
Chapter 1
Collecting and Processing Interaction Data for
Recommendation Systems

Walid Maalej, Thomas Fritz, and Romain Robbes

Abstract. Traditional recommendation systems in software engineering (RSSE) an-
alyze artifacts stored in large repositories to create relevant recommendations. More
recently, researchers have started exploring interaction data as a new source of
information—moving closer to the creation and usage of the artifacts rather than
just looking at the outcome. In software engineering, interaction data refers to the
data that captures and describes the interactions of developers with artifacts using
tools. For instance, the interactions might be the edits or selections that affect spe-
cific source code entities or web pages (artifacts) using an integrated development
environment or a web browser (tools). Interaction data allows to better investigate
developers’ behaviors, their intentions, their information needs, and problems en-
countered, providing new possibilities for precise recommendations. While various
recommendation systems that use interaction data have been proposed, there is a
variety in the data being collected, the way the data is collected, and how the data is
being processed and used. In this chapter, we survey and summarize the major ap-
proaches for RSSEs that create recommendations based on interaction data. Along
with this, we propose a conceptual framework for collecting and processing inter-
action data for the purpose of recommendation.

1.1 Introduction

Online retailers such as amazon.com or booking.com use data on how their users
interact with the websites to automatically recommend potentially interesting items.
A common scenario is “other users who looked at this products considered buy-
ing these products too . . . ”. Similarly, search portals aggregate the web navigation
history into a user profile to improve the relevance of search results [7].

Software engineering researchers also started looking into using developer’s in-
teraction data to make a variety of recommendations. The idea is that the single in-
teractions such as document selections, code changes, command executions, or web

1

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

maalejw
Typewritten Text

2 W. Maalej, T. Fritz, and R. Robbes

searches allow for a better understanding of a developer’s work and thus for more
fine-grained and precise recommendations. Conventional software repositories such
as version control systems provide only aggregated, high level information on a
developer’s work.

For example, a developer might work all day to fix a bug. While the version
control system only stores the few code changes committed at the end of the day,
the developer did a lot more than just perform the committed changes. For instance,
the developer might have used the debugger to reproduce the bug, navigated through
other parts of the code, read documentation, ran tests, or performed web searches
to get help. A more fine-grained tracking of interaction data can be used to reflect
the problems encountered by the developers and eventually recommend relevant
documents, actions, people, or even pieces of code.

The ability to monitor almost every single interaction of a developer with modern
tools, in particular within the integrated development environment (IDE), provides
new and manifold opportunities for recommendation systems. Many RSSEs that use
interaction data have been proposed. For instance, Mylyn [13] tracks the selections
and edits of source code artifacts to filter most relevant artifacts for the current
task. Other systems use the interaction data to suggest reusable pieces of code [32],
predict defects [16], raise awareness amongst developers [6], or prevent conflicts in
teams [15].

These recommendation systems vary mainly along the types of interaction data
gathered, the artifacts concerned by the interaction, as well as how the interaction
history is collected, aggregated, and used to recommend information of interest. In
this chapter, we describe the general principles for collecting and processing in-
teraction data for the purpose of recommendation. Along with this, we survey and
summarize major approaches for recommendation systems in software engineering
that are based on interaction data.

The remainder of this chapter is structured as follow. Section 1.2 presents three
tools that use interaction data in order to support developers in their daily work.
Section 1.3 defines interaction data, its main concepts, and granularity levels. Sec-
tion 1.4 proposes a general framework for creating interaction data collection tools.
Section 1.5 summarizes the main approaches to process interaction data, includ-
ing the sessionization, filtering, and aggregation of interaction events. Section 1.6
discusses the main usage scenarios addressed by RSSEs that use interaction data:
productivity and awareness. Finally, Sect. 1.7 presents the main challenges in the
field and sketches future research directions.

1.2 Examples

After summarizing early foundational work, we present three tools that use interac-
tion data to support developers in their work: Mylyn, Switch, and OCompletion.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 3

1.2.1 Early Work

Many recommendation systems that collect and use interaction data are based on
early work from the human-computer interaction community. Hill et al. [12] moni-
tored edits, selections, and scrolls to compute ”edit wear” and ”read wear” metrics
of documents. Edit wear measures how often a given line in a document was edited,
while the read wear measures how often it was read. The idea was derived from
the wear in physical objects, which gets visible due to interactions with the objects.
Similarly, the edit and read wear are shown in the scroll bar of the document, al-
lowing to spot which parts of the document were changed and read most frequently.
Wexelblat and Maes [38] presented a tool for tracking interactions with web docu-
ments to support navigation. The goal was to capture and reuse navigation patterns
of web pages to make new web investigations on similar topics more efficient. The
collected information can be displayed as a map of web pages, showing how often
a page was visited.

In the software engineering community, DeLine et al. [3] proposed TeamTracks,
a tool that reuses the read wear metaphor to filters the list of artifacts displayed
in the IDE. The tool monitors the previous transitions between source code files
to recommend related files when a file is browsed. Evaluation studies showed that
the tool helped developers in program comprehension tasks. The tool also helped
experienced developers, working on large systems, to remember related artifacts
to the one they are currently browsing. Singer et al. [37] proposed a similar tool,
which recommends files to developers during maintenance tasks. The assumption is
that files involved in short navigation cycles are related. A repository of association
rules is built based on the observed cycles and is mined thereafter to recommend
files related to those currently being browsed.

1.2.2 Mylyn

Mylyn is one of the most popular software productivity tools that uses interaction
data. Mylyn is a plugin for the Eclipse IDE that allows users to focus only on the
code elements that are relevant for their current tasks. For this Mylyn maintains for
each task a “task context”, which consists of the interaction data for that task. Based
on this interaction data, Mylyn calculates a degree of interest (DOI) value for each
code element [13]. This value represents the interest of a developer in the element
for the given task. Whenever a developer selects or edits an element in the IDE,
the element’s DOI value increases accordingly. At the same time, the DOI values of
other elements decrease over time since interaction with them lies further back in the
past. This recency aspect of DOI allows for the model to adapt to changing interest.
Mylyn uses these DOI values to determine, filter, and highlight the most relevant
code elements for a task at hand to counteract the information overload developers
face in their IDE with the thousands of code elements that are usually displayed for

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

4 W. Maalej, T. Fritz, and R. Robbes

Fig. 1.1: Mylyn uses interaction data to recommend source code artifacts relevant
for the current task

a single project. When using Mylyn, only the elements with a DOI value exceeding
a certain threshold are shown in the IDE (see Fig. 1.1).

1.2.3 OCompletion

OCompletion [32] improves code completion tools based on a fine-grained anal-
ysis of previous edit interactions. When a developer is typing the beginning of a
long method name, code completion tools generate suggestions to help the devel-
oper complete the name, making it easier and faster to complete the method name,
and avoiding spelling mistakes. In many cases however, the list of suggestions is
long and ordered alphabetically, making it time consuming for the developer to go
through the list and find the relevant suggestion.

OCompletion addresses this issue by analyzing the changes made during the de-
velopment session. It prioritizes the suggestions based on the recency of fine-grained
interactions a developer previously had with the code. This approach makes it pos-
sible to have a short and accurate lists of relevant suggestions instead of long lists
(see Fig. 1.2).

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 5

Fig. 1.2: OCompletion uses interaction data to recommend code completions

1.2.4 Switch!

Developers work with a variety of tools and artifacts, not just the IDE or artifacts
within the IDE. For instance, developers frequently consult API documentation on
the web, communicate with other developers via email or chat, and use specifica-
tions, diagrams, and plans best viewed and changed with specific tools. Often there
are dependencies between the various artifacts that require the developer to switch
back and forth between the artifacts to complete a given task.

Switch! [24] is a recommendation system that automatically infers these depen-
dencies based on the sequence of interaction events and the types of artifacts. Unlike
Mylyn and OCompletion, Switch! gathers the interactions a developer has with all
tools in an operating system.Switch! uses the interaction data to create a reactive
graphical interface (see Fig. 1.3) that allows developers to quickly switch to the
artifacts that they will most probably need next.

1.3 What is Interaction Data?

Interaction data refers to a record of the actions taken by a user (in our case a soft-
ware developer) with a tool. These actions are usually performed in a context, such
as a specific task. Interaction data typically involves four types of data: interactions,
artifacts, tools, and contexts as illustrated in Fig. 1.4:

Interactions. The actions (i.e., the interaction events) taken by a developer, such
as the clicks of specific buttons, the changes to code entities, or the views of
documentation pages;

Artifacts. The entities a developer is interacting with, such as a source code entity,
an issue report, an email document, or even physical artifacts and people;

Tools. The software applications developers use during their work, such as the IDE,
the browser, the issue tracking system or the email client; and

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

6 W. Maalej, T. Fritz, and R. Robbes

Fig. 1.3: Switch! uses interaction data to recommend the artifact needed next

Contexts. The circumstances in which the developer is performing an interaction,
such as the task a developer is working on or the issue being encountered.

1.3.1 Interactions

Interaction data is typically recorded as a stream of interactions, or interaction
events. Each interaction event denotes a single interaction a developer performs on
an artifact using a tool. For example, a developer might open a source code entity
using an editor, run a specific test case within a testing tool, edit a requirement us-
ing a text editor, or change a release plan using an issue management system. For
this chapter, we focus on interactions that are observable on a developer’s computer.

Tool

ArƟfactInteracƟon

InteracƟon	
�
   Data

concerns *

with

1. .

Context in

Task IssueIntenƟon ReadChange Execute Debugger Browser Email	
�
   client

Issue	
�
   Report

DocumentaƟon

Code

...

Fig. 1.4: The main concepts of interaction data

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 7

However, a more general definition could capture any interaction a developer has
with any virtual or physical artifact, including calling a customers over the phone,
taking notes on a piece of paper, or drawing a model on a whiteboard.

In the following we introduce common types of interaction events. This list is by
no means exhaustive. It is rather open-ended and only intends to give an idea of the
possibilities.

Select. A select interaction refers to the explicit selection of an artifact by a devel-
oper, such as selecting a specific class in the IDE, a particular issue report in the
issue management system, or a particular tab in the web browser.

Edit. An edit refers to the creation, removal, or modification of an artifact by a
developer. While on a fine granular level each individual keystroke might be
recorded as a separate event, on a higher granular level, an edit event might
represent the whole modification (e.g., to a source code element, a part of a
document, or a package).

Read. A read interaction represents the developer acquiring the information in an
artifact. This typically involves selecting the artifact and scrolling its content.

Open and close. An open or a close event refers to the explicit opening or closing
of an artifact, such as opening a file from disk, the attachment of an email, or
accessing a website. Open and close can also concern a tool such as opening the
email client or the web browser.

Reference. A reference event represents the indirect usage of a specific artifact,
e.g., through importing a library or calling a method in a source code.

IDE command. IDEs offer a variety of commands to the users, each with a spe-
cific semantic and functionality. A command interaction refers to a developer
executing one of these commands in the IDE. The exact set of possible com-
mands depends on the specific IDE used and its plugins. Commands are typi-
cally grouped into user interface menus, including:

Debugging. A debugging command refers to specific debug actions, such as
“set breakpoint”, “step over”, “inspect”, “change variable”. . . .

Versioning. These refer to specific commands in the versioning system, e.g.,
“checkin”, “checkout”, “synchronize”. . .

Issue tracking. These refer to commands in the issue tracking system such as
“create a bug report”, “close a bug report”, “add a comment”. . .

Refactoring. These commands include common refactoring operations such as
“rename”, “move method”, “extract method”. . .

Testing. These commands refer to the running and managing of test cases.

Text input. A text input event refers to a user entering text into a specific field
to perform a command. Examples are web searches, IDE searches, or rename
commands. These interactions have a different semantic than edit events and
are therefore often treated differently.

Use. This is a general type of interaction, which might, e.g., concern tools or appli-
cation, such as using a debugger, or using an email client.

Other. Finally, there are commands specific to applications other than an IDE, such
as starting a chat session, sending an email, or playing a video file. These are

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

8 W. Maalej, T. Fritz, and R. Robbes

similar to the IDE commands in the sense that they are an open set of actions
that may vary from user to user, from platform to platform, and even from ap-
plication version to application version.

Interaction events depict a certain interest of a developer in the concerned artifact.
Depending on the type, an event might indicate a different degree of interest in the
artifact. For example, an edit event might indicate a higher interest in a source code
method than a selection of the same method [14].

1.3.2 Artifacts

Developer interactions affect various types of artifacts. The artifacts range from
source code entities (such as classes and methods), to models, documentation pages,
and emails. Artifacts vary in their level of granularity. For instance, a developer
might open a whole class file in a code editor, than select a single method therein,
then change one call to another method, and then interact with a code navigation
tool to navigate to the called method.

One of the most common types of artifact used in RSSEs are source code arti-
facts, i.e., the entities that a software system is composed of. Recorded artifacts may
range from packages or binaries at a higher-level, down to files, classes, modules,
methods, procedures, attributes, variables, and even individual expressions or state-
ments, depending on the purpose of recommendations. For instance, while Mylyn
stops at the method and variable level, OCompletion distinguishes interaction events
at the code statement level.

In addition to source code entities, recommendation systems might also monitor
developer interactions with other project artifacts, such as bug reports, test cases,
documentation, build and configuration files, models of the system, and require-
ment specifications. More and more web sites are also considered as very important
artifacts in software development and the interaction with them reveal information
about the developers’ interests, their intent, or their problems encountered. These
web sites range from online API documentation, over question and answer web
sites, such as Stack Overflow, to the results of web or code searches. From the per-
spective of developers, we can distinguish between two types of artifacts: documents
that can be read and edited by the people (such as text documents, images, or videos)
and binaries that can be executed or used.

1.3.3 Tools

Tools are the software applications developers interact with to perform their work.
These tools might run as a separate process in the operating system or as a specific
plugin in the integrated development environment, such as plugins for source code
analysis, for version control systems, or bug tracking systems. Tools might also

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 9

be remote applications, which are accessed, e.g., via a web browser or a console.
An example of such a remote tool is the Bugzilla issue tracking system, which is
typically used through the web browser. External tools that are often outside of the
IDE but still important to a developer’s work include web browsers, email clients,
instant messaging, video-conferencing platforms, design tools, or requirement tools.

Typically, a specific artifact type is accessed and maintained by a specific tool
type [17]. For example, editors and debuggers are used to manipulate source code.
Diagramming and visualization tools are used to create and maintain models. Issue
tracking systems are used to gather and process issue reports. Finally, email clients
and chat programs are used to share information and coordinate work. Some recom-
mendation systems collects interaction data from a single tool. A more sophisticated
recommendation system should take into account the variety of tools that developers
use.

1.3.4 Context

Context is a loosely defined term and can refer to manifold concepts, such as arti-
facts related to the one the developer is interacting with all the way to the mood of
the developer. We define the context of a developer’s interaction as to the conditions
or circumstances in which the developer interacts with an artifact. Context allows
to better understand why certain interactions happened. For instance, a text input
interaction might be part of a refactoring command which might be part of a task to
clean up the code.

For any interaction there is some context, e.g., the preceding interactions that
are relevant for the current interaction or some more abstract goal or intention of the
developer. This context can be used to interpret developers’ interactions and provide
better recommendations. However, not all types of context are easily observable. For
instance, if a developer accidentally hits a keyboard button when trying to catch a
fly, the reason for the accidental edit would in most cases not be recorded and thus
relevant context will be missing.

The context of an interaction can be on multiple levels of granularity, such as a
developer’s interaction preceding the event, a higher-level activity, or the more ab-
stract task a developer is working on. Typically, higher-level context information is
interpreted by processing interaction data, as described in Sect. 1.5. Common kinds
of context which are of interest to recommendation systems are (a) the concrete
tasks or intentions the developer is having (e.g., fixing a specific bug) and (b) a re-
current activity or situation in the developer’s work (e.g., encountering a problem
versus applying a solution).

Tasks and intentions. In software engineering a task is commonly defined as an
atomic and well-defined work assignment for a project participant or a team [14?
]. A task includes a description and an assignee; it typically includes a duration
and time-frame. Tasks describe what developers should do. An example of a task is

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

10 W. Maalej, T. Fritz, and R. Robbes

“Task #123: implement the XML Export Feature” assigned to Alice or “Weekly
integration test for web server” assigned to Bob. Recommendation systems like
Mylyn [14] associate every interaction event with a specific task, which has been
previously activated by the developer (to express that this task is being worked on).
The interaction data associated to a task is called task context. It is used to provide
recommendations tightened to that task—e.g., the most relevant artifacts, the related
bug reports, or the people who should work on the task.

A significant amount of developers’ work is rather informal and thus not always
associated to specific predefined tasks. Maalej [17] previously found that about half
of developers interactions are not related to specific tasks. This kind of context is
called intention [18]. It refers to the mental state that underpins the user interactions
but is not necessarily stated explicitly, e.g., “explore a new API”, “assist a colleague”
or “fix the discovered but unreported bug”. There are several approaches that aims
at detecting and describing the intention of the user [e.g., 18, 36]. However, most of
them are still exploratory and experimental.

Activities and situations. Activities are coarser-grained types of interactions, typ-
ically referring to a class or a set of interaction events. Example of activities include
navigating, coding, testing, debugging, specifying, planning, documenting, design-
ing, amongst others. An activity typically includes more than one interaction event
and last for at least a few minutes. Activities are often part of a task. For instance,
in fixing a bug, developers might navigate through the code; once they find the
right code, they make changes to it and then test it. Activities can also be more
coarse-grained, for instance, if two tasks are about documenting two parts of a user
interface. Activities reveal a recurrent development situations with well defined se-
mantics. They are interesting for recommendation systems to suggest items typically
relevant in such situations.

Other types of situations include the “phases” of a task or the “states” in a mental
model of the developer. For example, a typical change task includes an initiation
phase, a concept location phase, and an impact analysis phase [29]. Phases might
also be oriented towards a problem-solution cycle, such as locate cause, search solu-
tion, and test solution [34]. The better these concepts can be automatically inferred
from a developer’s interaction, the more precise the recommendations based on in-
teraction data might become and the broader the approaches might become.

1.3.5 Interaction Granularity

Interaction data might include various levels of abstractions, often called granu-
larity levels or granularity spectrum [33]. For instance, to perform a refactoring a
developer might have to enter text or edit and select parts of the code in between. In
this case, the refactoring event represents a higher-level of granularity than the edit
and select events.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 11

All types of interaction data including interaction events, artifacts, tools, and con-
texts present different levels of granularity. For instance, an interaction event might
be a step-in or a debugging event. An artifact involved in the interaction might be
a package, a class, a method, a section, or even a single line in a document. A tool
might be the whole IDE such as Eclipse or a single plugin in the IDE. Finally, a
context might be the task activated by the developer, a certain release, or the cur-
rent project phase. Typically, interaction data with a low level of granularity can be
collected programmatically, while interaction data with a higher level of granularity
needs to be inferred by processing the low level data. One way to more formally
describe the granularity levels of interaction data is to use ontologies [e.g., 21].

From the perspective of a developer, interactions with input devices such as
mouse clicks and keystrokes represent the lowest level of granularity. An interac-
tion with a single widget of the user interface, such as entering text in a text field or
clicking a button, represents a higher level of granularity. A single widget interaction
consists of multiple interactions with the hardware periphery such as multiple key
presses on the keyboard to enter text in a text field. More precise information about
the interaction can be derived at the widget level, since clicked widgets typically are
associated with a name and a given purpose. For example, a mouse click can now be
identified as pressing a button to create a project or the selection of a window part.
The next level of granularity is an aggregation of several single widget interactions,
e.g, creation of a new project using an IDE wizard. Finally, several single-widget
or multiple-widget interactions can represent a user activity such as refactoring the
code, which in turn is a step of a task.

1.4 Collecting Interaction Data

Researchers and tool vendors have proposed several approaches to collect develop-
ers’ interaction data, including:

• the Eclipse usage data collector,
• the Mylyn monitor [14],
• SpyWare, to record fine-grained code changes [31], and
• Teamweaver, to record interactions with tools inside and outside the IDE [19].

In the following, we discuss the general procedure underlying these approaches.
While different recommendation systems require different types and granularity lev-
els on developers’ interactions, they are generally all comprised of three parts: a
monitor with a set of listeners (also called sensors), a component to generate in-
teraction events, and a component to log these events and enable their processing.
Figure 1.5 shows the general procedure for collecting interaction data.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

http://www.eclipse.org/epp/usagedata/

12 W. Maalej, T. Fritz, and R. Robbes

!User! !!!!!User! Monitor! Logger!Tool!

4:!interact!

!User!!Sensor!

1:!install/start!
2:!register/sense!

5:!no8fy!
Interac8on!

Event!
6:!create!

7:!set_data!

8:!add_event!

3:!listen!

9:!persist!

Fig. 1.5: Main components for collecting interaction data with a simplified flow

1.4.1 Monitoring Developers’ Interactions

The monitoring component varies depending on the tools, the artifacts, and the in-
teractions which should be collected. While some approaches might, for example,
only monitor coarse grained IDE actions, others monitor every single keystroke. In
general, the monitoring component manages several listeners, which are also called
sensors [19]. These sensors instrument the work environment, such as the tool, the
IDE, or the operating system where the relevant events are triggered. The sensors
continuously monitor their targets and whenever a new and relevant interaction hap-
pens, they collect the necessary information such as the name of artifacts concerned,
its type, or the duration of the interaction.

The implementation of the sensors is often specific to the type and the technology
of the tool being instrumented. For example sensors might operate on the operating
systems or the virtual machines level. These offer interfaces to listen to particular
types of events such as opening a file with a tool. The Microsoft Windows operating
system, for example, provides hooks, while OS X offers an Apple Script interface to
implement such functionality. Also the Java virtual machine and the Eclipse runtime
environment provide libraries to observe the interactions with the user interface el-
ements. In addition, program-monitoring and tracing frameworks (such as DTrace
or SystemTap) are deeply integrated into the operating system and execution envi-
ronments with the purpose of tracing program execution that can provide further
information on interactions. Sensors might also operate on the application level.
This is particularly convenient if the application provides means for installing the
sensors as plugins. Sensors should generally provide an interface to install/uninstall
and active/deactivate them. This allow the users to have the full control and reduces
the privacy concerns for collecting interaction data.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 13

1.4.2 Generating Interaction Events

Once the sensor has captured an interaction, it generates an interaction event. Most
commonly, an interaction event is composed of the following information:

• the type of the event, e.g., a select event or an edit event;
• the timestamp denoting when the event occurred;
• the duration or end time of the event;
• the artifact concerned by the interaction, e.g., setName() or “Issue #234”; and
• the type of the artifact concerned by the interaction, e.g., a method or a bug

report;
• the tool used to perform this interaction.

An example of an XML representation of interaction data is shown in Fig. 1.6. In
addition, the generated event might contain information on the context, such as the
task of which the event is a part. All of this information is gathered by the component
and aggregated in a newly generated interaction event.

1.4.3 Logging Interaction Data

The final component is a logger that persists the generated interaction events. Differ-
ent approaches use different techniques for the logging with respect to compression
and the segmentation of the data. Mylyn, for instance, collects a set of interaction
events and compresses them by collapsing similar events into one. This approach
minimizes the use of disk space and write operations. However, it makes it difficult
to recover the exact sequence of interaction events (see Sect. 1.5.4). In addition,
Mylyn logs the interaction data related to the task a developer is working on in a so
called task context. Task contexts then provide a means to easily recover all interac-
tions for a specific task. Other approaches log interaction events sequentially into a
file without compressing or segmenting it in any particular way. Additional process-
ing steps applied to the log file later can then also help to recover task boundaries
(see Sect. 1.5.1).

<pre:e1 rdf:type interaction:JavaElementChange />
<pre:e1 interaction:hasTimeStamp 1222002002 />
<pre:e1 interaction:hasDuration 200 />
<pre:e1 interaction:concerns pre:java?name=myMethod />
<pre:java?name=myMethod rdf:type artefact:Method />
<pre:java?name=myMethod artefact:partOf pre:java?name=myProject.

myClass />

Fig. 1.6: Example of an XML representation of interaction data

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

14 W. Maalej, T. Fritz, and R. Robbes

The logging component might be on the developer’s machine [14] or on a
server [27]. Typically, the interaction logger provides additional functionally such
as the obfuscation of the data to reduce the risks of misusing it or the archiving
of the data to reduce its size. Evaluations have shown that, for a tool like Mylyn,
the size of a log file for the interaction data of a full workday typically includes
1–10 megabytes of data [14].

1.5 Processing Interaction Data

Interaction data in its raw form is usually not what is needed. For recommendation
purposes further processing of the collected data is often necessary. We discuss com-
mon data processing approaches and summarize pitfalls, which should be avoided
when processing interaction data. Processing interaction data is an active research
field. Other approaches might emerge in the future.

1.5.1 Sessionization of Interaction Events

The raw interaction data is typically in form of a stream of events, which might need
to be split into individual sessions. We call this process sessionization of events.
Ideally, the developers will explicitly define the start and end of a session, e.g., to
indicate what task they are working on. For example, Mylyn users can sessionize
their work by explicitly activating and deactivating a specific task from the task
list. However, since developers typically work on different tasks in parallel and fre-
quently change their focus back and forth [28], they might not be willing to invest
extra effort to indicate when they start and finish a specific work, or might sim-
ply forget to do this. The problem of sessionization is also present in conventional
repository mining. It has been shown that developers occasionally perform several
tasks in one commit, as discussed by Herzig and Zeller [11] in Chap. ??.

To identify sessions retrospectively, there are several approaches or heuristics
that might be considered:

• Several empirical studies have shown that work sessions with a particular goal
in mind typically last between 30 and 90 minutes [20].

• Period of sustained inactivity, i.e., consecutive events that are separated by large
amounts of time, can be used to split the stream of events into sessions. The
threshold of one hour has shown good results, i.e., less than a lunch break or a
meeting, but more than a coffee break.

• Shorter interruptions can be detected as well, and processed accordingly. The
process is similar, only the threshold retained is lower (e.g., 5 minutes).

• Specific events represent strong indicators for switching the work session, such
as a committing event, starting a new tool, or viewing the task list or the issue
management system.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 15

• Individual work sessions can be focused on one task, or be composed of several
tasks. Several sessionization algorithms defined in the literature are based on
time information and the artifacts that constitute the task [e.g., 28, 36, 40].

• Some tasks are too large to be finished in one development session. In this
case, sessions that involve related artifacts may be linked together, forming a
“macro-session” if the entities in common between both sessions are above a
certain threshold.

1.5.2 Filtering of Events

Depending on the goal of the recommendation system, some events might be unde-
sirable and considered as noise. These events must be detected and removed. Exam-
ples of these events include the following.

• “Transient changes” are changes that do not survive a development session, for
instance, when a developer inserts debugging statements in the code in order
to find a bug, and removes them once the bug is fixed. Other examples are
errors in the code (incorrect method calls) that are corrected later in the session.
Transient changes strongly depend on the usage scenario of the interaction data.
These events might be irrelevant in specific cases but relevant in other situations.

• Events that are not originating from the developer but rather from the tools that
the developer is using may need to be treated separately. For instance, changes
occurring from a refactoring tool do not represent developer interactions. Using
these changes to evaluate the performance of code completion algorithms would
misrepresent them. Changes performed by tools are performed much faster than
changes performed by developers, making it possible to mark them as such
(e.g., a rename refactoring will change the name of a method, and update all
references to it in rapid succession, on the order of milliseconds).

• “Bulk events”, e.g., events of type “selection”, may originate from selections
of many artifacts in the IDE. If the developer selects all the classes in a given
package, they may be marked as individually selected, yielding a very large
number of selection events in a short time.

Filtering is performed when the spurious events are deemed to be irrelevant for the
task at hand. In that case, events are simply removed from the stream of events.

1.5.3 Aggregation of Events and Inference of Context Information

RSSEs might also aggregate interaction events to infer a higher level of granularity
(see Sect. 1.3.5). A typical purpose is to infer the current task or situation of the
developer from the low level interaction events. We distinguish between three ma-

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

16 W. Maalej, T. Fritz, and R. Robbes

jor aggregation approaches: semantic approaches, heuristic-based approaches, and
probabilistic approaches (i.e., using machine learning).

Semantic approaches use a type hierarchy (i.e., a specific taxonomy) to aggregate
interactions or artifacts to a higher-level type in the hierarchy [19, 24]. For instance,
observed “step-in” and “step-out” events have “debugging” as the common higher-
level type and can thus be aggregated into a more general debugging interaction.
Similarly, a “method” and a “class” are subtypes of the higher-level type “code”.
The two events “edit the method X” and “edit the class Y” can be aggregated to “edit
the code X and Y”. The interaction and artifact taxonomies might also define cross-
relationships to allow for reasoning. For example, the interaction type “implement”
might be associated with the artifact type “method”, whereas the type “specify” is
associated with the artifact type “class”. From observing an “implement” event that
concerns an artifact of type “class”, we can infer that the event is of type “specify”.
The main disadvantage of taxonomy-based approaches is the maintenance of the
taxonomy, which is difficult and time consuming. Moreover, interaction types can
have multiple higher-level types (i.e., multiple inheritance). It is thus nontrivial to
navigate the taxonomy up and down to select the right type.

Similar semantic approaches without taxonomies aggregate interactions concern-
ing the same artifact or the artifacts concerned by the same type of interaction. For
instance, in Mylyn multiple events concerning the same code entity are sometimes
represented as an aggregated event with a start date, an end date, and a number of
events (i.e., the total number of events between the first and the last, both included).
Similarly, the events originating from the clicks on items of the same menu (e.g.,
view, edit, or debug) can also be aggregated to an event describing that menu. Fi-
nally, all edit events that concerns methods of the same class, can be aggregated to
an edit of that class.

Heuristic-based approaches typically use assumptions and metrics to aggregate
events and infer context. For instance, the degree of interest model underlying My-
lyn aggregates all the events concerning an artifact and compute an interest value
that is updated over time based on the recency of the interaction [14]. Similarly, the
defect prediction approach of Lee et al. [16] computes a variety of metrics over ses-
sion data, aggregating interactions in one development session. These metrics then
serve as input to a metric-based defect prediction model. Likewise, Robbes and
Lanza [30] classification of development sessions to one of 5 categories is based on
metrics. Finally, Ying and Robillard [39] suggest to use the interaction style (i.e.,
the distribution over time) of the edit events to determine whether the developer is
working on an enhancement task, minor, or major bugs fixes. Development sessions
consisting of Edit-Last events are most likely enhancement tasks. Edit-First interac-
tion style is most likely an indicator for minor bug fixes while Edit-Throughout is
an indicator for major bug fixes. In general, the duration, the recency, the type and
the frequency of interaction events can reveal “important” context. Heuristics based
on these features can be used to label sets of events in a developer session.

Finally, probabilistic approaches might use data mining and machine learning
algorithms (such as those introduced in Chapter ?? [?]) to aggregate interaction
data. Generally, these approaches try to identify in the interaction history recurrent

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 17

patterns, which characterize specific situations. When these patterns are observed in
future interaction data, the system predicts the situation with a certain probability.
For example, RSSEs might define the set of development situations to be inferred. In
a training phase, the system learns the probability to move between two situations
when certain interaction events occur. This can be, for example, to move from a
testing to a debugging situation when a “read error message” event occurs. Later, the
RSSE infer the current situation based on the observed events. Roehm and Maalej
[34] suggested a similar approach using a hidden Markov model. Other machine
learning approaches such as time series analysis, or frequent itemset mining might
also be used.

1.5.4 Pitfalls when Processing Interaction Data

Processing the interaction data can make it more useful to the recommendation task
at hand, but certain pitfalls have to be kept in mind:

Over-processing. Each processing step may introduce noise. Algorithms detecting
patterns in the data rarely have perfect precision and recall, especially algo-
rithms that rely on thresholds: slight changes to the threshold return different
results for borderline cases. Therefore, composing processing steps can poten-
tially compound the inherent imprecisions of each algorithm. We recommend
double-checking the results with care and if possible using a semi-automatic
approach that corrects wrong processing results.

Destructive operations. When aggregating events, we recommend keeping the
original data intact as much as possible, as it is hard to predict what information
will be needed. When the Spyware tool detects a refactoring operation, it cre-
ates an aggregated refactoring event, but keeps the actual changes as a part of
this event in case a future RSSEs need to consult this data. Mylyn’s aggregation
of events loses detail on the specific interactions so that only the start and end
time of a sequence of interaction is known, but the timestamps of intermediate
events is removed. This makes it difficult for other approaches that need a full
sequential list of interaction events to use the Mylyn monitor. As a workaround,
Ying and Robillard [39] assumed that the intermediate events were equally dis-
tributed between the first and the last timestamp.

Tool limitations. Data recorded about what the developer is doing may still be in-
accurate. Each interaction data collection tool has issues that should be known
to avoid false interpretations (e.g., that a very large number of artifacts are man-
ually inspected by developers in a large amount of time). When using existing
monitoring tools, we recommend to carefully review the data produced by the
tool, in order to have a clear understanding of what kind of events are producing
what kind of data. If possible, the data should be preprocessed to attenuate data
quality issues.

Developer inactivity. Developer inactivity is hard to assess, as it may simply be
due to missing interaction data. For instance, the IDE sensor may not register

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

18 W. Maalej, T. Fritz, and R. Robbes

any activity because the developer is browsing the web or because the devel-
oper is carefully reading a visible piece of code on the screen. Treating these
moments as breaks in the work may introduce imprecisions.

1.6 Using Interaction Data

In this section, we discuss scenarios where interaction data can be used to pro-
vide recommendations to developers. We focus on approaches to increase develop-
ers’ productivity and to support awareness and collaboration amongst development
teams.

1.6.1 Productivity

Interaction data can be used to improve developers’ productivity. Current ap-
proaches can be grouped into four main scenarios: (1) reducing information over-
load and helping developers to focus, (2) recommending a particular piece of infor-
mation that is needed in the current task and that will help in satisfying developers’
information needs, (3) suggesting a relevant source code, and (4) predicting a par-
ticular project metric, such as the bug-proneness of a module.

Mylyn [14] aims to reduce information overload for developers by optimizing
the user interface of the Eclipse IDE (see Sect. 1.2). The core idea is that only
a subset of all code artifacts in large software projects is relevant for working on
a given task. Thus, Mylyn hides or blurs code artifacts, which are less relevant.
The tool collects all interaction events that a developer performs while working
on a task and calculates a “degree-of-interest” (DOI) value for each code element.
This value reflects a certain interest level of the developer in this code element. The
DOI assumes that the more frequent and more recent an element is interacted with,
the more interesting it is to the developer for the current task at hand. The DOI
value is then interpreted to visually indicate task-related files in the IDE. Kersten
and Murphy [14] evaluated the influence of Mylyn on the personal productivity of
developers by calculating the edit ratio of 16 subjects with and without using Mylyn.
The edit ratio is the relative amount of edit versus select interactions for a certain
period of time. The authors found that Mylyn significantly increased the edit ratios
of their subjects, on average by 50%. Mylyn is already part of the most common
distribution of the Eclipse IDE and being used by a large population of software
developers.

Reverb [35] is a tool that recommends web sites including relevant information
for developers based on the code they are currently editing. The tool assumes that
people often revisit the same web sites and takes into account two kinds of interac-
tions: a developer’s web browser history and the editor window the user is currently
interacting with in the IDE. Any website a developer visits for at least 5 seconds

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 19

is considered relevant and therefore indexed. When a developer interacts with the
Java code editor in the IDE, Reverb extracts the Abstract Syntax Tree elements from
the currently visible source code in the editor, and queries the developer’s browser
history with these code elements. An evaluation showed that 51% of code-related
revisits can be predicted by Reverb, which reduces the time developers need to find
and open the website needed. Murphy-Hill et al. [26] introduced a similar approach,
based on very fine-grained interaction data for improving developers’ fluency by
recommending specific commands in the IDE which might save time and of which
the developer might not be aware of.

Since code completion tools are commonly used by developers, we can as-
sume that increasing their accuracy will increase the productivity of the developers.
Robbes and Lanza [32] evaluated using fine-grained change interactions to improve
the accuracy of code completion tools. The authors used a large data set including
a list of fine-grained changes performed by developers while working on tasks in
their IDE. From this data set, the insertions of method calls and class names are
identified. When detecting such an insertion, the code completion engine is simu-
lated, as if the developer was asking for a code completion. The code completion
engine returns an ordered list of recommendations for the completed identifier. The
proposals of the completion engine are compared with the actual identifier which is
included in the sequence of pre-recorded changes. The authors found that the default
algorithms ordered their recommendations alphabetically, which yielded very poor
accuracy. Ordering the suggestions based on their usage recency gave much better
results, increasing the score fivefold.

Finally, Lee et al. [16] investigated developers’ interaction history for defect pre-
diction. Based on select and edit interaction events, they define 56 micro-interaction
patterns. In an experiment they compared the predictive power for regression and
classification of these patterns against source code and history metrics. The authors
show that micro-interaction patterns can improve upon existing defect prediction
models based on source code or history metrics. For example, the pattern “Num-
LowDOIEdit” representing the number of edit events with a low DOI value, i.e.,
editing a code element that one has not interacted with a lot before, has the highest
power to predict a defect.

1.6.2 Awareness and Collaboration

“Awareness is the understanding of the activities of others, which provides a con-
text for the own activity” [4]. Interaction data is being used to provide awareness
to developers, mainly answering questions such as “who is working on what”. Ap-
proaches for awareness vary depending on the granularity of the interaction data
(from very fine-grained code edits to more coarse-grained file changes), the type of
artifacts the awareness is provided for (such as project code or work items), and the
kind of information visualizations being provided.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

20 W. Maalej, T. Fritz, and R. Robbes

To provide team awareness and avoid conflicts, FastDash [1] visualizes where
people are interacting with files in a project. This approach collects two kinds of
data: (a) active file actions that are based on developers’ interactions with the Visual
Studio IDE, such as opening, editing, or debugging files and (b) source repository
actions, such as which files are checked out by whom. The interaction data is col-
lected on a server and visualized in a dashboard, which presents the project files in
a tree map and annotates files with which developers are currently interacting.

Seesoft [5] is a similar recommendation tool for creating awareness in software
projects. It colors each line of code in the IDE according to the recency of its last
change: the recently changed lines are colored in red, older lines in dark blue. The
interaction used in this approach is limited to the changes that people made to the
code in the source code repository.

More recently, Fritz et al. [6] suggested the Degree-of-knowledge model to rec-
ommend expert developers for parts of the code. This approach uses authorship and
interaction data to characterize a developer’s knowledge of the source code. The
degree-of-knowledge model predicts for each code element a developer who should
know most about it. In addition, Fritz et al. showed how this model could be used to
recommend bug reports that might be of interest to a developer.

1.7 Challenges and Future Directions

The field of collecting and processing interaction data for the purpose of recommen-
dation is relatively new. Despite recent advances, there are scientific and technical
challenges as well as promising usage scenarios left for future research.

1.7.1 Challenges

Efficient, integrated, non-intrusive instrumentation. The first step in imple-
menting recommendation systems that use interaction data is instrumenting the
work environments of developers and (in particular cases) end users. To this end,
a question about the efficiency and intrusiveness of data collection arise, i.e., how
data can be collected without disturbing the user’s workflow. Moreover, the integra-
tion of the context monitoring into heterogeneous tools and applications poses an
additional engineering challenge on how can various workplaces (including hetero-
geneous tools, information, and activities) be instrumented and observed. This leads
to the question whether such instrumentation can be systematically integrated into
(or offered by) underlying frameworks such as graphical user interfaces, accessibil-
ity libraries, operating systems, middleware, and execution environments.

Representation of interaction data. The usefulness of interaction data depends
on the specific scenario, for which it is used. In some cases, fine-grained interac-

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 21

tion data and artifacts are needed. In other cases, higher-level interaction events and
context information are more useful. This makes the general modeling and repre-
sentation of interaction data for recommendation systems a difficult endeavor.

The representation of interaction data and its context has more complicated re-
quirements than the representation of simple logs, e.g., a web server traffic log.
Interaction data should be represented efficiently and allow for eventually unknown
queries and processing. The following questions arise: How can we represent inter-
action data to enable reasoning, semantic interpretation, and querying? Which rep-
resentation allow for a flexible and accurate comparison of similar contexts? What
should be observed and what not? What should be rather processed?

Sessionization of interaction events. A central research issue for using interaction
data in RSSEs and more generally building context aware systems is the sessioniza-
tion of the event stream (see Sect. 1.5). Sessionization is a complex problem since
people frequently switch their focus and intentions. Interruptions and new thoughts
lead to context overlaps. Sessionization packages interaction data and context infor-
mation that belongs together. The question is thus: How can we precisely sessionize
interaction data? How can a context switch be detected? How can we automatically
detect and classify users’ intentions to well-defined types, e.g., based on the mean-
ing of interaction events (such as testing, debugging, or releasing context)?

Context prediction and comparison. Raw interaction data includes a lot of noise
because of the large amount of potentially useful information that can be collected.
Interaction data should be processed and aggregated, its information ranked, and
new knowledge about the context derived out of it. The following questions arise:
How can we aggregate interaction data for different levels of granularity (different
situations require different levels of details)? How can short-term context such as
the current intention and long-term context such as the profile and preference of the
developers be predicted based on observed interaction? How can aggregated context
be compared, and decomposed if more details are needed?

Privacy protection. Recommendation systems based on interaction data collect
numerous, possibly sensitive information about the user. This raises privacy con-
cerns, since information can be abused, misinterpreted, or even sold for marketing
agencies. For example the interaction data of a developer can be misused by the
employer to measure and compare the productivity of the developers. The questions
are: What are acceptable trade-offs for RSSE users? How can we protect users’ pri-
vacy while collecting their sensitive information? How can we ensure the principle
minimality, i.e., ensure to collect only the minimally required set of information?
The more difficult question is: how can we ensure that anonymized interaction data
cannot reveal more sensitive information the future e.g., if combined with other data
collected about the user from different sources (e.g., multiple RSSEs)?

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

22 W. Maalej, T. Fritz, and R. Robbes

1.7.2 Future Scenarios

Proactive knowledge capturing, sharing, and access. Interaction data includes
useful knowledge, e.g., on how a problem has been solved by a developer [10]. If
filtered and aggregated accurately such data will represent experience description,
which can be populated in wikis or used to recommend solution alternatives when
similar problems are encountered. It is useful, e.g., to capture information on where
developers looked for help while having similar bugs, or what did they do to fix
it [9]. Similarly, reuse scenarios such as component integration or API reuse require
significant background knowledge [8]. In such scenarios useful information includes
how other developers proceeded in the reuse, how they instantiated a particular API,
where they looked for help, and where they started. Such experiences are typically
lost or scattered across private documents.

Knowledge sharing can be made more precise and efficient by supporting the role
of knowledge producers [9]. Future recommendation systems can actively capture
the experiences of developers by observing interaction data and encouraging them
to share certain information with certain team members [10], e.g., asking to share a
web page which a developer extensively used to solve a certain problem.

Future recommendation systems can also automatically identify links between
artifacts, e.g., source code created and documentation useful to understand it. For
example, while implementing a change request, a developer might check the issue
tracker, read the customer’s email, browse a forum discussion, reuse a new library,
and change several pieces of source code. The ticket, the discussion, the email, and
the library can be linked and later traced to the changes and resulting versions.
Linking changes to their context enables developers to trace these changes and un-
derstand them in the future [17]. These links simplify the information retrieval based
on available information (e.g., the customer’s email instead of the version number).

User involvement and continuous requirements engineering. In modern product
development, the user feedback and the user acceptance of the product are essential
for market success [25]. Current requirements engineering practices are character-
ized by a communication gap between users and developers [22]. The context that
underlies the user feedback is either gathered asynchronously or submitted with the
wrong level of detail.

Observing the interaction data of users can make user feedback a first order con-
cern in software engineering. Software systems would observe how their users use
certain features, their problem situations, their workplaces, and workflows. Such
information facilitates continuous, semi-automatic, communication between users
and developers. Problems or bugs will be reproduced and understood faster; wrong
requirements corrected and elaborated remotely. This increases the quality of user
input and the efficiency of requirements and maintenance processes. This would
also enable users to bring their innovations and become a “collaborator” in the
project [23], as their interaction data can be used to systematically evaluate par-
ticular software features (e.g., in a new release), how they are used, and why they
are used in that way—promoting a deeper understanding of the user’s needs.

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

1 Collecting and Processing Interaction Data for Recommendation Systems 23

1.8 Conclusion

In software engineering interaction data captures the interaction of developers with
tools to perform specific work and includes information about the artifacts being
concerned by the interaction. Interaction data might also contain information about
the context in which the interaction occurred (e.g., the task at hand, the intention in
mind, or the problem being encountered). Current RSSEs using interaction data fo-
cus on increasing developer’s productivity by, for instance, filtering irrelevant infor-
mation or predicting reusable code, as well on creating awareness by, for instance,
showing who is working on which artifact or recommending experts.

In this chapter, we discussed means to represent and collect interaction data for
recommendation systems. Collecting this data typically requires installing moni-
tors and sensors that listen to user interactions in the target applications and thereof
create a log of interaction events. Furthermore, we discussed some of the major
goals and challenges of processing interaction data, including the filtering of noise,
the aggregation of events, the sessionization of event steams, and the inference of
higher-level context. Although there have been considerable advances in the field
in past years, there are still many open challenges for using interaction data in rec-
ommendation systems. These challenges include the efficient instrumentation and
privacy concerns for interaction data. Potentially useful future scenarios include the
extraction of knowledge and experience from the interaction data and the collection
and processing of usage data software at runtime.

Acknowledgements We are grateful to Tobias Roehm, Zardosht Hodaie, and the reviewers for
their constructive feedback on this chapter. We also thank Bernd Brügge and Bashar Nuseibeh for
the comments on early versions of this work. The first author is supported by the EU research
projects MUSES (grant FP7-318508).

References

1. Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G.: FASTDash: A visual dashboard for
fostering awareness in software teams. In: Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, pp. 1313–1322 (2007). DOI 10.1145/1240624.
1240823

2. Bruegge, B., Dutoit, A.: Object-Oriented Software Engineering. 3rd edn. Prentice Hall (2009)
3. DeLine, R., Czerwinski, M., Robertson, G.G.: Easing program comprehension by sharing

navigation data. In: Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 241–248 (2005). DOI 10.1109/VLHCC.2005.32

4. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In: Proceedings of
the ACM Conference on Computer Supported Cooperative Work, pp. 107–114 (1992). DOI
10.1145/143457.143468

5. Eick, S.G., Steffen, J.L., Sumner Jr., E.E.: Seesoft: A tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineering 18(11), 957–968 (1992). DOI 10.1109/
32.177365

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

24 W. Maalej, T. Fritz, and R. Robbes

6. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model to capture
source code familiarity. In: Proceedings of the ACM/IEEE International Conference on Soft-
ware Engineering, vol. 1, pp. 385–394 (2010). DOI 10.1145/1806799.1806856

7. Google Official Blog: Personalized search for everyone (2009). URL http://googleblog.
blogspot.de/2009/12/personalized-search-for-everyone.html

8. Griss, M.L.: Software reuse: Objects and frameworks are not enough. Tech. Rep. HPL-95-03,
Hewlett Packard Laboratories (1995)

9. Happel, H.J.: Social search and need-driven knowledge sharing in Wikis with Woogle. In:
Proceedings of the International Symposium on Wikis and Open Collaboration, pp. 13:1–
13:10 (2009). DOI 10.1145/1641309.1641329

10. Happel, H.J., Maalej, W.: Potentials and challenges of recommendation systems for software
development. In: Proceedings of the International Workshop on Recommendation Systems
for Software Engineering, pp. 11–15 (2008). DOI 10.1145/1454247.1454251

11. Herzig, K., Zeller, A.: Mining bug data: A practitioner’s guide. In: Robillard, M., Maalej,
W., Walker, R.J., Zimmermann, T. (eds.) Recommendation Systems in Software Engineering,
Chap. ??. Springer (2014)

12. Hill, W.C., Hollan, J.D., Wroblewski, D.A., McCandless, T.: Edit wear and read wear. In:
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp.
3–9 (1992). DOI 10.1145/142750.142751

13. Kersten, M., Murphy, G.C.: Mylar: A degree-of-interest model for IDEs. In: Proceedings of
the International Conference on Aspect-Oriented Software Deveopment, pp. 159–168 (2005).
DOI 10.1145/1052898.1052912

14. Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity. In: Pro-
ceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pp. 1–11 (2006). DOI 10.1145/1181775.1181777

15. Lanza, M., Hattori, L., Guzzi, A.: Supporting collaboration awareness with real-time visu-
alization of development activity. In: Proceedings of the European Conference on Software
Maintenance and Reengineering, pp. 202–211 (2010). DOI 10.1109/CSMR.2010.37

16. Lee, T., Nam, J., Han, D., Kim, S., In, H.P.: Micro interaction metrics for defect prediction. In:
Proceedings of the European Software Engineering Conference/ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 311–321 (2011). DOI 10.1145/
2025113.2025156

17. Maalej, W.: Task-first or context-first?: Tool integration revisited. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, pp. 344–355
(2009). DOI 10.1109/ASE.2009.36

18. Maalej, W.: Intention-Based Integration of Software Engineering Tools. Verlag Dr. Hut,
München, Germany (2010)

19. Maalej, W., Happel, H.J.: A lightweight approach for knowledge sharing in distributed soft-
ware teams. In: Proceedings of the International Conference on Practical Aspects of Knowl-
edge Management, Lecture Notes in Computer Science, vol. 5345, pp. 14–25 (2008). DOI
10.1007/978-3-540-89447-6 4

20. Maalej, W., Happel, H.J.: From work to word: How do software developers describe their
work? In: Proceedings of the International Working Conference on Mining Software Reposi-
tories, pp. 121–130 (2009). DOI 10.1109/MSR.2009.5069490

21. Maalej, W., Happel, H.J.: Can development work describe itself? In: Proceedings of the In-
ternational Working Conference on Mining Software Repositories, pp. 191–200 (2010). DOI
10.1109/MSR.2010.5463344

22. Maalej, W., Happel, H.J., Rashid, A.: When users become collaborators: Towards continuous
and context-aware user input. In: Companion to the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pp. 981–990 (2009). DOI
10.1145/1639950.1640068

23. Maalej, W., Pagano, D.: On the socialness of software. In: Proceedings of the IEEE Interna-
tional Conference on Dependable, Autonomic and Secure Computing, pp. 864–871 (2011).
DOI 10.1109/DASC.2011.146

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

http://googleblog.blogspot.de/2009/12/personalized-search-for-everyone.html
http://googleblog.blogspot.de/2009/12/personalized-search-for-everyone.html

1 Collecting and Processing Interaction Data for Recommendation Systems 25

24. Maalej, W., Sahm, A.: Assisting engineers in switching artifacts by using task semantic and in-
teraction history. In: Proceedings of the International Workshop on Recommendation Systems
for Software Engineering, pp. 59–63 (2010). DOI 10.1145/1808920.1808935

25. McKeen, J.D., Guimaraes, T.: Successful strategies for user participation in system develop-
ment. Journal of Management Information Systems 14(2), 133–150 (1997)

26. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency by rec-
ommending development environment commands. In: Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 42:1–42:11 (2012).
DOI 10.1145/2393596.2393645

27. Pagano, D., Juan, M.A., Bagnato, A., Roehm, T., Bruegge, B., Maalej, W.: FastFix: Moni-
toring control for remote software maintenance. In: Proceedings of the ACM/IEEE Interna-
tional Conference on Software Engineering, pp. 1437–1438 (2012). DOI 10.1109/ICSE.2012.
6227076

28. Parnin, C., Rugaber, S.: Resumption strategies for interrupted programming tasks. In: Pro-
ceedings of the IEEE International Conference on Program Comprehenension, pp. 80–89
(2009). DOI 10.1109/ICPC.2009.5090030

29. Rajlich, V.: Software Engineering: The Current Practice. CRC Press (2012)
30. Robbes, R., Lanza, M.: Characterizing and understanding development sessions. In: Pro-

ceedings of the IEEE International Conference on Program Comprehenension, pp. 155–166
(2007). DOI 10.1109/ICPC.2007.12

31. Robbes, R., Lanza, M.: SpyWare: A change-aware development toolset. In: Proceedings of
the ACM/IEEE International Conference on Software Engineering, pp. 847–850 (2008). DOI
10.1145/1368088.1368219

32. Robbes, R., Lanza, M.: Improving code completion with program history. Automated Soft-
ware Engineering: An International Journal 17(2), 181–212 (2010). DOI 10.1007/s10515-
010-0064-x

33. Roehm, T., Gurbanova, N., Bruegge, B., Joubert, C., Maalej, W.: Monitoring user interactions
for supporting failure reproduction. In: Proceedings of the IEEE International Conference on
Program Comprehenension, pp. 73–82 (2013)

34. Roehm, T., Maalej, W.: Automatically detecting developer activities and problems in software
development work. In: Proceedings of the ACM/IEEE International Conference on Software
Engineering (2012). DOI 10.1109/ICSE.2012.6227104

35. Sawadsky, N., Murphy, G.C., Jiresal, R.: Reverb: Recommending code-related web pages. In:
Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 812–
821 (2013). DOI 10.1109/ICSE.2013.6606627

36. Shen, J., Irvine, J., Bao, X., Goodman, M., Kolibaba, S., Tran, A., Carl, F., Kirschner, B.,
Stumpf, S., Dietterich, T.G.: Detecting and correcting user activity switches: Algorithms and
interfaces. In: Proceedings of the International Conference on Intelligent User Interfaces, pp.
117–126 (2009). DOI 10.1145/1502650.1502670

37. Singer, J., Elves, R., Storey, M.A.D.: NavTracks: Supporting navigation in software mainte-
nance. In: Proceedings of the IEEE International Conference on Software Maintenance, pp.
325–334 (2005). DOI 10.1109/ICSM.2005.66

38. Wexelblat, A., Maes, P.: Footprints: History-rich tools for information foraging. In: Proceed-
ings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 270–277
(1999). DOI 10.1145/302979.303060

39. Ying, A.T.T., Robillard, M.P.: The influence of the task on programmer behaviour. In: Proceed-
ings of the IEEE International Conference on Program Comprehenension, pp. 31–40 (2011).
DOI 10.1109/ICPC.2011.35

40. Zou, L., Godfrey, M.W.: An industrial case study of Coman’s automated task detection algo-
rithm: What worked, what didn’t, and why. In: Proceedings of the IEEE International Confer-
ence on Software Maintenance, pp. 6–14 (2012). DOI 10.1109/ICSM.2012.6405247

NOTE: This is the authors' version of the work.
Springer holds the copyright for the original publication, which can be accesses via it web site
http://www.springer.com/computer/swe/book/978-3-642-45134-8

	1 Collecting and Processing Interaction Data for Recommendation Systems
	1.1 Introduction
	1.2 Examples
	1.2.1 Early Work
	1.2.2 Mylyn
	1.2.3 OCompletion
	1.2.4 Switch!

	1.3 What is Interaction Data?
	1.3.1 Interactions
	1.3.2 Artifacts
	1.3.3 Tools
	1.3.4 Context
	1.3.5 Interaction Granularity

	1.4 Collecting Interaction Data
	1.4.1 Monitoring Developers' Interactions
	1.4.2 Generating Interaction Events
	1.4.3 Logging Interaction Data

	1.5 Processing Interaction Data
	1.5.1 Sessionization of Interaction Events
	1.5.2 Filtering of Events
	1.5.3 Aggregation of Events and Inference of Context Information
	1.5.4 Pitfalls when Processing Interaction Data

	1.6 Using Interaction Data
	1.6.1 Productivity
	1.6.2 Awareness and Collaboration

	1.7 Challenges and Future Directions
	1.7.1 Challenges
	1.7.2 Future Scenarios

	1.8 Conclusion
	References

