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Abstract. Large formal mathematical libraries consist of millions of
atomic inference steps that give rise to a corresponding number of proved
statements (lemmas). Analogously to the informal mathematical prac-
tice, only a tiny fraction of such statements is named and re-used in
later proofs by formal mathematicians. In this work, we suggest and
implement criteria defining the estimated usefulness of the HOL Light
lemmas for proving further theorems. We use these criteria to mine the
large inference graph of all lemmas in the core HOL Light library, adding
thousands of the best lemmas to the pool of named statements that can
be re-used in later proofs. The usefulness of the new lemmas is then eval-
uated by comparing the performance of automated proving of the core
HOL Light theorems with and without such added lemmas.

1 Introduction

In the last decade, large formal mathematical corpora such as the Mizar Math-
ematical Library [5] (MML), Isabelle/HOL [33] and HOL Light [7]/Flyspeck [6]
have been translated to formats that allow easy experiments with external au-
tomated theorem provers (ATPs) and AI systems [10, 17, 26]. Several AI/ATP
methods for reasoning in the context of a large number of related theorems and
proofs have been suggested and tried already, including: (i) methods (often ex-
ternal to the core ATP algorithms) that select relevant premises (facts) from the
thousands of theorems available in such corpora [8,15], (ii) methods for internal
guidance of ATP systems when reasoning in the large-theory setting [31], (iii)
methods that automatically evolve more and more efficient ATP strategies for
the clusters of related problems from such corpora [28], and (iv) methods that
learn which of such specialized strategies to use for a new problem [14].

In this work, we start to complement the first set of methods – ATP-external
premise selection – with lemma mining from the large corpora. The main idea of
this approach is to enrich the pool of human-defined main (top-level) theorems
in the large libraries with the most useful/interesting lemmas extracted from the
proofs in these libraries. Such lemmas are then eligible together with (or instead
of) the main library theorems as the premises that are given to the ATPs to
attack new conjectures formulated over the large libraries.

This high-level idea is straightforward, but there are a number of possible
approaches involving a number of issues to be solved, starting with a reasonable
definition of a useful/interesting lemma, and with making such definitions effi-
cient over corpora that contain millions to billions of candidate lemmas. These
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issues are discussed in Sections 4 and 5, after motivating and explaining the
overall approach for using lemmas in large theories in Section 2 and giving an
overview of the recent related work in Section 3.

As in any AI discipline dealing with large amount of data, research in the
large-theory field is driven by rigorous experimental evaluations of the proposed
methods over the existing corpora. For the first experiments with lemma mining
we use the HOL Light system, together with its core library and the Flyspeck
library. The various evaluation scenarios are defined and discussed in Section 6,
and the implemented methods are evaluated in Section 7. Section 8 discusses
the various future directions and concludes.

2 Using Lemmas for Theorem Proving in Large Theories

The main task in the Automated Reasoning in Large Theories (ARLT) domain
is to prove new conjectures with the knowledge of a large body of previously
proved theorems and their proofs. This setting reasonably corresponds to how
large ITP libraries are constructed, and hopefully also emulates how human
mathematicians work more faithfully than the classical scenario of a single hard
problem consisting of isolated axioms and a conjecture [30]. The pool of previ-
ously proved theorems ranges from thousands in large-theory ATP benchmarks
such as MPTP2078 [1], to tens of thousands when working with the whole ITP
libraries.3

The strongest existing ARLT systems combine variously parametrized premise-
selection techniques (often based on machine learning from previous proofs) with
ATP systems and their strategies that are called with varied numbers of the most
promising premises. These techniques can go quite far already: when using 14-
fold parallelization and 30s wall-clock time, the HOL(y)Hammer system [10,11]
can today prove 47% of the 14185 Flyspeck theorems [12]. This is measured
in a scenario4 in which the Flyspeck theorems are ordered chronologically us-
ing the loading sequence of the Flyspeck library, and presented in this order to
HOL(y)Hammer as conjectures. After each theorem is attempted, its human-
designed HOL Light proof is fed to the HOL(y)Hammer’s learning components,
together with the (possibly several) ATP proofs found by HOL(y)Hammer it-
self. This means that for each Flyspeck theorem, all human-written HOL Light
proofs of all previous theorems are assumed to be known, together with all their
ATP proofs found already by HOL(y)Hammer, but nothing is known about the
current conjecture and the following parts of the library (they do not exist yet).

So far, systems like HOL(y)Hammer (similar systems include Sledgeham-
mer/MaSh [13] and MaLARea [29]) have only used the set of named library
theorems for proving new conjectures and thus also for the premise-selection
learning. This is usually a reasonable set of theorems to start with, because the
human mathematicians have years of experience with structuring the formal li-
braries. On the other hand, there is no guarantee that this set is in any sense

3 14185 theorems are in the HOL/Flyspeck library, about 20000 are in the Is-
abelle/HOL library, and about 50000 theorems are in the Mizar library.

4 A similar scenario has been introduced in 2013 also for the CASC LTB competition.



optimal, both for the human mathematicians and for the ATPs. The follow-
ing three observations indicate that the set of human-named theorems may be
suboptimal:

Proofs of different length: The human-named theorems may differ considerably
in the length of their proofs. The human naming is based on a number of
(possibly traditional/esthetical) criteria that may sometimes have little to
do with a good structuring of the library.

Duplicate and weak theorems: The large collaboratively-build libraries are hard
to manually guard against duplications and naming of weak versions of var-
ious statements. The experiments with the MoMM system over the Mizar
library [27] and with the recording of the Flyspeck library [9] have shown
that there are a number of subsumed and duplicated theorems, and that
some unnamed strong lemmas are proved over and over again.

Short alternative proofs: The experiments with AI-assisted ATP over the Mizar
and Flyspeck libraries [2,10] have shown that the combined AI/ATP systems
may sometimes find alternative proofs that are much shorter and very dif-
ferent from the human proofs, again turning some “hard” named theorems
into easy corollaries.

Suboptimal naming may obviously influence the performance of the current
large-theory systems. If many important lemmas are omitted by the human nam-
ing, the ATPs will have to find them over and over when proving the conjectures
that depend on such lemmas. On the other hand, if many similar variants of
one theorem are named, the current premise-selection methods might focus too
much on those variants, and fail to select the complementary theorems that are
also necessary for proving a particular conjecture.5

To various extent, this problem might be remedied by the alternative learn-
ing/guidance methods (ii) and (iii) mentioned in the introduction: Learning of
internal ATP guidance using for example Veroff’s hint technique [32], and learn-
ing of suitable ATP strategies using systems like BliStr [28]. But these methods
are so far much more experimental in the large-theory setting than premise se-
lection.6 That is why we propose the following lemma-mining approach:

1. Considering (efficiently) the detailed graph of all atomic inferences contained
in the ITP libraries. Such a graph has millions of nodes for the core HOL
Light corpus, and hundreds of millions of nodes for the whole Flyspeck.

2. Defining over such large proof graphs efficient criteria that select a smaller
set of the strongest and most orthogonal lemmas from the corpora.

3. Using such lemmas together with (or instead of) the human-named theorems
for proving new conjectures over the corpora.

5 This behavior obviously depends on the premise-selection algorithm. It is likely to oc-
cur when the premise selection is mainly based on symbolic similarity of the premises
to the conjecture. It is less likely to occur when complementary semantic selection
criteria are additionally used as, e.g., in SRASS [25] and MaLARea [29].

6 In particular, several initial experiments done so far with Veroff’s hints over the
MPTPChallenge and MPTP2078 benchmarks were so far unsuccessful.



3 Overview of Related Work and Ideas

A number of ways how to measure the quality of lemmas and how to use them
for further reasoning have been proposed already, particularly in the context of
ATP systems and proofs. Below we summarize recent approaches and tools that
initially seemed most relevant to our work.

Lemmas are an essential part of various ATP algorithms. State-of-the-art
ATPs such as Vampire [21], E [23] and Prover9 [16] implement various variants
of the ANL loop [34], resulting in hundreds to billions of lemmas inferred during
the prover runs. This gave rise to a number of efficient ATP indexing techniques,
redundancy control techniques such as subsumption, and also fast ATP heuristics
(based on weight, age, conjecture-similarity, etc.) for choosing the best lemmas
for the next inferences. Several ATP methods and tools work with such ATP
lemmas. Veroff’s hint technique [32] extracts the best lemmas from the proofs
produced by successful Prover9 runs and uses them for directing the proof search
in Prover9 on related problems. A similar lemma-extracting, generalizing and
proof-guiding technique (called E Knowledge Base – EKB) was implemented by
Schulz in E prover as a part of his PhD thesis [22].

Schulz also implemented the epcllemma tool that estimates the best lemmas
in an arbitrary DAG (directed acyclic graph) of inferences. Unlike the hint-
extracting/guiding methods, this tool works not just on the handful of lemmas
involved in the final refutational proof, but on the typically very large number of
lemmas produced during the (possibly unfinished) ATP runs. The epcllemma’s
criteria for selecting the next best lemma from the inference DAG are: (i) the size
of the lemma’s inference subgraph based at the nodes that are either axioms or
already chosen (better) lemmas, and (ii) the weight of the lemma. This lemma-
selection process may be run recursively, until a stopping criterion (minimal
lemma quality, required number of lemmas, etc.) is reached. Our algorithm for
HOL Light (Section 5) is quite similar to this.

AGIntRater [20] is a tool that computes various characteristics of the lem-
mas that are part of the final refutational ATP proof and aggregates them
into an overall interestingness rating. These characteristics include: obviousness,
complexity, intensity, surprisingness, adaptivity, focus, weight, and usefulness,
see [20] for details. AGIntRater so far was not directly usable on our data for
various reasons (particularly the size of our graph), but we might re-use and try
to efficiently implement some of its ideas later.

Pudlák [19] has conducted experiments over several datasets with automated
re-use of lemmas from many existing ATP proofs in order to find smaller proofs
and also to attack unsolved problems. This is similar to the hints technique,
however more automated and closer to our large-theory setting (hints have so
far been successfully applied mainly in small algebraic domains). To interreduce
the large number of such lemmas with respect to subsumption he used the E-
based CSSCPA [24] subsumption tool by Schulz and Sutcliffe. MoMM [27] adds
a number of large-theory features to CSSCPA. It was used for (i) fast interreduc-
tion of million of lemmas extracted (generalized) from the proofs in the Mizar
library, and (ii) as an early ATP-for-ITP hammer-style tool for completing proofs



in Mizar with the help of the whole Mizar library. All library lemmas can be
loaded, indexed and considered for each query, however the price for this breadth
of coverage is that the inference process is limited to subsumption extended with
Mizar-style dependent types.

AGIntRater and epcllemma use a lemma’s position in the inference graph as
one of the lemma’s characteristics that contribute to its importance. There are
also purely graph-based algorithms that try to estimate a relative importance
of nodes in a graph. In particular, research of large graphs became popular
with the appearance of the World Wide Web and social networks. Algorithms
such as PageRank [18] (eigenvector centrality) have today fast approximative
implementations that easily scale to billions of nodes.

4 The Proof Data

We initially consider two corpora: the core HOL Light corpus (SVN version 146)
and the Flyspeck corpus (SVN version 2886). The core HOL Light corpus con-
sists of 1,984 named theorems, while the Flyspeck corpus contains 14,185 named
theorems. There are 97,714,465 lemmas in Flyspeck when exact duplicates are
removed, and 420,253,109 lemmas when counting duplicates. When removing
duplicates only within the proof of each named theorem, the final number of
lemmas is 146,120,269. For core HOL Light the number of non-duplicate lem-
mas is 1,987,781. When counting duplicates it is 6,963,294, and when removing
duplicates only inside the proof of each named theorem it is 2,697,212 . To obtain
the full inference graph for Flyspeck we run the proof-recording version of HOL
Light [9]. This takes 14 hours of CPU time and 42 GB of RAM on an Intel Xeon
2.6 GHz machine. This time and memory consumption are much lower when
working only with the core HOL Light, hence many of the experiments were so
far done only on the smaller corpus.

There are 140,534,426 inference edges between the unique Flyspeck lemmas,
each of them corresponding to one of the LCF-style kernel inferences done by
HOL Light [9]. During the proof recording we additionally export the informa-
tion about the symbol weight (size) of each lemma, and its normalized form that
serially numbers bound and free variables and tags them with their types. This
information is later used for external postprocessing, together with the infor-
mation about which theorems where originally named. Below is a commented
example of the initial segment of the Flyspeck proof trace, the full trace (1.5G in
size) is available online7, as well as the numbers of the original named Flyspeck
theorems.8

F13 #1, Definition (size 13): T <=> (\A0. A0) = (\A0. A0)

R9 #2, Reflexivity (size 9): (\A0. A0) = (\A0. A0)

R5 #3, Reflexivity (size 5): T <=> T

R5 #4, Reflexivity (size 5): (<=>) = (<=>)

C17 4 1 #5, Application(4,1): (<=>) T = (<=>) ((\A0. A0) = (\A0. A0))

7 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/proof.trace.old.gz
8 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/facts.trace.old.gz
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C21 5 3 #6, Application(5,3): (T <=> T) <=> (\A0. A0) = (\A0. A0) <=> T

E13 6 3 #7, EQ_MP(6,3) (size 13): (\A0. A0) = (\A0. A0) <=> T

4.1 Initial Post-processing and Optimization of the Proof Data

During the proof recording, only exact duplicates are easy to detect. Due to
various implementational issues, it is simpler to always limit the duplication de-
tection to the lemmas derived within a proof of each named theorem, hence this
is our default initial dataset. HOL Light does not natively use de Bruijn indices
for representing variables, i.e., two alpha-convertible versions of the same theo-
rems will be kept in the proof trace if they differ in variable names. Checking for
alpha convertibility during the proof recording is nontrivial, because in the HOL
Light’s LCF-style approach alpha conversion itself results in multiple kernel in-
ferences. That is why we keep the original proof trace untouched, and implement
its further optimizations as external postprocessing of the trace.

In particular, to merge alpha convertible lemmas in a proof trace T , we just
use the above mentioned normalized-variable representation of the lemmas as an
input to an external program that produces a new version of the proof trace T ′.
This program goes through the trace T and replaces references to each lemma
by a reference to the earliest lemma in T with the same normalized-variable
representation. The proofs of the later named alpha variants of the lemmas in
T are however still kept in the new trace T ′, because such proofs are impor-
tant when computing the usage and dependency statistics over the normalized
lemmas. So far we have done this postprocessing only for the core HOL Light
2,697,212 lemmas,9 because printing out of the variable-normalized version of
the 146,120,269 partially de-duplicated Flyspeck lemmas would produce more
than 100G of data. From the 2,697,212 partially de-duplicated core HOL Light
lemmas 1,076,995 are left after this stronger normalization. It is clear that such
post-processing operations can be implemented different ways. In this case, some
original information about the proof graph is lost, while some information (proofs
of duplicate lemmas) is still kept, even though it could be also pruned from the
graph, producing a differently normalized version.

The ATP experiments described below use only the two versions of the proof
trace described above, but we have also explored some other normalizations. A
particularly interesting optimization from the ATP point of view is the removal of
subsumed lemmas. An initial measurement with the (slightly modified) MoMM
system done on the clausified first-order versions of about 200,000 core HOL
Light lemmas has shown that about 33% of the clauses generated from the
lemmas are subsumed. But again, ATP operations like subsumption interact
with the level of inferences recorded by the HOL Light kernel in nontrivial ways.
It is an interesting task to define exactly how the original proof graph should
be transformed with respect to such operations, and how to perform such proof
graph transformations efficiently over the whole Flyspeck.

9 http://mizar.cs.ualberta.ca/~mptp/lemma_mining/human.gz
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5 Selecting Good Lemmas

Several approaches to defining the notion of a useful/interesting lemma are men-
tioned in Section 3. There are a number of ideas that can be explored and com-
bined together in various ways, but the more complex methods (such as those
used by AGIntRater) are not yet directly usable on the large ITP datasets that
we have. So far, we have experimented mainly with the following techniques:

1. A direct OCAML implementation of lemma quality metrics based on the
HOL Light proof-recording data structures.

2. Schulz’s epcllemma and its minor modifications.
3. PageRank, applied in various ways to the proof trace.

5.1 Direct Computation of Lemma Quality

The advantage of the direct OCAML implementation is that no export to ex-
ternal tools is necessary and all the information collected about the lemmas by
the HOL Light proof recording is directly available. The basic factors that we
use so far for defining the quality of a lemma i are its: (i) set of direct proof
dependencies d(i) given by the proof trace, (ii) number of recursive dependen-
cies D(i), (iii) number of recursive uses U(i), and (iv) number of HOL symbols
(HOL weight) S(i). When recursively defining U(i) and D(i) we assume that in
general some lemmas may already be named (k ∈ Named) and some lemmas are
just axioms (k ∈ Axioms). Note that in HOL Light there are many lemmas that
have no dependencies, but formally they are still derived using for example the
reflexivity inference rule (i.e., we do not count them among the HOL Light ax-
ioms). The recursion when defining D thus stops at axioms, named lemmas, and
lemmas with no dependencies. The recursion when defining U stops at named
lemmas and unused lemmas. Formally:

Definition 1 (Recursive dependencies and uses).

D(i) =







1 if i ∈ Named ∨ i ∈ Axioms,
∑

j∈d(i)

D(j) otherwise.

U(i) =







1 if i ∈ Named,
∑

i∈d(j)

U(j) otherwise.

In particular, this means that

D(i) = 0 ⇐⇒ d(i) = ∅ ∧ ¬(i ∈ Axioms)

and also that
U(i) = 0 ⇐⇒ ∀j¬(i ∈ d(j))

These basic characteristics are combined into the following lemma quality metrics
Q1(i), Q2(i), and Q3(i). Q

r
1(i) is a generalized version of Q1(i), which we (apart

from Q1) test for r ∈ {0, 0.5, 1.5, 2}:



Definition 2 (Lemma quality).

Q1(i) =
U(i) ∗D(i)

S(i)

Q2(i) =
U(i) ∗D(i)

S(i)2

Qr
1(i) =

U(i)r ∗D(i)2−r

S(i)

Q3(i) =
U(i) ∗D(i)

1.1S(i)

The justification behind these definitions are the following heuristics:

1. The higher isD(i), the more necessary it is to remember the lemma i, because
it will be harder to infer with an ATP when needed.

2. The higher is U(i), the more useful the lemma i is for proving other desired
conjectures.

3. The higher is S(i), the more complicated the lemma i is in comparison to
other lemmas. In particular, doubled size may often mean in HOL Light that
i is just a conjunction of two other lemmas.10

5.2 Lemma Quality via epcllemma

Lemma quality in epcllemma is defined on clause inferences recorded using E’s
native PCL protocol. The lemma quality computation also takes into account
the lemmas that have been already named, and with minor implementational
variations it can be expressed using D and S as follows:

EQ1(i) =
D(i)

S(i)

The difference to Q1(i) is that U(i) is not used, i.e., only the cumulative effort
needed to prove the lemma counts, together with its size (this is also very close to
Qr

1(i) with r = 0). The main advantage of using epcllemma is its fast and robust
implementation using the E code base. This allowed us to load in reasonable
time (about one hour) the whole Flyspeck proof trace into epcllemma, taking
67 GB of RAM. Unfortunately, this experiment showed that epcllemma assumes
that D is always an integer. This is likely not a problem for epcllemma’s typical
use, but on the Flyspeck graph this quickly leads to integer overflows and wrong
results. To a smaller extent this shows already on the core HOL Light proof
graph. A simple way how to prevent the overflows was to modify epcllemma to
use instead of D the longest chain of inferences L:

L(i) =

{

1 if i ∈ Named ∨ i ∈ Axioms,

maxj∈d(i)(1 + L(j)) otherwise.

10 The possibility to create conjunctions is quite a significant difference to the clausal
setting handled by the existing tools. A longer clause is typically weaker, while longer
conjunctions are stronger. A dependence on a longer conjunction should ideally be
treated by the evaluating heuristics as a dependence on the multiple conjuncts.



This leads to:

EQ2(i) =
L(i)

S(i)

Apart from this modification, only minor changes were needed to make ep-
cllemma work on the HOL Light data. The HOL proof trace was expressed
as a PCL proof (renaming the HOL inferences into E inferences), and artificial
TPTP clauses of the corresponding size were used instead of the original HOL
clauses.

5.3 Lemma Quality via PageRank

PageRank (eigenvector centrality of a graph) is a method that assigns weights
to the nodes in an arbitrary directed graph (not just DAG) based on the weights
of the neighboring nodes (“incoming links”). In more detail, the weights are
computed as the dominant eigenvector of the following set of equations:

PR1(i) =
1− f

N
+ f

∑

i∈d(j)

PR1(j)

|d(j)|

where N is the total number of nodes and f is a damping factor, typically set
to 0.85. The advantage of using PageRank is that there are fast approximative
implementations that can process the whole Flyspeck proof graph in about 10
minutes using about 21 GB RAM, and the weights of all nodes are computed
simultaneously in this time.

This is however also a disadvantage in comparison to the previous algorithms:
PageRank does not take into account the lemmas that have already been selected
(named). The closer a lemma i is to an important lemma j, the more important
i will be. Modifications that use the initial PageRank scores for more advanced
clustering exist [3] and perhaps could be used to mitigate this problem while still
keeping the overall processing reasonably fast. Another disadvantage of PageR-
ank is its ignorance of the lemma size, which results in greater weights for the
large conjunctions that are used quite often in HOL Light. PR2 tries to counter
that:

PR2(i) =
PR1(i)

S(i)

PR1 and PR2 are based on the idea that a lemma is important if it is needed
to prove many other important lemmas. This can be again turned around: we
can define that a lemma is important if it depends on many important lemmas.
This is equivalent to computing the reverse PageRank and its size-normalized
version:

PR3(i) =
1− f

N
+ f

∑

i∈u(j)

PR3(j)

|u(j)|
PR4(i) =

PR3(i)

S(i)

where u(j) are the direct uses of the lemma j, i.e., i ∈ u(j) ⇐⇒ j ∈ d(i). The
two ideas can again be combined (note that the sum of the PageRanks of all



nodes is always 1):

PR5(i) =
PR1(i) + PR3(i)

S(i)

5.4 Selecting Many Lemmas

From the methods described above, only the various variants of PageRank (PRi)
produce the final ranking of all lemmas in one run. Both epcllemma (EQi) and
our custom methods (Qi) are parametrized by the set of lemmas (Named) that
have already been named. When the task is to choose a predefined number of
the best lemmas, this naturally leads to the following recursive lemma-selection
algorithm (used also by epcllemma):

Algorithm 1 Best lemmas

Input a lemma-quality metric Q, set of lemmas Lemmas, an initial set of named
lemmas Named0 ⊂ Lemmas, and a required number of lemmas M

Output set Named of M best lemmas according to Q

1: Named← Named0
2: m← 0
3: while m < M do

4: for i ∈ Lemmas do

5: Calculate(QNamed(i))
6: end for

7: j ← argmax{QNamed(i) : i ∈ Lemmas \Named}
8: Named← Named ∪ {j}
9: m← m + 1

10: end while

11: Return(Named)

There are two possible choices of Named0: either the empty set, or the set
of all human-named theorems. This choice depends on whether we want re-
organize the library from scratch, or whether we just want to select good lem-
mas that complement the human-named theorems. Below we experiment with
both approaches. Note that this algorithm is currently quite expensive: the fast
epcllemma implementation takes 65 seconds to update the lemma qualities over
the whole Flyspeck graph after each change of the Named set. This means that
producing the first 10000 Flyspeck lemmas takes 180 CPU hours. That is why
most of the experiments are limited to the core HOL Light graph where this
takes about 1 second and 3 hours respectively.

6 Evaluation Scenarios and Issues

To assess and develop the lemma-mining methods we define several evaluation
scenarios that vary in speed, informativeness and rigor. The simplest and least
rigorous is the expert-evaluation scenario: We use our knowledge of the formal



corpora to quickly see if the top-ranked lemmas produced by a particular method
look plausible. Because of its size, this is the only evaluation done for the whole
Flyspeck corpus so far.

The cheating ATP scenario uses the full proof graph of a corpus to com-
pute the set of the (typically 10,000) best lemmas (BestLemmas) for the whole
corpus. Then the set of newly named theorems (NewThms) is defined as the
union of BestLemmas with the set of originally named theorems (OrigThms):
NewThms := BestLemmas ∪ OrigThms. The derived graph GNewThms of di-
rect dependencies among the elements of NewThms is used for ATP evaluation,
which may be done in two ways: with human selection and with AI selection.
When using human selection, we try to prove each lemma from its parents in
GNewThms. When using AI selection, we use the chronological order (see Sec-
tion 2) of NewThms to incrementally train and evaluate the k-NN machine
learner [12] on the direct dependencies from GNewThms. This produces for each
new theorem an ATP problem with premises advised by the learner trained on
the GNewThms dependencies of the preceding new theorems. This scenario may
do a lot of cheating, because when measuring the ATP success on OrigThms, a
particular theorem i might be proved with the use lemmas from NewThms that
have been stated for the first time only in the original proof of i (we call such
lemmas directly preceding). In other words, such lemmas did not exist before
the original proof of i was started, so they could not possibly be suggested by
lemma-quality metrics for proving i. Such directly preceding lemmas could also
be very close to i, and thus equally hard to prove.

The almost-honest ATP scenario is like the cheating ATP scenario, however
directly preceding new lemmas are replaced by their closest OrigThms ances-
tors. This scenario is still not fully honest, because the lemmas are computed
according to their lemma quality measured on the full proof graph. In particular,
when proving an early theorem i from OrigThms, the newly used parents of i
are lemmas whose quality was clear only after taking into account the theorems
that were proved later than i. These theorems and their proofs however did not
exist at the time of proving i. Still, we consider this scenario sufficiently hon-
est for most of the ATP evaluations done with over the whole core HOL Light
dataset.

The fully-honest ATP scenario removes this last objection, at the price of
using considerably more resources for a single evaluation. For each originally
named theorem j we limit the proof graph used for computing BestLemmas to
the proofs that preceded j. Since computing BestLemmas for the whole core
HOL Light takes at least three hours for the Qi and EQi methods, the full
evaluation on all 1,984 core HOL Light theorems would take about 2,000 CPU
hours. That is why we further scale down this evaluation by doing it only for
every tenth theorem in core HOL Light.

The chained-conjecturing ATP scenario is similar to the cheating scenario,
but with limits imposed on the directly preceding lemmas. In chain1-conjecturing,
any (possibly directly preceding) lemma used to prove a theorem i must it-
self have an ATP proof using only OrigThms. In other words, it is allowed to



guess good lemmas that still do not exist, but such lemmas must not be hard
to prove from OrigThms. Analogously for chain2-conjecturing (resp. chainN),
where lemmas provable from chain1-lemmas (resp. chainN−1) are allowed to be
guessed. To some extent, this scenario measures the theoretical ATP improve-
ment obtainable with guessing of good intermediate lemmas.

7 Experiments

The ATP experiments are done on the same hardware and using the same setup
that was used for the earlier evaluations described in [10, 12]: All systems are
run with 30s time limit on a 48-core server with AMD Opteron 6174 2.2 GHz
CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. When using only the orig-
inal theorems, the success rate of the 14 most complementary AI/ATP methods
run with 30s time limit each and restricted to the 1954 core HOL Light theo-
rems is 65.2% (1275 theorems) and the union of all methods solves 65.4% (1278
theorems).

In the very optimistic cheating scenario (limited only to the Qi metrics), this
numbers go up to 76.5% (1496 theorems) resp. 77.9% (1523 theorems). As men-
tioned in Section 6, many proofs in this scenario may however be too simple be-
cause a close directly preceding lemma was used by the lemma-mining/machine-
learning/ATP stack. This became easy to see already when using the almost-
honest scenario, where the 14 best methods (including also EQi and PRi) solve
together only 66.3% (1296 theorems) and the union of all methods solves 68.9%
(1347 theorems). The resource-intensive fully-honest evaluation is limited to a
relatively small subset of the core HOL Light theorems, however it confirms the
almost-honest results. While the original success rate was 61.7% (less than 14
methods are needed to reach it), the success rate with lemma mining went up
to 64.8% (again, less than 14 methods are needed). This means that the non-
cheating lemma-mining approaches so far improve the overall performance of the
AI/ATP methods over core HOL Light by about 5%. The best method in the
fully-honest evaluation is Q2 which solves 46.2% of the original problems when
using 512 premises, followed by EQ2 (using the longest inference chain instead
of D), which solves 44.6 problems also with 512 premises. The best PageRank-
based method is PR2 (PageRank divided by size), solving 41.4% problems with
128 premises.

An interesting middle-way between the cheating and non-cheating scenarios
is the chained-conjecturing evaluation, which indicates the possible improvement
when guessing good lemmas that are “in the middle” of long proofs. Since this
is also quite expensive, only the best lemma-mining method (Q2) was evaluated
so far. Q2 itself solves (altogether, using different numbers of premises) 54.5%
(1066) of the problems. This goes up to 61.4% (1200 theorems) when using only
chain1-conjecturing and to 63.8% (1247 theorems) when allowing also chain2

and chain3-conjecturing. These are 12.6% and 17.0% improvements respectively.

Finally, since regular lemma-mining/machine-learning/ATP evaluations over
the whole Flyspeck corpus are still outside our resources, we present below sev-



eral best lemmas computed by epcllemma’s EQ2 method over the 97,714,465-
node-large proof graph of all Flyspeck lemmas:11

|- a + c + d = c + a + d

|- x * (y + z) = x * y + x * z

|- (a + b) + c = a + b + c

|- &1 > &0

|- a ==> b <=> ~a \/ b

|- BIT1 m + BIT0 n = BIT1 (m + n)

8 Future Work and Conclusion

We have proposed, implemented and evaluated several approaches that try to
efficiently find the best lemmas and re-organize a large corpus of computer-
understandable human mathematical ideas, using the millions of logical depen-
dencies between the corpus’ atomic elements. We believe that such conceptual
re-organization is a very interesting AI topic that is best studied in the context
of large, fully semantic corpora such as HOL Light and Flyspeck. The byproduct
of this work are the exporting and post-processing techniques resulting in the
publicly available proof graphs that can serve as a basis for further research.

The most conservative improvement in the strength of automated reasoning
obtained so far over the core HOL Light thanks to lemma mining is about 5%.
There are potential large improvements if the guessing of lemmas is improved.
The benefits from lemma-mining should be larger when proving over larger cor-
pora and when proving larger steps, but a number of implementational issues
need to be addressed to scale the lemma-mining methods to very large corpora
such as Flyspeck.

There are many further directions for this work. The lemma-mining methods
can be made faster and more incremental, so that the lemma quality is not
completely recomputed after a lemma is named. Fast PageRank-based clustering
should be efficiently implemented and possibly combined with the other methods
used. ATP-style normalizations such as subsumption need to be correctly merged
with the detailed level of inferences used by the HOL Light proof graph. The
whole approach could also be implemented on a higher level of inferences, using
for example the granularity corresponding to time-limited MESON ATP steps.
Guessing of good intermediate lemmas for proving harder theorems is an obvious
next step, the value of which has already been established to a certain extent in
this work.
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1. Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Ur-
ban. Premise selection for mathematics by corpus analysis and kernel meth-
ods. Journal of Automated Reasoning, 2013. http://dx.doi.org/10.1007/

s10817-013-9286-5.
2. Jesse Alama, Daniel Kühlwein, and Josef Urban. Automated and Human Proofs

in General Mathematics: An Initial Comparison. In Nikolaj Bjørner and Andrei
Voronkov, editors, LPAR, volume 7180 of LNCS, pages 37–45. Springer, 2012.

3. Konstantin Avrachenkov, Vladimir Dobrynin, Danil Nemirovsky, Son Kim Pham,
and Elena Smirnova. Pagerank based clustering of hypertext document collections.
In Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-Seng Chua, and
Mun-Kew Leong, editors, SIGIR, pages 873–874. ACM, 2008.

4. Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors. Interac-
tive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer Science.
Springer, 2013.

5. Adam Grabowski, Artur Korni lowicz, and Adam Naumowicz. Mizar in a nutshell.
Journal of Formalized Reasoning, 3(2):153–245, 2010.

6. Thomas C. Hales. Introduction to the Flyspeck project. In Thierry Coquand, Henri
Lombardi, and Marie-Françoise Roy, editors, Mathematics, Algorithms, Proofs,
volume 05021 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

7. John Harrison. HOL Light: A tutorial introduction. In Mandayam K. Srivas and
Albert John Camilleri, editors, FMCAD, volume 1166 of LNCS, pages 265–269.
Springer, 1996.

8. Krystof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In
Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE, volume 6803
of LNCS, pages 299–314. Springer, 2011.

9. Cezary Kaliszyk and Alexander Krauss. Scalable LCF-style proof translation. In
Blazy et al. [4], pages 51–66.

10. Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with
Flyspeck. CoRR, abs/1211.7012, 2012.

11. Cezary Kaliszyk and Josef Urban. Automated reasoning service for HOL Light.
In Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka, and Wolfgang
Windsteiger, editors, MKM/Calculemus/DML, volume 7961 of Lecture Notes in
Computer Science, pages 120–135. Springer, 2013.

12. Cezary Kaliszyk and Josef Urban. Stronger automation for Flyspeck by feature
weighting and strategy evolution. In Jasmin Christian Blanchette and Josef Urban,
editors, PxTP 2013, volume 14 of EPiC Series, pages 87–95. EasyChair, 2013.
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