
Stabilizing Dining with Failure Locality 1

Hyun Chul Chung1,? , Srikanth Sastry2,?? , and Jennifer L. Welch1,?

1 Texas A&M University, Department of Computer Science & Engineering
{h0c8412,welch}@cse.tamu.edu

2 CSAIL, MIT
sastry@csail.mit.edu

Abstract. The dining philosophers problem, or simply dining, is a fun-
damental distributed resource allocation problem. We propose two al-
gorithms for solving stabilizing dining with failure locality 1 in asyn-
chronous shared-memory systems with regular registers. Since this prob-
lem cannot be solved in pure asynchrony, we augment the shared-memory
system with failure detectors. Specifically, we introduce the local anony-
mous eventually perfect failure detector ?3P1, and show that this failure
detector is sufficient to solve the problem at hand.

1 Introduction

The dining philosophers problem [1, 2], or simply dining, is a fundamental dis-
tributed resource allocation problem, in which each process repeatedly needs
simultaneous exclusive access to a set of shared resources in order to enter a spe-
cial part of its code, called the critical section. The sharing pattern is described
by an arbitrary “conflict” graph, each edge of which corresponds to a resource
shared by the two processes corresponding to the endpoints of the edge.

In large scale and long-lived systems, the likelihood of some process failing at
some point is high, thus sparking interest in crash fault-tolerant dining. The ideal
case would be for the algorithm to isolate each crashed process such that it does
not impact any other correct processes in the system. If the ideal case cannot
be achieved, restricting the impact of the crash failure to a local neighborhood
would still be desirable. Failure locality [3, 4] is a metric that realizes this concept;
it is the maximum distance in the conflict graph between a crashed process and
any other process that is blocked from entering its critical section.

In addition to crash failures, we take into account the presence of transient
failures. Transient failures correspond to unexpected corruptions to the system

? The work of Hyun Chul Chung and Jennifer L. Welch was supported in part by NSF
grant 0964696.

?? The work of Srikanth Sastry was supported in part by NSF Award Numbers CCF-
0726514, CCF-0937274, and CNS-1035199, and AFOSR Award Number FA9550-
08-1-0159. His work was also partially supported by Center for Science of Informa-
tion (CSoI), an NSF Science and Technology Center, under grant agreement CCF-
0939370.

state; the system can be in an arbitrary state after a transient failure occurs.
Algorithms tolerant of transient failures are also known as stabilizing algorithms.

In this paper, we consider stabilizing failure-locality-1 dining where we re-
quire that (1) eventually, no two neighbors in the conflict graph enter their
corresponding critical sections simultaneously, and (2) each correct process that
is trying to enter its critical section eventually does so if it is at least two hops
away from any other crashed process in the conflict graph.

We consider an asynchronous shared-memory system where processes com-
municate through read/write operations on shared regular registers. Regularity
states that each read operation returns the value of some overlapping write op-
eration or of the latest preceding write operation.

Choy and Singh [4] showed that any asynchronous algorithm that solves
dining must have failure locality at least 2.3 This implies that failure-locality-1
dining cannot be solved in pure asynchrony. To circumvent this lower bound,
we augment the system with failure detectors [5], system services that provide
information about process crashes that need not always be correct. Specifically,
we introduce the local anonymous eventually perfect failure detector ?3P1 and
show that this failure detector is sufficient to solve the problem at hand.

We propose two algorithms that solve stabilizing failure-locality-1 dining.
The first algorithm is inspired by the Hierarchical Resource Allocation (HRA)
algorithm [6] and the second algorithm is inspired by the Asynchronous Door-
way (ADW) algorithm [3]. Both algorithms utilize stabilizing mutual exclusion
subroutines which can be implemented using regular registers (e.g., Dijkstra’s
stabilizing token circulation algorithm using regular registers [7]). By presenting
two algorithms, we observe that there exists multiple methods to solve stabiliz-
ing failure-locality-1 dining. This follows the case of solving the original dining
philosophers problem: the HRA, ADW, and Hygienic algorithm presented in [2],
[3], and [8], respectively, constitute the three major methodologies in solving the
original dining philosophers problem.4

Dining algorithms that consider both crash fault tolerance and stabilization
are presented in [10–12]. The dining algorithms in [10, 11] achieve failure locality
2. A wait-free (failure-locality-0) dining algorithm is presented in [12] which
utilizes the 3P failure detector.5 We fill in the gap between wait-freedom and
failure-locality-2 by presenting two failure-locality-1 stabilizing dining algorithms
that utilize ?3P1. The ?3P1 failure detector can be implemented using 3P in
asynchronous systems. This means that ?3P1 is at most as powerful as 3P.

Our Contribution: We present the problem specification for stabilizing
failure-locality-1 dining. This specification is the first to consider both failure

3 Although the failure-locality-2 lower bound in [4] is proved for asynchronous message-
passing systems, it also applies to asynchronous shared-memory systems.

4 Notice that we did not include the Hygienic approach into our stabilizing failure-
locality-1 dining agenda. The Hygienic-based crash fault-tolerant dining algorithms
that we are aware of (e.g., [9]) use unbounded memory which is problematic for
stabilizing algorithms.

5 3P satisfies the following: eventually, (1) every crashed process is suspected by every
correct process, and (2) no correct process is suspected by any correct process.

locality 1 and stabilization. We present the first two stabilizing failure-locality-1
dining algorithms in asynchronous shared-memory systems using failure detec-
tors along with regular registers. The proposed algorithms are modular in the
sense that they utilize stabilizing mutual exclusion subroutines.

2 System Model and Problem Definition

We consider a system that contains a set Π of n (dining) processes, where each
process is a state machine. Each process has a unique incorruptible ID and is
known to all the processes in the system. For convenience, we assume that the
IDs form the set {0, . . . , n−1}; we refer to a process and its ID interchangeably.
There is an undirected graph G with vertex set Π, called the (dining) conflict
graph. If {i, j} is an edge of G, then we say that i and j are neighbors.

The state of a process i is modeled with a set of local variables. Each process
i has a local variable diningStatei through which it communicates with the user
of the dining philosophers algorithm. The user sets diningStatei to “hungry” to
indicate that it needs exclusive access to the set of resources for i. Sometime
later, the process should set diningStatei to “eating”, which is observed by the
user. While diningStatei is “eating”, the user accesses its critical section. When
the user is through eating, it sets diningStatei to “exiting” to tell i that it can
do some cleaning up, after which i should set diningStatei to “thinking”. This
sequence of updates to diningStatei can then repeat cyclically.

Process i has another local variable ?3P1
i through which it communicates

with the failure detector ?3P1. This variable is set to true or false at appropriate
times by the failure detector and is read (but never set) by process i. The be-
havior of ?3P1 is that after some time, ?3P1

i is always false if i has no crashed
neighbors and is always true if i has at least one crashed neighbor.

The processes have access to a set of shared single-writer single-reader (SWSR)
registers that satisfy the consistency condition of regularity, through which they
can communicate. Reads and writes on such registers are not instantaneous.
Each operation is invoked at some time and provides a response later. Regular-
ity means that each read returns the value of some overlapping write or of the
latest preceding write. If there is no preceding write, then any value can be re-
turned. When a process invokes an operation on a shared register, it blocks until
receiving the response. For each process, invocations and responses occur in pairs
(invocation first, response second) unless the process crashes after an invocation
but before receiving a response. This implies that each operation response must
be preceded by an invocation for that operation.6

Certain subsets of processes synchronize among themselves using mutual ex-
clusion modules (i.e., subroutines). For any mutual exclusion module X, the
participants in X are all neighbors of each other in the dining conflict graph.

6 For each process i, invocations/responses occurring in pairs prevent i from being in a
state in which, after a transient fault occurs, i is waiting for a response without having
a preceding invocation to a register. This is a common assumption for stabilizing
algorithms that involve read/write operations on shared registers. (e.g., [7, 13, 14])

For each mutual exclusion module X in which it participates, (dining) pro-
cess i has a local variable X.mutexi. Process i, at an appropriate time, sets
X.mutexi to “trying” when it needs access to the corresponding critical section.
Subsequently, the mutual exclusion module should set X.mutexi to “critical”.
When i no longer needs the critical section for X, i sets X.mutexi to “exiting”,
and at some later point the module X should set the variable to “remainder”.
This sequence of updates to X.mutexi can then repeat cyclically. Note that such
stabilizing mutual exclusion algorithms exist considering asynchronous shared-
memory systems with regular registers (e.g. a variation of Dijkstra’s stabilizing
token circulation algorithm using regular registers in [7]). This implies that, by
assuming that processes have access to mutual exclusion modules, we are not as-
suming anything more than asynchronous shared-memory systems with regular
registers.

Correctness condition: Our task is to design a distributed algorithm for
the (dining) processes in Π such that every execution has a suffix in which the
following four properties hold:

– Well-formedness: For all i ∈ Π, diningStatei is set to “eating” only if the
current value is “hungry”, and diningStatei is set to “thinking” only if the
current value is “exiting”.

– Finite Exiting: For each correct i ∈ Π, diningStatei is not forever “exiting”.
– Exclusion: If i and j are both correct and are neighbors, then diningStatei

and diningStatej are not both equal to “eating” in any system state.
– FL-1 Liveness: If i ∈ Π is correct and all its neighbors are correct, then if

diningStatei is “hungry” in some state, there is a later system state in which
diningStatei is “eating”.

Here is an explanation for how our pseudocode maps to this model of ex-
ecutions. Pseudocode is presented as a set of guarded commands.7 If a guard
is continuously true, then eventually the corresponding command is executed.
Each command includes at most one shared register operation. If a command in-
cludes a shared register operation, then this is actually two instantaneous steps:
the first step ends with the invocation of the operation, and the second step be-
gins with the response of the operation. If a command does not include a shared
register operation, then it corresponds to a single instantaneous step.

For the complete system model and problem specification, see [15].

3 HRA-Based Stabilizing Dining

In this section, we use multiple mutual exclusion modules described in Section
2 to construct a stabilizing failure-locality-1 dining algorithm. The algorithm is
inspired by the hierarchical resource allocation (HRA) algorithm from [6]. The
complete algorithm description and the correctness proof can be found in [15].

7 Guarded commands have the following format: {guard} → command. For each
guarded command of process i, the guard is a predicate on i’s state and the command
is a block of code; the command is executed only if the guard is true.

Algorithm 1 HRA-based stabilizing FL-1 dining algorithm; code for process i

〈 Variables 〉

1: local variable diningStatei ∈ {thinking, hungry, eating, exiting};
2: local variable ?3P1

i ∈ {T, F};
3: ∀Rx ∈ Ci : local variable Mx.mutexi ∈ {remainder, trying, critical, exiting};

〈 Program Actions 〉

4: {(diningStatei = thinking) ∨ (diningStatei = exiting)∨ Action D.1
(badSuffix(Ci) ∨ ((diningStatei 6= eating) ∧ (?3P1

i))} →
5: for all Rx ∈ Ci do
6: if Mx.mutexi = critical then
7: Mx.mutexi ← exiting;
8: if ¬?3P1

i then
9: diningStatei ← thinking;

10: {(diningStatei = hungry) ∧ (csPrefix(Ci) 6= Ci)∧ Action D.2
(¬?3P1

i) ∧ (¬badSuffix(Ci))} →
11: Rx ← currentMutex(Ci);
12: if Mx.mutexi = remainder then
13: Mx.mutexi ← trying;

14: {(diningStatei = hungry) ∧ (csPrefix(Ci) = Ci))} → Action D.3
15: diningStatei ← eating;

Let G = (Π,E) be the conflict graph. Let R be the set of maximal cliques in
G. Let |R| be k. For convenience, let R = {Rx|x ∈ N+ ∧ 0 < x ≤ k}. We assume
a total order on the cliques such that Rx is ordered before Ry iff x < y. For
each clique Rx, let Πx denote the set of processes (diners) in Rx. Each clique
Rx ∈ R represents a subset of resources to be accessed in isolation by diners in
Πx. Consequently, for each clique Rx, we associate a stabilizing mutual exclusion
module Mx, and the participants in Mx constitute the set Πx.

For each diner i, let Ci denote the set of all cliques Rx such that i ∈ Πx;
that is, diner i contends for exclusive access to all the resources associated with
cliques in Ci. Each diner i has access to variable Mx.mutexi, for each Rx ∈ Ci.

The pseudocode of the actions is given in Algorithm 1. The pseudocode is
self-explanatory using the definitions of the following three functions.

Three functions: For each diner i, for each Rx ∈ Ci, we introduce three
functions csPrefix, currentMutex, and badSuffix which are functions of a
process’s state and are used in specifying the guards for the three actions.

Sequence Ci. Let Ci denote the sequence over all the cliques from Ci such
that a clique Rx precedes a clique Ry in Ci iff x < y.

Functions csPrefix and currentMutex. The function csPrefix(Ci) returns
the longest prefix of Ci such that, for each cliqueRx in csPrefix(Ci),Mx.mutexi =
critical (i is in the critical section of Mx). The function currentMutex(Ci) re-
turns the first clique following csPrefix(Ci) in Ci, if such a resource exists;
otherwise, it returns ⊥.

Function badSuffix. The boolean function badSuffix(Ci) is T if and only if
there exists some clique Rx in the suffix of Ci following currentMutex(Ci) such
that (Mx.mutexi = trying) ∨ (Mx.mutexi = critical) (i is either trying or in
the critical section of Mx).

4 ADW-Based Stabilizing Dining

We have also designed a stabilizing failure-locality-1 dining algorithm that is
inspired by the asynchronous doorway (ADW) algorithm [3]. In the original
ADW algorithm, each process shares a single token called a fork with each of
its neighbors. For a hungry process i to eat, it must first enter the doorway
by obtaining permission from all of its neighbors through a ping-ack protocol.
Only after i enters the doorway, it requests for the missing forks. Also, while
i is inside the doorway, i does not give its neighbors permissions to enter the
doorway. The hungry process i can start to eat if it is both inside the doorway
and holds all forks shared between itself and its neighbors. After eating, i satisfies
all deferred requests and exits the doorway. In our algorithm, we simulate the
ping-ack protocol using two mutual exclusion modules per neighboring processes
and the fork activities using one mutual exclusion module and two SWSR regular
registers per neighboring processes. The complete algorithm and its correctness
proof can be found in [15].

References

1. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica
1(2) (1971) 115–138

2. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In: Proc.
of 12th ACM Symposium on Theory of Computing (1980) 70–81

3. Choy, M., Singh, A.K.: Efficient fault-tolerant algorithms for distributed resource
allocation. ACM TOPLAS. 17(3) (1995) 535–559

4. Choy, M., Singh, A.K.: Localizing failures in distributed synchronization. IEEE
Trans. Parall. Distrib. Syst. 7(7) (1996) 705–716

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

6. Lynch, N.A.: Upper bounds for static resource allocation in a distributed system.
Journal of Computer and System Sciences 23(2) (Oct 1981) 254–278

7. Dolev, S., Herman, T.: Dijkstras self-stabilizing algorithm in unsupportive envi-
ronments. In: Workshop on Self-Stabilizing Systems. (2001) 67–81

8. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM TOPLAS 6(4)
(1984) 632–646

9. Pike, S.M., Song, Y., Sastry, S.: Wait-free dining under eventual weak exclusion.
In: Proc. of 9th ICDCN. (2008) 135–146

10. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proc. of
21st IEEE SRDS. (2002) 22–29

11. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes.
In: Proc. of 22nd IEEE ICDCS. (2002) 172–179

12. Sastry, S., Welch, J.L., Widder, J.: Wait-free stabilizing dining using regular reg-
isters. In: Proc. of 16th OPODIS. (2012) 284–299

13. Hoepman, J.H., Papatriantafilou, M., Tsigas, P.: Self-stabilization of wait-free
shared memory objects. J. Parall. & Distribut. Comput. 62(5) (2002) 818–842

14. Johnen, C., Higham, L.: Fault-tolerant implementations of regular registers by safe
registers with applications to networks. In: Proc. of 10th ICDCN. (2009) 337–348

15. Chung, H.C., Sastry, S., Welch, J.L.: Stabilizing dining with failure locality 1. Dept.
of Comput. Sci. & Eng., Texas A&M Univ. Technical Report 2013-10-1 (2013)

