fail in some step and does
not construct it. On the other hand, suppose that some convenient representation
exists. First, we compute the ordering◭ extending ◭′ using Lemma 8. According
to Proposition 2, if there exists a bounded representation of G, then there exists
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a bounded representation in this ordering ◭. If R is a such representation, then
the algorithm constructs another bounded representation R′.

We are going to show by induction that r′(Ci) ≤ r(Ci) for each component Ci.
(Since we are working in the context of left-to-right orderings, this condition just
means that for any endpoint x of any bound, if r(Ci) ≤ x, then also r′(Ci) ≤ x.)
This condition says that the representation R′ of Ci leaves at least as much
space as Ci in R for the remaining components.

The first induction step is clearly satisfied for non-existent component C0.
(This means that we can place C1 in both R′ and R arbitrarily to the left.) We
proceed the components from left to right. Let Ci be the processed component,
so we have represented C1, . . . , Ci−1 in R′, and the induction hypothesis states
that r′(Ci−1) ≤ r(Ci). We test for Ci both < and its reversal and choose the
representation which minimizes r′(Ci).

The component Ci is represented in R in an ordering extending one of these
orderings, without loss of generality <. Using Lemma 9, we can compute in
time O(n2) the reduced graph C′

i and some other ordering ⊳. According to
Proposition 3, there exists a representation R of C′

i, and by copying the intervals
ISi

, we obtain a representation R of Ci. Since we represent each group Γ in
between of ∩Γ and ∪Γ , the representation R of Ci is at most as large as the
representation R, and thus r(Ci) ≤ r(Ci).

The proof of Proposition 3 is just existential, since it requires a representation
R. However using Lemma 10, we can construct the left-most representation R′

of C′
i which satisfies r′(C′

i) ≤ r(C′
i) = r(Ci). So by copying the intervals ISi

,
we obtain a representation R′ of Ci which satisfies r′(Ci) = r′(C′

i) ≤ r(Ci)
as required. Since at least for < or its reversal we obtain a representation R′

satisfying r′(Ci) ≤ r(Ci), the induction step is correct and we construct a correct
bounded representation of G if it exists. ⊓⊔
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