
HAL Id: hal-01234019
https://hal.science/hal-01234019

Submitted on 26 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fault Tolerant Parallel Computing Scheme of Scalar
Multiplication for Wireless Sensor Networks

Yanbo Shou, Hervé Guyennet

To cite this version:
Yanbo Shou, Hervé Guyennet. A Fault Tolerant Parallel Computing Scheme of Scalar Multiplication
for Wireless Sensor Networks. ICDCN’14, 15-th Int. Conf. on Distributed Comuting and Networking,
2014, Coimbatore, India. pp.317-331. �hal-01234019�

https://hal.science/hal-01234019
https://hal.archives-ouvertes.fr

A Fault Tolerant Parallel Computing Scheme of
Scalar Multiplication for Wireless Sensor

Networks

Yanbo SHOU1 and Hervé Guyennet1

University of Franche-Comté, Besançon, France
{yshou, hguyennet}@femto-st.fr

Abstract. In event-driven sensor networks, when a critical event oc-
curs, sensors should transmit messages back to base station in a secure
and reliable manner. We choose Elliptic Curve Cryptography to secure
the network since it offers faster computation and good security with
shorter keys. In order to minimize the running time, we propose to split
and distribute the computation of scalar multiplications by involving
neighboring nodes in this operation. In order to improve the reliability,
we have also proposed a fault tolerance mechanism. It uses half of the
available cluster members as backup nodes which take over the work of
faulty nodes in case of system failure. Parallel computing does consume
more resources, but the results of simulation show that the computation
can be significantly accelerated. This method is designed specially for
applications where running time is the most important factor.

Keywords: Wireless sensor networks, Elliptic curves, Scalar multiplication,
Parallel computing, Fault tolerance.

1 Introduction

The advances of micro-electro-mechanical technology in recent years have en-
abled the fast development of smart sensor node. A sensor node is small elec-
tronic device which is usually composed of processing, sensing, radio communi-
cation and power supply units [1, 2]. It is programmable and is able to collect
environmental data and communicate with other sensor nodes by using wireless
technologies. Such sensor nodes have limited resources and are often battery-
operated, they are not designed to handle complicated tasks and that’s why a
sensor node rarely works alone. Sensor nodes are supposed be deployed mas-
sively and be programmed to form automatically a fully functional network,
called wireless sensor network.

Ideally, a sensor network consists of a large number of low-cost and low-
power sensor nodes, which are interconnected with each other and operate in
unattended manner. This kind of networks are often deployed in inaccessible
and hostile zones where human interventions are not always possible. Today we
can find a wide range of applications using wireless sensor technologies, such as

environment monitoring, industrial sensing, medical care and military surveil-
lance [3–7].

However sensor nodes are quite fragile and are vulnerable to various attacks
due to the lack of resources and unreliability of wireless communication. [8] gives
a detailed presentation of almost all possible attacks in wireless sensor networks.
An efficient way to protect sensor networks is to use cryptographic techniques [8,
9]. On one hand, symmetric cryptographic algorithms are usually computational
less expensive and easier to implement in hardware and software, but as we use
the same key for data encryption and decryption, the key management in sensor
networks becomes a challenging issue. On the other hand, asymmetric algorithms
need more complicated computation, but as we use two different keys respectively
for encryption and decryption, a compromised node can not provide clue to the
private keys of other nodes.

In this paper we choose Elliptic Curve Cryptography (ECC) to secure the
communications in sensor networks. It has become recently one of the most fa-
mous asymmetric cryptographic mechanism because of its shorter key length re-
quirement and faster computation compared with other asymmetric mechanisms,
such as RSA [10]. ECC has successfully attracted the interest of researchers, es-
pecially in the domain of embedded system where most of the devices have strict
resource restriction.

The performance of ECC can be significantly improved by using mathemat-
ical tools, such as NAF, windowed method, projective coordinates [11]. Besides
traditional algorithmic optimization, parallel computing is an other choice for
accelerating the computation on elliptic curves. The computation task is split
into smaller independent ones which are then distributed to neighboring sensor
nodes and carried out simultaneously. However, sensor nodes communicate with
each other through wireless connection, which is considered as unreliable and
sensitive to radio interference. In addition, sensor nodes might suffer external
attacks during computation. In this paper we present our new fault tolerant
parallel computing scheme for elliptic curve cryptography in wireless sensor net-
works, which is actually the following of our research published in [12].

The rest of the paper is organized as follows. Section 2 presents basic concepts
of ECC, and section 3 describes our parallel computing scheme. In section 4 and
5 we present possible fault tolerance issues and the related work. In section
6, we propose a fault tolerance mechanism designed specially for our parallel
computing scheme, then it is tested by a simulator and the results are illustrated
in 7. Section 8 concludes the paper.

2 Basic Concepts of Elliptic Curve

Elliptic curve cryptography (ECC) is an approach to public-key cryptography
which is proposed independently by Koblitz [13] and Miller [14] in the 80’s.
It’s suitable for creating lightweight and efficient cryptosystem, especially for
embedded systems which have limited resources. Experiments prove that a 160-

bit elliptic curve key can provide the same security robustness as a 1024-bit RSA
key [15].

In cryptography we work with the curves which are defined over finite field
Fq where q = pm. p is a prime number, called the characteristic of F. F is finite
prime field when m = 1 and p 6= 2, 3, which is also the configuration that we
use in this paper. Such curves can be represented by the simplified Weierstrass
equation (see formula 1).

y2 = x3 + ax+ b (1)

whose discriminant ∆ = −16(4a3 + 27b2) and ∆ 6= 0.

All points on an elliptic curve, including the point at infinity, constitute an
abelian group whose law is point addition, denoted by +, which combines 2
points on the curve to form a third point which is on the same curve. Suppose
that P1(x1, y1) and P2(x2, y2) are 2 points on an elliptic curve, then P3(x3, y3) =
P1(x1, y1) + P2(x2, y2) can be calculated by using the formulas 2 and 3.{

x3 = s2 − x1 − x2
y3 = s(x1 − x3)− y1

(2)

where

s =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x21 + a)/2y1 if P1 = P2
(3)

Based on point addition, we may also perform point multiplication, also called
scalar multiplication. For example Q = kP , where Q and P are 2 points on an
elliptic curve, and k is a big integer. The most basic method to calculate kP is
using Double-and-Add algorithm [16].

The security of ECC relies on the difficulty of solving the discrete logarithm
problem. For Q = kP , given points Q and P , it’s extremely difficult to compute
the value of k if it’s big enough. However it’s not always easy to transform the
data we want to protect into a point on elliptic curve. Thus in most of the cases,
we only use ECC to establish a shared key between both parties, then we can
use a symmetric-key cryptographic algorithm to encrypt our data.

A example of key exchange protocol is Elliptic Curve Diffie-Hellman [17].
Suppose that Alice and Bob share the same elliptic curve E whose generator
point is G. To establish a shared key, Alice computes and sends her public key
QA = sAG to Bob where sA is her private key, meanwhile Bob sends QB = sBG
to Alice where sB is his private key. Then the shared key KAB = sAQB =
sBQA = sAsBG.

We can notice that the scalar multiplication is the most essential operation
on elliptic curve, and it’s also the most computationally intensive operation we
need to perform. It is obvious that this kind of computation is too complicated
for sensor nodes, performance optimization is then absolutely necessary.

3 Parallel Scalar Multiplication in WSN

We suppose that in a cluster based sensor network, cluster members send peri-
odically environmental data to their cluster head which is responsible for data
processing. Whenever a critical event is detected, the cluster head has to warn
the base station as fast as possible in a secure and reliable manner.

Our parallel scalar multiplication method is based on the idea of [18] which
doesn’t need shared memory and offers an efficient scalar decomposition. For
example we need to compute Q = kG where Q and G are 2 points on an elliptic
curve, and k is a large integer of length l which can be represented in binary
k =

∑l−1
i=0 ki2

i. The cluster head splits k into n blocks Bi of b = b lnc bits
according to the number of available cluster members.

Bi =

(i+1)b−1∑
j=ib

kj2
j

As all sensor nodes share the same elliptic curve which is configured and
preloaded before deployment, then it is possible to precompute points Gi = 2ibG
where G is the generator point. Thus the computation of kP can be rewritten
in the following manner.

Q = kG =

l−1∑
i=0

ki2
i

= Q0 +Q1 + . . .+Qn−1

= B0G+B12bG+ . . .+Bn−12b(n−1)G (4)

We can notice in equation 4 that each Qi can be considered as an independent
task and can be treated separately. The entire process of parallel computing is
graphically illustrated in figure 1.

1. Cluster members send data to cluster head periodically.
2. Cluster head detects a critical event. It broadcasts a call for parallel com-

puting and then waits for responses.
3. Available cluster members send positive responses back to cluster head and

become Slave nodes of parallel computing.
4. Cluster head decomposes the computation according to the number of avail-

able slaves. Then it sends the tasks to slaves, and it become the Master node
of parallel computing.

5. Slaves complete the task and send the results back to their master.
6. Master nodes combines received results to obtain the final result, by which

the master can encrypt its message and send it to the node of next hop.

As we can see that the parallel scalar multiplication on elliptic curve is a
complicated operation, and every step must be carried out carefully. Moreover,
the process needs reliable wireless communication which is not always possible
in wireless sensor networks.

Cluster Member Cluster Head

1: Data

2: Call for Parallel Computing

3: Availability

4: Tasks

5: Results

Computation Computation

Fig. 1. Parallel Scalar Multiplication Process

4 Fault Tolerance Issues

Three terms have been introduced in [19] in order to explain the fault tolerance
issues in wireless sensor networks.

A fault is a defect causing an error, which represents an incorrect status of
system. Such erroneous status may lead the entire network to a failure in which
the system deviates from its specification and loses its intended functionality.

As we know, sensor nodes are prone to suffer various faults and attacks[1][2].
There are many different types of fault in wireless sensor networks, it is extremely
hard to design a fault tolerance technique which solves all kinds of problem. For
our parallel computing scheme, we have identified three main possible errors
during computation.

– Missing result : The master node needs to receive every single result from its
slaves to form the final result. Missing results will make the master unable
to complete the parallel computing. The missing result may due to various
faults such as battery depletion, radio interference and physical attack.

– Incorrect result : The results sent back to master node might be wrong
because of low battery level, radio interference and other internal errors of
sensor nodes. If the master node compute the final result based on incorrect
slave results, the entire encryption process will fail.

– Faulty cluster head : The cluster head plays the role of master node during
parallel computing, if the cluster head becomes faulty in the course of task
distribution and results reception, the parallel computing process has to be
aborted.

As we can notice that either of these errors may cause the parallel computing
scheme to fail. Before elaborating our fault tolerance mechanism, we will see in
the following section a few fault tolerance techniques proposed in literature.

5 Related Work

Fault tolerance techniques mainly consist of 2 actions, fault detection which aims
to detect malfunction in sensor networks, and fault recovery which recovers the
system from incorrect status [19]. The main technique is to replace the faulty
component by a new one, which is logical, since sensor network is constituted
of large number of low-cost sensors. When a sensor node becomes faulty, it is
worth nothing that we try to locate and replace it manually. The best way is to
replace it by an other node which is already deployed in the zone.

A anomaly detection method based on analysis of sensed data is presented
in [20]. We suppose sensors S = {s1, s2, . . . , sn} are connected in a hierarchical
topology. At every time interval ∆k, each sensor measures a feature vector xik,
and very vector contains attributes xik = {vikj : j = 1 . . . d}.

Two approaches are presented, in centralized way, every sensor sends its
measured vectors Xi = {xik : k = 1 . . .m} to its immediate parent, which merges
the received data with its own vectors and then send them to its parent. All
vectors are sent back step by step to the gateway node, on which a clustering
algorithm [21] is executed. Vectors belonging to a cluster are kept, the others are
discarded. The inconvenience of this approach is the big data transmission load
which may reduce the lifetime of the network. In distributed way, the clustering
algorithm is applied at every step, only necessary statistics are sent to the next
step for following analysis. The volume of data to transmit can be considerably
reduced.

An other method to identify faulty node is to launch a vote. In [22] sensors
are deployed randomly in a zone, and we suppose that every sensor has at least
3 neighbors. Sensors are considered as neighboring sensors if they’re in the radio
range of each other, and each sensor broadcasts periodically to the neighbors its
measured data which is then stored in their memory.

Sensors deployed in the same area are supposed to have similar measured
values. A sensor Si is interested in history data when more then half of its
neighbors have significantly different values. It can use ∆d∆tlij which represents
the difference between measured value of sensor Si and Sj from time tl+1 to tl.
The status of the sensor Ti is likely faulty (LF) if the measurements change over
time significantly.

The status of sensor Si is good(GD) if ∀Sj ∈ N(Si) and Tj = LG (likely
good),

∑
(1− cij)−

∑
cij ≥ d|N(Si)|/2e, where N(Si) represents all neighbors

of Si and cij is a test result generated by Si and its neighbors. cij = 0 if Si and
Sj have the same status, otherwise cij = 1.

In [23], a fault tolerant clustering mechanism is proposed for sensor networks.
Cluster heads evaluate their status and diffuse status update messages to other
cluster heads through inter-cluster communication. Faulty cluster head can be
identified by vote of all cluster heads. Once the identification is done, the network
pass to the next step, system recovery.

If a cluster head becomes faulty, all its cluster members are then divided into
smaller groups and merged with neighboring clusters. A sensor Sj belongs to
cluster head Gi if Si ∈ RSetGi ⇔ (RGi > dSj→Gi) ∧ (RSj.max > dSj→Gi) where

RSetGi
is the range set of Gi, dSj→Gi

is the distance between Gi and Sj , RGi

and RSj.max
are respectively the ranges of Gi and Sj . Once Sj is assigned to

Gi, a final set FSetGi is constructed based on minimum communication cost
between sensors and cluster head.

A cluster head can still construct a backup set, denoted BSet, containing
sensors which belong to its RSet, but not its FSet. Sj ∈ BSetGi ⇔ (Sj ∈
RSetGi) ∧ (Sj /∈ FSetGi). If the cluster head of Sj becomes faulty, it can be
recovered if it’s present in an other cluster head’s BSet.

In a landslide monitoring application presented in [24], sensors are formed
in clusters which contain a cluster head (CH) and a node leader (NL). The NL
aggregates the data collected from other members and sends it to CH, which
will then forward the data to base station via multi-hop transmission.

For fault tolerance purpose, the intersection zone of 2 overlapping clusters is
considered as a sub cluster, which contains only a NL. When a CH is failed, its
NL will send the latest aggregated data to the NL of the sub cluster, then the
data will be forwarded to the CH of the other cluster. If NL is failed, its CH will
take over its work, and a NL election algorithm will be executed at the same
time.

We can notice that in sensor networks, one sensor node is barely able to
detect system malfunction or recover the network from faulty status alone. The
idea of sensor networks is to make sensor nodes cooperate together to achieve a
common goal. For fault tolerance, sensor nodes should also work collectively for
fault detection and system recovery. We can also see that the basic method of
system recovery is to prepare a backup node which takes over the work of the
faulty node.

6 Countermeasures Against Sensor Node Failure

According to [25], fault tolerance techniques can be designed for and applied to
(from lowest to highest) hardware, system software, middleware and application
layers. Generally speaking, techniques designed for lower layer, such as hardware
layer, are more generic, which means they can usually be applied to different
applications. However higher layer techniques are more application-specific, a
fault tolerance method is designed specially for a particular application, and it
can hardly be used in other applications.

Certainly, fault tolerance methods for application layer are not as portable
as the other ones designed for lower layers, but they can be carefully tailored to
meet the specific needs of applications. For our parallel computing scheme, we
have decided to design and deploy our fault tolerance technique on application
layer.

Our fault tolerance method is also based on the idea of backup nodes. Suppose
that there are n available members in a cluster, and the cluster head CH needs
to perform a parallel scalar multiplication. Instead of involve all available cluster
members in parallel computing, we use only bn2 cmembers for parallel computing,
the rest of cluster members are used as backup nodes. If the probability of a

member is faulty is p, which also means the probability that a parallel scalar
multiplication fails. The use of backup node can reduce the probability of system
failure to p/2.

The selection of slaves nodes and of backup nodes is driven by algorithm 1
where La is the list of all available cluster members, Ls and Lb are respectively
2 lists of selected slave nodes and backup nodes.

Algorithm 1: Algorithm of backup selection

Data: La

Result: Ls, Lb

Sort(La);
forall the ϕ ∈ La do

ω ← getBackup(ϕ);
La ← La − ϕ;
La ← La − ω;
Ls ← Ls + ϕ;
Lb ← Lb + ω;

end

Before node selection, we sort La by the number of its available neighbors
in ascending order, since we want the ϕ having the least neighbors to choose
its backup node first. getBackup() is a function which returns the most suitable
backup node for ϕ. Every ϕ is evaluated by multiple parameters, such as RSSI,
remaining energy, distance to ϕ. We always choose a backup node having the
most reliable connection.

As we have explained in our last paper [12], to avoid large radio communi-
cation overhead, the number of slave nodes participating in parallel computing
should be limited at less than 5. Thus the possibility for performing fault tol-
erant parallel scalar multiplication depends on the number of available cluster
members, denoted by n :

– n ∈ [0, 1]: Unable to perform fault tolerant parallel computing.
– n ∈]1, 8[: Parallel computing using bn2 c slaves and bn2 c backup nodes.
– n ∈ [8,∞]: Parallel computing using 4 slaves and 4 backup nodes.

6.1 Result detection

To deal with the missing result error, we ask the backup node to prepare an
other copy of result for the slave that it’s monitoring. We can see in figure 2
that tasks are sent not only to slave nodes, but also to backup nodes. Both slave
node and backup node have the same task. After computation, if a backup node
detects that the slave node doesn’t send result back to master node, it will send
its local copy instead of the slave.

Cluster Member Cluster Head

Slave Backup

1: Data

2: Call for Parallel Computing

3: Availability

4: Tasks

5: Results

Node Selection

Computation

Error

Computation

Fig. 2. Parallel scalar multiplication with result detection

Suppose that all cluster members have the same distance to their cluster
head. The energy cost of wireless transmission is a function of message size m and
distance d, ETx = e(m, d), and the energy cost of reception is a constant ERx . We
may notice that the parallel scalar multiplication with result detection doesn’t
consume more energy than the original parallel computing scheme. However, the
fault tolerant version takes a little more time, since backup nodes have to wait
a small period before sending its result.

6.2 Result verification

For incorrect result error, the slave node does send result back to its master,
but an incorrect one. Just like the case of missing result, both slave node and
backup node have the same task.

Backup node is supposed to verify the result sent by the slave node. When
slave node sends its result, as the backup node is in its radio range, it can also
receive the result. Backup node compares the result with its local one. If the
results are different, the backup node will send immediately a warning message
to their master node so that the result is discarded, and the task in question will
be repeated locally by the master node.

When no fault occurs, the system consumes almost the same energy and time
than the original version. But when some slave nodes become faulty, the energy
and time cost is proportional to the number of faulty nodes.

For the third case, when cluster head is faulty, the system has to execute a
cluster head election algorithm such as the one described in [26].

Cluster Member Cluster Head

Slave Backup

1: Data

2: Call for Parallel Computing

3: Availability

4: Tasks

5: Results

Warning

Node Selection

Computation

6: Repeat computation

Computation Computation

Fig. 3. Parallel scalar multiplication with result verification

7 Simulation and Performance Evaluation

To assess the performance of our method, we have created a simulator in Java
which estimates the running time and the energy cost of our fault tolerant par-
allel computing scheme.

The simulator creates a random sensor cluster in an ideal free space without
obstacle, and asks the cluster members to perform parallel scalar multiplications.
We suppose that the cluster uses a TDMA based MAC protocol which allows
only one sensor to send data at a time. Moreover, all nodes share the same elliptic
curve which is defined over a finite prime field and uses NIST192 recommended
parameters [16]

We also suppose that the sensor nodes communicate with each other using
Zigbee protocol whose throughput is studied in [27]. As in sensor networks, most
of the energy is consumed during wireless communication, only the energy cost
of radio communication is taken into account, and the formula for energy cost
estimation is presented in [26] and [28]. In addition, the running time of scalar
multiplication is estimated based on the results published in our last paper [12].

The simulator mainly focus on the execution of our parallel computing pro-
tocol. Our goal is not to retrieve the precise values of the running time and the
energy cost, but to illustrate the impact of our fault tolerance method on the
parallel computing scheme. Tests are run is three different cases:

– There are just enough nodes for parallel computing without fault tolerance,
but not enough to have a backup node for each slave participating in com-
putation.

– There are enough nodes for parallel computing with the proposed fault tol-
erance mechanism activated.

– There are enough nodes for fault tolerant parallel computing, but faults
occur during the computation.

In our last paper, we have concluded that for efficiency reasons, the maximum
number of slaves participating in computation should be limited at 4. We define
that n is the number of available cluster members, and the tables 1 and 2 contain
the simulation results of the first case where n ≤ 4.

Nb of cluster members Running time (ms) Energy cost (mJ)

0 2308.77 0.06639066
1 1158.88 0.17869498
2 777.75 0.27243610
3 588.81 0.34194090
4 476.75 0.41024986

Table 1. Performance of the parallel computing scheme (n ≤ 4)

Nb of cluster members Running time (ms) Energy cost (mJ)

0 2308.70 0.06639066
1 2308.77 0.06639066
2 1159.01 0.16637882
3 1159.01 0.16637882
4 778.01 0.24765018

Table 2. Performance of the fault tolerant parallel computing scheme (n ≤ 4)

The results are also graphically illustrated in figures 4. As the node usage
is doubled when our fault tolerance method is applied, so on the one hand,
only bn/2c nodes can participate in parallel computing and it takes more time
to finish the tasks, on the other hand backup nodes don’t need to communicate
with the cluster head when no fault occurs, the cluster can consumes less energy.

Fig. 4. Running time (ms) and energy cost (mJ) (n ≤ 4)

In the second case where n ≤ 8 which means the cluster head always has
enough slaves to perform parallel scalar multiplication no matter if our fault
tolerance method is used.

Nb of slaves Running time (ms) Energy cost (mJ)

0 2308.70 0.06639066
1 1159.01 0.16637882
2 778.01 0.24765018
3 589.20 0.34410666
4 477.27 0.43921370

Table 3. Performance of the fault tolerant parallel computing scheme (n ≤ 8)

As we can see in table 3 and in figure 5, when our fault tolerance method
is used, the cluster needs slightly more time to complete the computation, since
more nodes are involved in parallel computing, and backup nodes also need to
receive tasks from cluster head during task distribution. The total energy cost
increases gradually with increase in number of slaves. The difference of energy
cost between the tests with and without fault tolerance is mainly due to the
randomness of node deployment.

Fig. 5. Running time (ms) and energy consumption (mJ) (n ≤ 8)

For the 3rd test, we suppose that we may use up to 4 slaves to perform
parallel computing, and each slave has a backup node. Some slaves don’t function
properly during the computation, in this case, backup nodes are supposed to
detect the fault and try to recover the computation.

When a backup node detects an erroneous result, it has to send a warning
to the cluster head, and the latter will redo the faulty slave’s task locally. Thus
compared with results without faulty node, we can see in table 4 and figure 6
that the cluster needs more time and energy to finish the computation. The total
energy cost increases slightly when more slaves become faulty, since more backup
nodes need to warn the cluster head. However as the size of warning message is
relatively smaller, the energy cost doesn’t increase very fast, its value remains
between 0.44mJ and 0.45mJ .

A backup node is also supposed to send result back to cluster head when
the slave that it’s monitoring doesn’t respond at all. However we can notice in
table 5 that the running time doesn’t increase when more slaves become faulty,
since all backup nodes monitor the behavior of slaves and react simultaneously.

Nb of faulty slaves Running time (ms) Energy cost (mJ)

0 477.27 0.43921370
1 938.86 0.44161946
2 1400.44 0.44564062
3 1862.03 0.44965998
4 2323.61 0.45207022

Table 4. Performance of the fault tolerance method when erroneous result occurs

Fig. 6. Performance of the fault tolerance method when erroneous result occurs

Nb of faulty slaves Running time (ms) Energy cost (mJ)
0 477.27 0.43921370
1 517.27 0.43859930
2 517.27 0.47736890
3 517.27 0.49638458
4 517.27 0.47632058

Table 5. Performance of the fault tolerance method when missing result occurs

The irregularity of energy cost in figure 7 is due to the random deployment
of sensor nodes. In our power model, the energy consumption is proportional to
the distance of wireless communication.

8 Conclusion

In this paper we have proposed parallel computing scheme to accelerate the
scalar multiplication on elliptic curves, we have also designed a fault tolerance
mechanism which can significantly improve the reliability of the system. We have
tested our method by using a simulator, and the results show a considerable
acceleration of computation. Even in case of anomaly, such as sensor failure and
incorrect result, the system is still able to detect the error and recover the system
from errors. In addition, when no fault occurs, this fault tolerance mechanism
doesn’t have serious negative impact in term of running time and energy cost.
The only drawback of the parallel computing scheme is the energy consumption
since nodes have to communicate with each other for task distribution and result
retrieval. Thus it shouldn’t be used as the default computation scheme in wireless
sensor networks. it can only be used in cases where running time is the most
critical factor, like in disaster monitoring and military applications.

Fig. 7. Performance of the fault tolerance method when missing result occurs

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer networks 38(4) (2002) 393–422

2. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer
networks 52(12) (2008) 2292–2330

3. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh,
M.: Deploying a wireless sensor network on an active volcano. Internet Computing,
IEEE 10(2) (2006) 18–25

4. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.:
Wireless sensor networks for structural health monitoring. In: Proceedings of the
4th international conference on Embedded networked sensor systems, ACM (2006)
427–428

5. Baker, C.R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N.,
Der Minassians, A., Dervisoglu, G., Gutnik, L., Haick, M.B., et al.: Wireless sen-
sor networks for home health care. In: Advanced Information Networking and
Applications Workshops, 2007, AINAW’07. 21st International Conference on. Vol-
ume 2., IEEE (2007) 832–837

6. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: An ad hoc sensor
network infrastructure for emergency medical care. In: International workshop on
wearable and implantable body sensor networks. Volume 5. (2004)

7. Gosnell, T., Hall, J., Jam, C., Knapp, D., Koenig, Z., Luke, S., Pohl, B., Schach von
Wittenau, A., Wolford, J.: Gamma-ray identification of nuclear weapon materials.
Technical report, Lawrence Livermore National Lab., Livermore, CA (US) (1997)

8. Walters, J.P., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security:
A survey. Security in distributed, grid, mobile, and pervasive computing 1 (2007)
367

9. Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: a survey. Com-
munications Surveys & Tutorials, IEEE 10(3) (2008) 6–28

10. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2) (1978) 120–126

11. Gordon, D.M.: A survey of fast exponentiation methods. Journal of algorithms
27(1) (1998) 129–146

12. Shou, Y., Guyennet, H., Lehsaini, M.: Parallel scalar multiplication on elliptic
curves in wireless sensor networks. In: Distributed Computing and Networking.
Springer (2013) 300–314

13. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of computation 48(177)
(1987) 203–209

14. Miller, V.: Use of elliptic curves in cryptography. In: Advances in Cryptology -
CRYPTO’85 Proceedings, Springer (1986) 417–426

15. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: Cryptographic hardware and embedded
systems–CHES 2004: 6th international workshop, Cambridge, MA, USA, August
11-13, 2004: proceedings. Volume 6., Springer-Verlag New York Inc (2004) 119

16. Hankerson, D., Vanstone, S., Menezes, A.: Guide to elliptic curve cryptography.
Springer-Verlag New York Inc (2004)

17. Diffie, W., Hellman, M.: New directions in cryptography. Information Theory,
IEEE Transactions on 22(6) (1976) 644–654

18. Lim, C., Lee, P.: More flexible exponentiation with precomputation. In: Advances
in Cryptology - CRYPTO’94, Springer (1994) 95–107

19. Mishra, S., Jena, L., Pradhan, A.: Fault tolerance in wireless sensor networks.
International Journal 2(10) (2012) 146–153

20. Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.C.: Distributed anomaly
detection in wireless sensor networks. In: Communication systems, 2006. ICCS
2006. 10th IEEE Singapore International Conference on, IEEE (2006) 1–5

21. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework
for unsupervised anomaly detection. In: Applications of data mining in computer
security. Springer (2002) 77–101

22. Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor
networks. In: Proceedings of the 2006 workshop on Dependability issues in wireless
ad hoc networks and sensor networks, ACM (2006) 65–72

23. Gupta, G., Younis, M.: Fault-tolerant clustering of wireless sensor networks. In:
Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE. Vol-
ume 3., IEEE (2003) 1579–1584

24. Raj, R., Ramesh, M.V., Kumar, S.: Fault tolerant clustering approaches in wireless
sensor network for landslide area monitoring. In: Proceedings of the 2008 Interna-
tional Conference on Wireless Networks (ICWN 08). Volume 1. (2008) 107–113

25. Koushanfar, F., Potkonjak, M., Sangiovanni-vincentelli, A.: Fault tolerance in
wireless sensor networks. In: Handbook of Sensor Networks: Compact Wireless
and Wired Sensing Systems. (2004)

26. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: System Sciences, 2000.
Proceedings of the 33rd Annual Hawaii International Conference on, IEEE (2000)
10–pp

27. Burchfield, T.R., Venkatesan, S., Weiner, D.: Maximizing throughput in zigbee
wireless networks through analysis, simulations and implementations. In: Pro-
ceedings of the International Workshop on Localized Algorithms and Protocols for
Wireless Sensor Networks Santa Fe, New Mexico, Citeseer (2007) 15–29

28. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., et al.: An application-
specific protocol architecture for wireless microsensor networks. IEEE Transactions
on wireless communications 1(4) (2002) 660–670

