Partial Information Network Queries™

Ron Y. Pinter, Hadas Shachnai, Meirav Zehavi*

Department of Computer Science, Technion - Israel Institute of Technology, Haifa 32000,
Israel

Abstract

We study the Partial Information Network Query (PINQ) problem, which gen-
eralizes two problems that often arise in bioinformatics: the Alignment Network
Query (ANQ) problem and the Topology-Free Network Query (TFNQ) prob-
lem. In both ANQ and TFNQ we have a pattern P and a graph H, and we
seek a subgraph of H that resembles P. ANQ requires knowing the topology of
P, while TFNQ ignores it. PINQ fits the scenario where partial information is
available on the topology of P. Our main result is a parameterized algorithm
that handles inputs for PINQ in which P is a set of trees. This algorithm sig-
nificantly improves the best known O* running time in solving TFNQ. We also
improve the best known O* running times in solving two special cases of ANQ.

Keywords: parameterized algorithm, pattern matching, partial information
network query, alignment network query, topology-free network query

1. Introduction

Algorithms for the Alignment Network Query (ANQ) and Topology-Free Net-
work Query (TFNQ) problems provide means to study the function and evo-
lution of biological networks. Given a pattern P and a host graph H, these
queries seek a subgraph of H that resembles P. Today, with the increasing
amount of information we have on biological networks, ANQ and TFNQ are
becoming widely spread (see, e.g., [2] and [3]). We note that similar queries for
sequences have been studied and used extensively in the past four decades [4].

TEFNQ, also known as Graph Motif, requires only the connectivity of the
solution, while ANQ requires resemblance between the topology of P and the
solution. A user having partial information on the topology of P can either

* A preliminary version of this paper appeared in the proceedings of the 24" International
Workshop on Combinatorial Algorithms (IWOCA’13) [1].
Abbreviations: Partial Information Network Query (PINQ), Alignment Network Query
(ANQ), Topology-Free Network Query (TFNQ).
*Corresponding author.
Email addresses: pinter@cs.technion.ac.il (Ron Y. Pinter),
hadas@cs.technion.ac.il (Hadas Shachnai), meizeh@cs.technion.ac.il (Meirav Zehavi)

run an alignment network query for each possible topology for P, given this
partial information, or run a topology-free network query. The first method is
inefficient, while the second may output undesirable results that contradict the
partial information on P. We present a generalization of ANQ and TFNQ), that
we call the Partial Information Network Query (PINQ) problem, which fits the
scenario where only partial information is available on P.

Parameterized algorithms are an approach to solve NP-hard problems by
confining the combinatorial explosion to a parameter k. More precisely, a prob-
lem is fized-parameter tractable (FPT) with respect to a parameter k if an
instance of size n can be solved in time O*(f(k)) for some function f [5].!

In this paper we present parameterized algorithms for NP-hard special cases

of PINQ. In particular, we significantly improve the best known O* running
time in solving TFNQ.
Notation: Given a graph G, let V(G) and E(G) denote its node set and
edge set, respectively. Given U C V(G), let G[U] denote the subgraph of G
induced by U. Given a node v, let I(v) and N(v) denote its label and neighbor
set, respectively. Given a set of tuples A, i € N and an element e, let A[(%, ¢)]
denote the set of tuples in A such that e appears in their i*" position.

1.1. Problem Statement

Roughly speaking, given a graph H and a set of graphs P, PINQ asks if
H has a connected subgraph that can be partitioned into subgraphs, such that
each resembles a different graph in P.

Formally, the input for PINQ consists of

e L - A set of labels.

e A:LxL— {—00}UR - A label-to-label similarity score table.
e P - A set of labeled graphs Py, Ps, ..., P;.

e How: E(H)— R - An edge-weighted labeled graph.

e W € R - A minimum score (for a solution).

A solution consists of a connected subgraph S of H, a partition of V' (5) into
the subsets {V4,...,V{}, and an isomorphism m; between S[VE] and P;, for all
1 <i <t, such that

i Zlgigt Zuevsi A(l(v),1(my(v))) + ZeEE(S) w(e) = W.
e Any cycle in S is completely contained in S[V{], for some 1 <4 < ¢.2
Let V(P) = U <;<; V(£i), and k = [V(P)|.
Special Cases of PINQ: We note that ANQ is the special case where t = 1,

and all the edge-weights are 0. Moreover, TFNQ is the special case where t = k,
and A(l,1") € {—00,0} for all I,1' € L.

1O* hides factors polynomial in the input size.
2We thus avoid solving a generalization of the Clique problem, which is W[1]-hard [6].

’ Reference \ Running Time \ Method ‘

Guillemot et al. [20] O*(4FW?) multilinear detection [21]
Pinter et al. [11] O*(2FW) narrow sieves [22]
Bruckner et al. [19] O* (k!3F) color coding [12]
This paper 0*(20.25K+0 e k) randomized
divide-and-conquer [23]

Table 1: Parameterized algorithms for (weighted) TFNQ. The first two algorithms require
W and the edge-weights to be nonnegative integers, and their running times depend on the
numeric value of W.

1.2. Prior Work

The Alignment Network Query Problem: ANQ is NP-hard even if the
single graph in P is a path, since this case generalizes the Hamiltonian path
problem [7].

Pinter et al. [8] gave a polynomial time algorithm that handles inputs for
ANQ in which both P; and H are trees. This algorithm was used to perform
inter-species and intra-species alignments of metabolic pathways [9], and a path-
way evolution study [10]. Moreover, it was recently extended to handle a certain
family of DAGs [11].

Another approach, based on color coding [12], enables H to be a general
graph, and provides parameterized algorithms with parameter k. This approach
is used by QPath [13] to perform simple path queries in time O*(5.437%). QNet
[14] extends QPath by allowing P; to be a graph whose treewidth ¢tw is bounded.
Its running time is O*(8.155% |V (H)|**+1). PADA1 [15] is an alternative to QNet
that bounds the size fvs of the feedback vertex set of P; instead of its treewidth.
Its running time is O*(8.155% |V (H)|/*). Hiiffner et al. [16] reduced the running
time of QPath to O*(4.314%). All of these algorithms are randomized.

We note that there are several problems related to ANQ that have applica-
tions in bioinformatics, and refer the reader to the surveys [2, 17] for the precise
details.

The Topology-Free Network Query Problem: Unweighted TFNQ (i.e.,
TFNQ restricted to inputs in which all the edge-weights are 0) was introduced
by Lacroix et al. [18], and TFNQ was introduced by Bruckner et al. [19].
Lacroix et al. [18] proved that unweighted TFNQ is NP-hard even if H is a
tree. On the positive side, TFNQ, when parameterized by k, is in FPT [19].

In recent years, many papers investigated the parameterized complexity of
unweighted TFNQ and other closely related problems (see [24, 25, 26, 27, 28,
19, 29, 30, 31, 20, 32, 11]); yet, prior to this paper, the algorithm of best
O™ running time for TFNQ that does not depend on the numeric value of W
remained that of Bruckner et al. [19], running in time O*(k!3%). Table 1 presents
known parameterized algorithms for (weighted) TFNQ. All of the algorithms are
randomized.

1.8. Our Contribution

Our first algorithm, ANQ-Alg, handles inputs for PINQ in which H is a
general graph and P is a set consisting of a single tree. ANQ-Alg runs in time
O*(6.75%), which improves the O* running times of QNet and PADA1 for inputs
where Pj is a tree. For the special case in which P is a path, ANQ-Alg runs in
time O*(4%), which further improves the O* running time of QPath. ANQ-Alg
is based on the randomized divide-and-conquer method [23].

Our main result is the second algorithm, PINQ-Alg, which builds on ANQ-Alg.
PINQ-Alg handles inputs for PINQ in which H is a general graph and P is a set
of trees. It runs in time O*(6.75’“+O(1°gz k)3t). In particular, it solves TFNQ in
time O*(20.25’“+O(1°g2 k)) (since then t = k), which significantly improves the
previous best O*(k!3%) running time of Bruckner et al. [19].

2. An Algorithm for ANQ

We start by presenting an algorithm, that we call ANQ-Alg, for the special
case of PINQ where P is a set consisting of a single tree (i.e., t = 1 and Py is
a tree). In Section 2.1, we give an overview of ANQ-Alg. Section 2.2 includes
some definitions required for the pseudocode of ANQ-Alg (given in Section 2.3).
Finally, in Section 2.4, we prove the correctness and analyze the running time
of ANQ-Alg.

2.1. Owverview

We use the randomized divide-and-conquer method of [23]: Our algorithm
ANQ-Alg randomly divides the problem into two smaller subproblems that it
recursively solves, and then combines the answers. Next, by using Fig. 1, we
describe and illustrate a recursive stage in more detail.

Each recursive stage concerns a rooted subtree R of Py, aset U C V(H) and
a set Solved of rooted subtrees of R, such that the subgraph R’ of R induced
by the nodes in R that do not belong to any tree in Solved and the roots of the
trees in Solved is a tree. For example, part A of Fig. 1 illustrates an input for
algorithm ANQ-Alg and a recursive stage, where Solved contains the squares,
triangles and hexagons trees, and R’ is the subtree of R induced by the bold
nodes. Each tree in Solved has several pairs, where each such pair consists of
a node h € V(H) and a score s, and it concerns an isomorphism of score s
between the tree (to which the pair belongs) and a subtree of H that maps the
root of the tree to h. For example, part A of Fig. 1 illustrates the pairs (¢, 2)
and (e, 2) that belong to the squars tree.

Using such pairs, algorithm ANQ-Alg computes scores of isomorphisms be-
tween R and subtrees of H by computing scores of isomorphisms between the
smaller tree R’ and subtrees of H which map the nodes in R’ (excluding its
root) to nodes in U. In the base cases of the recursion, R’ contains at most two
nodes, and thus it can be easily mapped. In the step of the recursion, algorithm
ANQ-Alg divides R’ into two subtrees that have a common node, and randomly
divides U into two subsets. Algorithm ANQ-Alg uses the first subset to map the

=)

to all other
nodes in H

All the nodes (in P and H) have the same label x, U ={g,h,i,n}
and A(x,x)=1.
All the edges in H have weight 0.

:22 :2 :33
o) (o)
U:{g,h |

(pep o) (P
¢y

0

Figure 1: An illustration of a randomized divide-and-conquer step in ANQ-Alg.

©
%

N

w .

o8]

eeelph

first subtree; then it uses the corresponding results and the second subset to
map the second subtree. For example, in order to solve the problem illustrated
in part A of Fig. 1, algorithm ANQ-Alg divides it into the subproblems illus-
trated in parts B and C. Algorithm ANQ-Alg solves the subproblem illustrated
in part B and uses its answer (i.e., the isomorphism of the hexagons tree in part
C) to solve the subproblem illustrated in part C.

2.2. Some Definitions

Each definition given in below is preceded by an explanation of its relevance
and is illustrated in Fig. 1.

First choose some node p; € V(Py), and add p1, pe, {p1,p2} and {p2,ps}
(these are new nodes and edges) to P;. Also add a new node h* to H and
connect it to all the nodes in V(H) by edges of weight 0. We thus avoid a
special treatment of the first call to the recursive procedure ANQ-Rec, that is
the main part of our algorithm ANQ-Alg.

Root Py at p1, and use a preorder to denote its nodes by p1,pa, ..., pjv(p,)-
Given nodes p and n, € N(p), let T(p,n,) denote the subtree induced by p,
its children whose indexes are greater than that of n,, and the descendants of
these children. For example, in part A of Fig. 1, we have that T'(ps, p2) = R.

Each stage of ANQ-Rec concerns a subtree of Py of the form T'(r,n,), for
nodes r and n,. € N(r), aset U C V(H), and a set Solved of disjoint subtrees
of T'(r,n,). The trees in Solved are of the form T'(p,n,), and can thus be
represented by pairs (p,n,). Definition 1 concerns this set of trees.

Definition 1. Given Solved C {(p,n,) : p € V(P1),n, € N(p)}, 7 € V(P1) and
ny € N(r), we say that Solved is an (r,n,)-subtree set if its trees are disjoint
subtrees of T'(r,n,.) and one of them is rooted at r (i.e., Solved[(1,r)] # ().

For example, in part A of Fig. 1, we have that Solved = {(p3,p4), (Ds,p5), (D5,
ps)} is a (ps, p2)-subtree set.

Each tree T'(p,np) in Solved has several scores. Each score corresponds to
its mapping to a subtree T' of H. We only know the root of 7', and it belongs
to U iff p # r. Moreover, no tree has different scores for isomorphisms that
map its root to the same node in V(H). We use a tuple (p,ny, h,) to represent
an isomorphism of score s between T'(p,n,) and a subtree of H that maps p
to h. Definition 2 concerns these tuples. We note that PSS stands for Partial
Solutions.

Definition 2. Let PS C {(p,ny,h,s) :p € V(P1),n, € N(p),h € V(H),s € R},
reV(P),n, € N(r) and U CV(H). We say that PS is an (r,n,,U)-set if

1. {(p,ny) : PS|(1,p), (2,np)] # 0} is an (r,n,)-subtree set.
2. Y(p,np, h,s) € PS: Vs'[(p,np,h,s') € PS s s=sTand p#r < heU).

For example, in part A of Fig. 1, we have that PS = {(p3,p4, ¢, 2), (p3, pa, €,
2)7 (p67p57 i? 2)7 (p53p87 i7 3)7 (p57p8a ha 3)} is a (pSaan U)'Set'

Suppose we have an (7, n,, U)-set PS. We find the best options (correspond-
ing to different mappings of) to map the roots of the subtrees of T'(r,n,) in
PS and the nodes in T'(r, n,.) which do not belong to these subtrees to subtrees
whose nodes (excluding the mappings of r) are in U. Thus we map all T'(r,n,.)
and use only nodes in U and nodes that we have already used for computing
PS. Definition 3 concerns this set of nodes in T'(r, n,) which we want to map.

Definition 3. Given an (r,n,,U)-set PS, T(PS) is the subtree of P, induced
by {v e V(T(r,n,)): B(p,np, h,s) € PS s.t. v € V(T(p,ny)) \ {p}}.

For example, in part A of Fig. 1, we have that T(PS) is the subtree of R
induced by its bold nodes.

We divide our problem into two smaller subproblems. We achieve this by
finding a node m € V(T'(PS)) and a neighbor n,, € N(m) that divide T'(PS)
into two smaller subtrees: Pi[V(T(PS)) N V(T (m,ny))] and P [V(T(PS)) \
V(T (m,nm))] U {m}. Definition 4 concerns our division options.

Definition 4. Given an (r,n,,U)-set PS, we define:
mid(PS) = {(m,nm, sizer, sizeg) : m € V(T(PS)),n, € N(m),size =
[V(T(PS)) NV (T(m,ny))| —1,sizeg = |V(T(PS))| — sizer, — 1}.

For example, in part A of Fig. 1, we have that mid(PS) = {(ps, p2,4,0), (ps,
P4,0,4), (p3,p11,0,4), (p4,p3,3, 1), (P4, 5, 0,4), (5, P4, 2, 2), (P5, P6, 1, 3), (P5, P
0,4), (p5: P9, 0,4, (ps: p5,0,4), (P, p7,0,4), (ps, ps,0,4) }.

We seek a tuple (m,nm,,sizer,sizer) € mid(PS) that minimizes max{sizer,
sizeg}. Then, as the following lemma implies, our new subproblems are small.

Lemma 1. Given a rooted tree T such that vi,va, ..., v, is a preorder of V(T)
and n > 3, there are v; € V(T) and v; € N(v;) such that max{2,[5]} <
V(T (vi,vj))| < |3]. If T is a path, then there are v; € V(T) and v; € N(v;)
such that |V (T'(vi,v5))| = [5].

ProoOF. Given vg,v, € V(T), denote V, , = V(T'(vg,vy)). Also denote Uy =
{(va,vy) : ve € V(T),vy € N(),|Vayl < |22}, and Uz = {(vz,vy) : vy €
V(T),vy, € N(v),max{2,[§]} < Vo ,l}.

Since n > 3, we have that if |V o] < max{2,[5]}, then [V 1| =n —[Vi 2] >
max{2, [§]}; therefore Uy # (). Let (v;,v;) be a pair in U, that minimizes |V; ;|.

Suppose, by way of contradiction, that (v;,v;) ¢ Ui. Since |V, ;| > 2, we
can denote by v; the child of v; with the smallest index that is greater than j.
Since |Vj;| < |V; |, our choice of (v;,v;) implies that (v;,v;) ¢ Us. Therefore
Vil = Vil — [Vial = (122] +1) — (max{2, [21} — 1) = [2] — max{2, [2]} +
2 > max{2,[5]}. We get that (v;,v;) € Uz, but since |[V;;| < |V; |, this is a
contradiction. Thus (v;,v;) € Uy, which proves the first part of the lemma.

Now suppose that T' is a path. Denote by [the index of the leaf in T" that
is not v,. If I < |§]+1, then ¢ = [§] 4 1 and j denotes the index of the
father of v; (which exists since ¢ > 1), and thus |V; ;| = {vi,vit1, .., 00} =
n—(i—1)=[%5]. Elseif] = |§] 4+ 1, then i = 1 and j = 2, and thus |V; ;| =

HuYU{vig1, vige, . on}| = 14n—(1 5] +1) = [§]. Otherwisei = [—[%]41 and

j =i—1 (note that j > 1), and thus |V; ;| = [{vi, viy1, ..., v} == (i—1) = [§].
U

2.8. The Algorithm

We are now ready to present our algorithm ANQ-Alg, whose main compo-
nent is a recursive procedure called ANQ-Rec. We first note that an input for
ANQ-Rec is of the form (r,n,, U, PS), where r € V(P1), n, € N(r), U C V(H),
and PS is an empty set or an (r,n,,U)-set. The output SOL of ANQ-Rec is
an empty set or an (r,n,, U)-set such that SOL[(1,r), (2,n,)] = SOL (i.e., the
tuples in SOL represent mappings of T(r,n..)).

ANQ-Alg(P,H,A,W):
1. Add elements to the input as described in Section 2.2.

2. SOL < ANQ-Rec(pa, p1, V(H) \ {h*},{(p2, 3, h*,0)}).
3. Accept iff (SOL # 0 A max(, n, ns)esorist = W).

Next, we present the pseudocode of ANQ-Rec.
ANQ-Rec(r,n,., U, PS):
1. T PS=0VI|V(T(PS))| =1: Return PS.

We handle two base cases. PS = () implies that we could not map some
subtree of T'(r,n,) in previous computations, and thus we return (.

2. If |[V(T'(PS))| =2
(a) Denote by v the node in V(T'(PS)) which is not r.
(b) If PS[(1,v)] = 0: Return

U {trone by max {s -+ w({h,h}) + AQ(), U}
heV(H)
s.t. UNN(h) # 0,

seR
s.t. (r,v,h,s) € PS

2. (c) Return

U {(r,ny,h, max {s+s"+w({h,h'})})}.
neN(h),
gte V(H) seR
’ s.t.
SUEhEN(h){PS[(lvv)a(?’vh)H?’é@, (U,TJL’,S/) cPS

s.t. (r,v,h,s) € PS

We handle the two remaining base cases. They correspond to whether or
not v is a root of a tree in PS. In both, for each mapping of r, we find the best
legal mapping of v to a node A’ in U.

3. SOL < 0.

The set SOL will hold tuples that represent the best mappings we find for
T(r,n.).

4. Choose (m,n,,sizer,sizeg)€mid(PS) that minimizes max{sizer,,sizer}.

We find the best nodes m and n., to divide our problem of mapping T'(P.S)
into the two smaller subproblems of mapping V(T(PS)) N V(T (m,n,,)) and
(V(T(PS)\ V(T (m,nm))) U {m}.

sizey,

. b _
b ProbL = I pS))| =

and probr < 1 — probg,.

6. Repeat times:

(1 —1/e)2proby, L probp**#
(a) UL, <0 and Ur < U.
(b) For each h € U: With probability probr,, move h from Ug to Uy,.

We randomly partition U into two sets, Uy, and Ug, that we use in the first
and second subproblems, respectively, as follows. The nodes in (V(T(PS)) N
V(T (m,nm))) \ {m} are mapped to nodes in Uy, and then the other nodes
in V(T(PS)) \ {r} are mapped to nodes in Ug. The probability proby, of a
node to be in Uy and the number of executions of Step 6 guarantee that with
good probability the solutions to our subproblems allow solving our problem of
mapping T(PS).

6. (C) SOLp < 0 and SOLg < 0.
The sets SOLy, and SOLg will hold the solutions we find to our subproblems.

6. (d) PSp <= {(p,np,h,s) e PS:peV(T(m,ny)),p#m<+ heUr}
(e) If PS[(1,m)] = 0:
i. If Ug = 0: Go to the next iteration.

ii. Add Uy, enim) s, VT (mny))=(m}nevn Lm0 A (M), 1(R)))}
to PSL

(f) If 3p € V(T'(m,n.y))[PS[(1,p)] # 0 A PSL[(1,p)] = 0]: Go to the
next iteration.

The set PSy is initialized to hold the tuples in PS that are relevant to
mapping T(m, n,,). If it does not include a tree rooted at m, then we add all
the options of mapping the tree that contains only m to a node in Ug (if U = 0,
then we skip the rest of the iteration). If we lost the tuples representing all the
mappings in PS of a tree that is relevant to PSp, then we skip the rest of the
iteration.

6. (g) SOLL <~ ANQ—Rec(m, MNmyy UL7 PSL)
We solve our first subproblem.

6. (h) PSp < SOLLU{(p,np,h,s) € PS:pg V(T(m,ny)),h ¢ UL}

(i) I SOLL =0 Vv 3p ¢ V(T (m,n,))[PS[(1,p)] # O A PSg[(1,p)] = 0:
Go to the next iteration.

The set PSg is initialized to hold SOLy, and the tuples in PS that are rele-
vant to our second subproblem. If SOL; = () or we lost the tuples representing
all the mappings in PS of a tree that is relevant to our second subproblem, then
we skip the rest of the iteration.

6. (j) SOLr < ANQ-Rec(r,n,,Ug, PSy).
(k) For each h, s s.t. (r,ny,h,s) € SOLgABs'[(r,nr,h,s") € SOLAs < s']:
SOL < (SOLU{(r,ny,h,s)})\ SOL[(1,7), (2,n), (3, h)].
7. Return SOL.

We solve our second subproblem. Then we update SOL to hold the tuples
representing the best mappings of T'(r, n,.) we have found so far.

2.4. Correctness and Running Time

In this section we prove the following theorem.

Theorem 1. Algorithm ANQ-Alg solves inputs for PINQ in which P is a set
of one tree in time O(6.755TOUeR) | EB(H)|) and space O(|V (H)|log® k). If P,
is a path, then it runs in time O(4*+O08)| B(H)]).

First we prove the correctness of algorithm ANQ-Alg.

Let r € V(Py),n, € N(r),U C V(H) and PS be an (r,n,,U)-set. Given h €
V(H), let 1SO(r,n,,U, PS); denote the set of every isomorphism M between
T(PS) and a subtree of H, such that M (r) = h and for each p € V(T'(PS)) the
following condition holds.

1. If PS[(1,p)] = 0: M(p) € U. Denote s(M,p) = A(l(p),[(M(p))).
2. Else: PS[(1,p), (3, M(p))] # 0.
Denote by s(M,p) the score s for which PS[(1,p), (3, M(p)), (4,s)] # 0.

Given M € ISO(r,n,,U,PS)p, let s(ISO(r,n.,U, PS),, M) denote the
score Y ey r(ps)) S(MsP)+ 21, pyenrpsyW{M (p),M(p')}). If ISO(rn,,U,
PS), #0, then let s(ISO(r,n,,U,PS);) denote the score maxarers0(rn,.,U,PS), 1
s(ISO(ryn.,U, PS)p, M)}.

Given an input I, let (P, H, A, W) denote the instance that we get after
adding p1,pe, {p1,p2}, {p2, ps}, h* and its edges to I (in Step 1 of ANQ-Alg).
Note that I has a solution iff there is an isomorphism M between T'(p2, p1) and
a subtree S of H s.t. M(p2) = k™ and 3 v (1(p, pi)\ipe) DUD), LM (p))) +
Y een(syw(e) = W. Thus, the following lemma implies the correctness of
ANQ-Alg.

Lemma 2. Gien r € V(Py),n, € N(r),U C V(H) and ® or an (r,n,,U)-set
PS, the O or (r,n,,U)-set SOL returned by ANQ-Rec(r,n.., U, PS) satisfies

1. If PS =0, then SOL = 0.

10

2. ElseVh* e V(H):
(a) If ISO(r,n,, U, PS)p» = 0, then SOL[(3,h*)] = 0.
(b) Else:
i. For each s s.t. (r,n,,h*,s) € SOL, s < s(ISO(r,n,.,U, PS)p~).
ii. With probability at least 1—1/e, (v, n,., h*, s(ISO(rn,., U,PS)p+))
€ SOL.

PROOF. We prove the lemma by using induction on [= |V(T'(PS))| (where
[V(T'(0))] = 0). If 0 <1 < 3, then by Steps 1 and 2 of the pseudocode, the
lemma holds.

Now suppose that [> 3, and assume that the lemma holds V' € V(Py),n!. €
N(r"),U" CV(H) and @ or an (r',nl.,U')-set PS’ s.t. [V(T(PS’))| <. Let h*
be a node in V(H).

Let (UL, Ugr) be a partition chosen in an iteration of Step 6. If we do not skip
the rest of the iteration in Steps 6(e)i or 6(f), then by the induction hypothesis,
the set SOL, computed in Step 6(g) satisfies [Vh, s s.t. (m,nm,, h,s) € SOLL :
(PS[(1,m)] = 0 — h € Ug) A (PS[(1,m)] # 0 — PS[(1,m),(3,h)] # 0) A
ISO(m, ny, UL, PSp)n £ O A s < s(ISO(m,ny, UL, PSp)p)]. If we do not skip
the rest of the iteration in Step 6(i), then PS[(1,p),(2,n,)] # 0 — (PSL U
PSgr)[(1,p),(2,np)] # 0, and PS U (PSg\ SOLL) C PS to which we add

U, eN(m) st. VT many))={my.hevn LM nps by A(l(m), 1(R)))}) iff PS[(1,m)] =
(. By the induction hypothesis, the set SOLp computed in Step 6(j) satisfies
[Vh, s s.t. (r,n., h,s) € SOLg : PS[(1,r),(3,h)] # O A ISO(r,n.,Ur, PSR #
DA s<s(ISO(r,n.,Ur, PSr)p)]. Thus, by the pseudocode and the definitions
of ISO and s(ISO(...)), we get that if ISO(r,n,,U, PS)p~ = 0 and we do
not skip the rest of the iteration before Step 6(j), then SOLg[(3,h*)] = 0, and
otherwise [Vs s.t. (r,n,,h*,s) € SOLg: s < s(ISO(r,n,,U, PS)p-)].

Now suppose that 1SO(r, n,,U, PS)p+ # (0. Then, there is a mapping M €
I150(r,n., U, PS)p~ s.t. s(ISO(r,n., U, PS)p~, M) = s(ISO(r,n,., U, PS)p~).

Denote S;, = {h € U : Ip € V(T(PS)) N V(T (m,ny)) s.t. M(p) = h}\
{M(m)}, and Sp = {h € U : Fp € VT(PS)\(V(T(m, np))\ {m}) s.t. M(p) =
hy\ {M(r)}.

The probability that a partition (Ur,Ug) s.t. S, € Ur and Sk C Uk is cho-
sen in a given iteration of Step 6 is probr,***“* probr®**°%. Now consider an itera-
tion in which such a partition is chosen. We do not skip before Step 6(g). By the
induction hypothesis, with probability at least 1 —1/e, the set SOL, computed
in Step 6(g) includes (m, 1, M(m), s(ISO(m, nm, UL, PSL)p(m)))- Then, we
do not skip the rest of the iteration in Step 6(i); and by the induction hypoth-
esis, with probability at least 1 — 1/e, the set SOLR computed in Step 6(j) in-
cludes (r,n,, h*, s(ISO(r,n,,Ur, PSg)n~)). Note that PS[(1,p), (2,n,)] # 0 —
(PSLUPSR)[(1,p), (2,np)] # 0, and PSL,U(PSR\SOL) C PS to which we add
(UnpeN(m) s.t. V(T(m,n,,)):{m},heUR{(ma Np, h, A(l(m)a l(h)))}) iff PS[(L m)] =
(. We get that s(ISO(r,n,,Ur, PSgr)p+) = s(ISO(r,n., U, PS)p~).

Thus, the probability that there is an iteration in which we reach Step 6(j)
and the computed set SOLpg includes (r,n,,h*, s(ISO(r,n,,U, PS)y+)) is at
least

11

L (1= (L= 1/e)proby =t proby o) /(=1 /e probu““proba™cm) 5 g 1

e

O

Now we analyze the running time of algorithm ANQ-Alg. Assume WLOG
that |V(H)| < |E(H)|. Given an input (r,n,, U, PS) to ANQ-Rec such that
Il = |V(T(PS))|, let T(I) be the running time of ANQ-Rec(r,n,,U, PS). The
pseudocode and Lemma 1 imply the following recurrence relation for some con-
stants @ and b (note that if [> 4, then 2 < [é])

e If0<I<4:T(l) <bE(H)|.
e Else, if P, is a path

10 < ()) VU] + 5D + T(lg) + 1)

2
<b-2'[I|E(H)] +T(L%J +1)).

e Else,
T() <o max (S ENw v rey cra-rny
<v<ig) U=10 =l
3 21
<b- (4—%)1[1|E(H)| +T(L5 1+ 1l

Lemma 3. If P, is a path, then ANQ-Alg runs in time O(4*kCWV|E(H)]).
PrOOF. Algorithm ANQ-Alg runs in time O(T'(k + 1)). We prove that for all
0 <1, T(l) < cd!(max{l,1})°|E(H)|, where ¢ > b is a constant s.t. 8¢(3)° < 1.
We use induction on [. If 0 <[< 4, then the claim clearly holds.

Now suppose that I > 4, and assume that the claim holds for all I’ < [.
Using the induction hypothesis, we get that

T() <b-2'|EH) +c-4“%J“)(LéJ +1)°|E(H)]]
<c- 2N E(H)| +4c* - 4%% +1)|E(H)|

< 82 ~4l(3zl)c|E(H)| < c4'I°|E(H))|.

Lemma 4. Algorithm ANQ-Alg runs in time O(6.75FkCV|E(H))).

12

PrOOF. Algorithm ANQ-Alg runs in time O(T(k + 1)). We prove that for
all 0 < I, T(I) < ¢6.75 (max{l,1})¢|E(H)|, where ¢ > b is a constant s.t.
13.5¢(12)¢ < 1. We use induction on I. If 0 < I < 4, then the claim clearly
holds.

Now suppose that | > 4, and assume that the claim holds for all I’ < I.
Using the induction hypothesis, we get that

3
<ec- (E)lllE(HM 4 6.75¢2 - 6.75!
3

111
< 13.5¢2 ~6.751(§)C|E(H)|

< ¢6.751|E(H)).

VB + 67503 (2 |+ 17 B(H)]
&+ 1y1BH)

() <b-(

N

O

In order to analyze the space complexity of algorithm ANQ-Alg, we first
prove the following lemma.

Lemma 5. For any call ANQ-Rec(r,n,,U, PS) performed during the execution
of ANQ-Alg, we have that |[{p € V(P1) : PS[(1,p)] # 0} = O(logk).

Proor. Algorithm ANQ-Alg calls ANQ-Rec with a set PS s.t. [{p € V(P) :
PS[(1,p)] # 0}] = 1. Lemma 1 and the pseudocode imply that the recursive
depth of ANQ-Rec is bounded by O(log k). Moreover, by the pseudocode, each
call ANQ-Rec(r’,n,’,U’, PS") executed by a call ANQ-Rec(r, n,., U, PS) satisfies
{p e V(P : PSI(Lp)] £ 0} < [{p € V(Py) : PS[(1,p)] # B} + 1, and we
thus conclude the lemma. (]

By the pseudocode and Lemma 5, we get that each recursive call to ANQ-Rec
uses O(|V(H)|log k) space, and the recursive depth of ANQ-Rec is bounded by
O(logk). Thus, we conclude that the space complexity of ANQ-Alg is bounded
by O(|V (H)|log? k).

3. An Algorithm for PINQ

We now present an algorithm, that we call PINQ-Alg, which handles inputs
for PINQ in which P is a set of trees (i.e., P; is a tree for all 1 < ¢ < ¢). In Section
3.1, we give an overview of PINQ-Alg. Section 3.2 includes some definitions
required for the pseudocode of PINQ-Alg (given in Section 3.3). Finally, in
Section 3.4, we prove the correctness and analyze the running time of PINQ-Alg.

3.1. Overview

We use the randomized divide-and-conquer method [23]: Our algorithm
PINQ-Alg randomly divides the problem into two smaller subproblems that it
recursively solves, and then combines the answers. Next, by using Fig. 2, we
describe and illustrate a recursive stage in more detail.

13

o all other nodes
size=10

U={d,e,f,i,n,0,
r,s,t,u}

All the nodes (in P and H) excluding p; have the same label x, and A(x,x)=1.
All the edges in H have weight 0.

The order between the neighbors of a node in P is the same as the order between their
indexes (e.g., nei;(ps)=p, and neix(p3)=pa).

=> R'is the subtree induced by {p2,ps,ps.Ps} N N '

=> The set of nodes we must map is {'pz:pg,bmps,pm,pu}- : 2
A 6 @

Q :
size=5, U={i,r,s,t,u} @ @ @ e m
=> R’ is the subtree induced by G
{p14}, and the set of nodes we

must map is {pi4}.

=> R'is the subtree induced by {p,,ps,ps,ps}, and the
set of nodes we must map is {p2,Ps,P4,Ps,P13,P14}-

Figure 2: An illustration of a randomized divide-and-conquer step in PINQ-Alg.

14

Each recursive stage concerns a rooted subtree R of a tree in P, U C V(H),
a set Solved of rooted trees and a positive integer size. For example, part
A of Fig. 2 illustrates an input for algorithm PINQ-Alg and a recursive stage,
where Solved contains the squares, triangles and hexagons trees. Each tree in
Solved has several triples (as opposed to the pairs used by ANQ-Alg), where
each such triple consists of a set of trees P C P, a node h € V(H) and a score
s. Such a triple (75, h, s) concerns a subtree S of H, a partition of V(S) into the

subsets {V4,..., S‘PHI}, an isomorphism mj between the tree in Solved (to

which the triple belongs) and S[VZ] that maps the root of the tree to h, and an
isomorphism m; between S[V¢] and a different tree in P, for all 2 <i < [P|+1,
such that >, ;541 Zvevsi A(U(v), U(mi(v))) + X oep(s) w(e) = s. Note that
the triple (75, h, s) can be considered as a ”partial solution”. For example, part
A of Fig. 2 illustrates the triples ({Pys},e,3), ({Ps, Ps},e,3) and ({Ps, Ps},14,3)
that belong to the triangles tree.

Using such triples, algorithm PINQ-Alg maps sets of size nodes to subtrees
of H, such that each node (excluding the root of R) is mapped to a node in U
and neighbors are mapped to neighbors. Each such set of size nodes contains
the nodes of the subtree R’ of R induced by the nodes in R that do not belong
to any tree in Solved and the roots of the subtrees of R in Solved (see Fig. 2 for
an example of such a tree R'). Moreover, each such set of size nodes must help
us “complete” mapping the trees in P that have subtrees in Solved, excluding
the tree containing R; thus it also contains their nodes, excluding those that
belong to trees in Solved and are not their roots. The number of nodes we have
just mentioned to be contained in such set a of size nodes may be less than
size; therefore algorithm PINQ-Alg examines several choices of adding nodes of
trees in P that do not have subtrees in Solved and thus getting sets of size
nodes (to be mapped to subtrees of H).

In the base cases of the recursion, size < 2, and then the problem can
be easily solved. In the step of the recursion, algorithm PINQ-Alg divides the
problem into two subproblems as follows. Any set of size nodes that PINQ-Alg
attempts to map may contain nodes of different trees in P, and it does not know
in advance how to ”connect” them.® Thus PINQ-Alg examines several choices
of dividing the set of nodes it must map (i.e., the nodes that must be contained
in any set of size nodes that it attempts to map) into two sets to be separately
mapped in the first and second subproblems. Such a division may not imply
the number of nodes to be mapped in each subproblem (since the number of
nodes that PINQ-Alg must map may be less than size), and thus PINQ-Alg
also examines several choices of these numbers. Algorithm PINQ-Alg randomly
divides U into two subsets. It uses the first subset to solve first subproblem:;
then it uses the corresponding results and the second subset to solve the second
subproblem. For example, in order to solve the problem illustrated in part A of

3 Algorithm PINQ-Alg needs to ”connect” these trees to get one tree to be mapped to a
subtree of H.

15

Fig. 2, algorithm PINQ-Alg divides it into the subproblems illustrated in parts
B and C. Algorithm PINQ-Alg solves the subproblem illustrated in part B and
uses its answer (i.e., the isomorphism of the hexagons tree in part C) to solve
the subproblem illustrated in part C.

3.2. Some Definitions

FEach definition given below is preceded by an explanation of its relevance
and is illustrated in Fig. 2.

First choose some node p, € V(P;), and add a new node p; and an edge
{p1,p2} of weight 0 to P;. Define Vi € L : A(l(p1),]) = —oc0. Also add a new
node h* to H and connect it to all the nodes in V(H) by edges of weight 0.

Since we may not know a topology for a solution (we only know that it is a
tree), we cannot define a preorder on its nodes and use the form T'(p, n,), which
is used by ANQ-Alg, for the trees considered at each recursive stage. Thus,
we define a different form as follows. We order the neighbors of each node
p € V(P) (arbitrarily), and denote them by neii(p),...,nein@)(p). Denote

N(p) = N(p) U{nil}. Also denote N(p,nei;(p), nei;(p)) = {nei;(p) € N(p) :
i<l<jVvji<i<IlVvi<j<i}, N(p,neip),nil) = {neii(p) € N(p):i<I}
and N (p,nil,nil) = {}. Let P(p) denote the tree in P that contains p, and let
T(p, nei;(p),neij(p)) denote the subtree induced by the nodes reachable from p
in P(p)[V(P(p)) \ (N (p) \ N(p, neii(p), neij(p)))]. Root T(p, neis(p), nei;(p)) at
p. For example, in part A of Fig. 2, we have that T'(pa, ps,p1) = R. Algorithm
PINQ-Alg uses the form T'(p, nei;(p), nei;(p)) for the trees it considers at each
recursive stage. Definition 5 concerns these trees.

Definition 5. Given Solved C {(p,n},n2) : p € V(P),n}, € ﬁ(p),ng € N(p)
s.t. ny = nil — ng = nil}, r € V(P),n, € N(r) and n? € N(r) s.t. nl =
nil — n? = nil, we say that Solved is an (r,nk,n?)-subtree set if its trees are
disjoint, those that are subtrees of P(r) are also subtrees of T(r,nt,n?), and

Solved|[(1,r), (37n%)] £ 0.) Pops Ty

For example, in part A of Fig. 2, we have that Solved = {(p2, ps, p1), (P4, D3,
p3), (P14, P15, P13)} is a (pa, ps, p1)-subtree set.

We now define the information of each tree in Solved similarly to Defini-
tion 2; though now each tree in Solved has additional information on a set P
of trees in P that are connected to it, and each of its scores corresponds to a
mapping of it and the trees in P.

Definition 6. Let PS C {(p, n},,ng,ﬁ,h,s) :peV(P),n, €]\Af(p),nf) €]\Af(p)
s.t. nj = nil = n2 =nil,h € V(H),PCP,seR}, reV(P),nleNr),ne
N(r) s.t. nt = nil — n2 = nil, and U C V(H). We say that PS is an

(rynk,n2 U)-set if
L {(p,ny,n2) : PS[(1,p),(2,n,),(3,n2)] # 0} is an (r,n},n?)-subtree set.
2. V(pm},,ni,?s,h,s) c PS: Vs’[(p,n;,nf,,’ﬁ,h,s’) ePS—>s=41 (p#

r < helU) and VP'[PS[(4,P")] # 0 — P(p) ¢ P'].

16

For example, in part A of Fig. 2, we have that P.S = {(p2, ps, p1,{},a,4), (4,
p3,p3, {Pa},e,3), (P4, 03,03, {Ps5, Ps},€,3), (pa, p3,03, { Ps, Ps},1,3), (P14,015,D13,
{},0,2)} is a (p2, p3, p1, U)-set.

Next we define the set of nodes that a given (r,nl n2 U)-set PS implies we
must map. This is a modification of Definition 3.

Definition 7. Given an (r,nk,n2 U)-set PS, V(PS) is the set of nodes
V(T (r,nk,n?))U

) T T

V(PP@)] \(U V(T (p,ny,mp)) \ {p})-

p s.t. PS[(1,p)|ZOAP(p)#P(r) (p,nll,,ng,’ls,h,s)ePS

For example, in part A of Fig. 2, we have that V/(PS)={p2,ps3,p4,P5,P13,P14}
We do not use a definition similar to Definition 4 since we may not know a
topology for V(PS) in a solution, and thus we cannot determine how each node
divides it. We consider every node in V(P.S) as a possible divisor of our problem
and examine several options for the sizes of the resulting smaller subproblems.
The next definition is used for the sake of clarity of the pseudocode. Given
(r,nk,n2 U)-sets PS and PS’, we define a calculation that uses PS’ to update

PS to hold the information of both sets that corresponds to the best scores.

Definition 8. Given (r,nl,n2,U)-sets PS and PS', PS & PS' is defined as

s Popy Topy

{(p,nzl,,nfﬁﬁ,ms) € PSUPS" :Vs'[(p,n},n2, P, h,s') € PSUPS — s < s|}.

P’ 'p?

8.8. The Algorithm

We are now ready to present our algorithm PINQ-Alg, whose main compo-
nent is a recursive procedure called PINQ-Rec. We first note that an input for
PINQ-Rec is of the form (r,nl,n2, U, size, PS), where r € V(P), nL € N(p),
n2 € N(p) st. nt = nil — n2 = nil, U C V(H), size € N and PS is
an empty set or an (r,nl,n2 U)-set such that |[V(PS)| < size. The out-
put SOL of PINQ-Rec is an empty set or an (r,nl,n?, U, size)-set such that

PINQ-Alg(P, H, A, W):

1. Add elements to the input as described in Section 3.2.
2. SOL <= PINQ-Rec(py,pa,nil, V(H) \ {h*}, k + 1, {(p1, nil, nil, h*,0)}).
3. Accept iff (SOL # 0 Amax, .1 2 5 gesor{st = W).

Next, we present the pseudocode of PINQ-Rec.

PINQ-Rec(r,nl,n2, U, size, PS):

s Popy 1oy

1. If PS =0V size = 1: Return PS.
2. SOL < 0.

Step 1 handles two base cases. The set SOL will hold tuples that represent
the best mappings we find.

17

3. If size = 2:
(a) If [V(PS)| = 2: Denote by v the node in V(PS) which is not 7.
(b) If |V(PS)| = 1, then for each (p, np,np,’P h,s) € PS,v e V(P)\{r}
st. [P(v) ¢ P A N(v)=0],h € UNN(h):
o SOL & {(r,n},n2, PU{P(v)}, b, s+w({h, '} +A(1(v), 1(H))}.
(c) Else if PS[(1,v)] = 0, then for each (p,n},n2,P,h,s) € PS,H €
UNN(h):

o SOL & {(r,n},n2, Pohys +w({h,1'}) + AQ(),I(W)))}.
(d) Else if v € V(P(r)), then for each (p, np,np,P h,s) € PS[(1,7)], P’

CP\ P,k € N(h), s s.t. Iny[(v,ny,r, P’ W ,s') € PS]:
o SOL & {(r,n},n2, PUP" h,s+w({h h'})+s)}

s Tops 7;

(e) Else for each (p,nl,n2, P, h,s) € PS[(1,7)],P' € P\ P,k € N(h),

s s.t. Iny[(v, ny, nil, P’ W, s') € PS):
e SOL & {(r,nk,n2, PUP U{PW)}, h,s+w({h,h'}) +s)}.
(f) Return SOL.

If size = 2, then we have four base cases. For each of the two base cases
corresponding to whether or not PS[(1,v)] = (), we have two base cases that
correspond to whether or not v and r belong to the same tree in P (note that
if they do, then they are neighbors).

4. For each m € V(P),
nl € N(m),n? € N(m) s.t. (n}, = nil = n2 = nil),

.).
sizer, € {max{1, [%1 1) max{2, [2E0), L 25

partition (Pr, Pgr) of {p: PS[(1,p)] # 0]} s.t. m ¢ Pg:

J_1}7

We examine choices for m,nl and n?, that may divide our problem of map-
ping sets of size nodes (which are supersets of V/(PS)) into smaller subproblems.

Since we do not know all the nodes we need to map in each of the resulting
subproblems, we examine several choices for the sizes of the subproblems. We
only examine choices in which both sizes are at most [252¢ | + 1 (if size = 3,
then at most 2) to get the desired running time. This still allows us to find a
solution (see Lemma 1 for intuition). For the same reason, we examine all the
partitions of the set of roots of trees in P.S into two sets, Pr, and Pg, to be used
in the first and second subproblems, respectively. We require that m ¢ Pg since
in our second subproblem we will only be interested in mappings of m that were
found in solutions to our first subproblem.
4. (a) sizep < size — sizer, — 1,proby, < =L

1
(b) Repeat , —— times:
(1 —1/e)2probr,***°* probg™*°"

i. Up <=0 and Ugr <= U,SOL;, <= 0 and SOLg < 0.
ii. For each h € U: With probability prob;, move h from Ug to Up.

and probr <= 1—proby,.

18

We randomly partition U into two sets, Uy, and Ug, that we use in the first
and second subproblems, respectively. The sets SOL;, and SOLpg will hold the
solutions we find to our first and second subproblems.

4. (b) iii. PSL@{(p,n;,nz,ﬁ,h,s)EPS:pEPL,p#mHhEUL}.

iv. Im ¢ Pz PS, & | {(mon2, n2,, 0.k, A(i(m), 1(h)))}.
heUgr
v. For each (p, n;,ni,ﬁ, h,s) € PSy, s.t. P(m) € P:
PS;, < PSp\ {(p, nll),nf,,ﬁ, h,s)}.
vi. If3p € Pps.t. PS[(1,p)] =0 Vv PSpisnotan (m,n},,n%, UL)
-set V |[V(PSL)| > sizer + 1: Go to the next iteration.

The set PSSy, is initialized to hold all the tuples in PS that are relevant to
our first subproblem, and if it does not include a tree rooted at m, then we add
all the options of mapping the tree that contains only m to a node in Ug. We
remove tuples that do not correspond to m and yet map its entire tree from
PSy,. If Pr, contains a node that is not a root of a tree in PSy, or PSy, is not
an (m,nl ,n2,,U)-set, or PSy requires mapping too many nodes, then we skip
the rest of the iteration.

4. (b) vil. SOL < PINQ-Rec(m,nl n2 Uyp,sizer, + 1, PSL).
We solve our first subproblem.

4. (b)viil. PSp < SOLLU{(p,n,,n2,P,h,s) € PS:p€ Pr,h¢ UL}
ix. For each (p, n;,nf),ﬁ, h,s) € PSg s.t. 3p’ € Pg U {m} for which

P(p') € P: PSr < PSg\ {(p, nzl,,nz,ﬁ, h,s)}.
x. If 3p € PpU {m} s.t. PSg[(1,p)] =0 Vv PSgisnotan (r,nln2,

Ug)-set V |V (PSRg)| > sizeg + 1: Go to the next iteration.

The set PSg is initialized to hold the solutions to the first subproblem and
the tuples in P.S that are relevant to our second subproblem. We remove tuples
that do not correspond to a node p’ € Pgr U {m} and yet map its entire tree
from PSg. If the resulting PSg is illegal (the check is similar to that in Step
4(b)vi), then we skip the rest of the iteration.

4. (b) xi. SOL & PINQ-Rec(r,nl,n2,Ug, sizeg + 1, PSg).
5. Return SOL.

We solve our second subproblem and update SOL.

8.4. Correctness and Running Time

In this section we prove the following theorem.

Theorem 2. Algorithm PINCg—AIg solves inputs for PINQ in which P is a set
of trees in time O(6.758 O M3t B(H)|) and space O(2|V (H)|log* k).

19

First we prove the correctness of algorithm PINQ-Alg.

Let r € V(P),nL € N(p),n?2 € N(p) st. nl = nil — n2 = nil,U C
V(H),size € N, PS be an (r,n,,n,,U) set s.t. |[V(PS)| < size, h € V(H)
and P C P.

Given A C P, denote V(PS, A) = V(PS) U (Up,cq V().

If P(r) € P or [Elp € V(PS) s.t. P(p) ¢ PU{P(r)}], then denote ISO(r,n
n?,U,size, PS),

Else let ISO(r nk,n2 U, size, PS),, p denote the set of every tuple M =

(A, My, Mp), where A C P\ Upev(ps) P(p) st. [V(PS, A)| = size, My is a
mapping between a tree on V(PS, A) and a subtree Sy of H s.t. My (r) = h,
Mp : V(PS,A) — 27 st. [(Vp,p' € V(PS) : Mp(p) N Mp(p)) = 0) A
Upevpsy Mp(p) = P\ U,ev(ps,a) P(p)], and for each p € V(PS, A) the fol-
lowing conditions hold.

1. For all n,, € N() NV(PS, A): {My(p), My (n,)} € E(Sm).
2. IfPS[(l,p)] V()eUand Mp(p)z(b.
Denote S(M,p) All(p), (MV())-

3. Else: There is an element np s.t. PS[(1,) (3n), (4, Mp(), (5,My (p))]#
0 and [if p # r, then (f ¢ V(P(p)) An? = ml) V f = n2, where f is the
node for which My (f) is the father of MV() in Sp; when rooted at h).
Let s(M,p) denote the score s for which PS[(1,p), (4, Mp(p)), (5, My (p)),

(6,5)] # 0.
Given M € ISO(r,n},n2,U,size PS);, p,let s(ISO(r, nl,n2,U,size PS) p

M) denote the score > v (pg 4y S(M.p) + X c (s, w(e).

If ISO(r,nt,n2,U, size , PS);, p # 0, then we denote s(1SO(r, nk,n2 U, size,
PS)hﬂs) = MaXp1e(r,nl n2,U,size, PS), p A{s(ISO(r,nk,n% U, size PS)hP, M)}.

Given an input I, let (P, H,A, W) the instance we get after we adding
p1,{p1,p2}, h* and its edges to I (in Step 1 of PINQ-Alg). Note that I has a solu-
tion iff there is a subtree S of H whose nodes can be partitioned into the subsets
{V{,...,V;%}, such that there is an isomorphism M; between T (py, p2, nil) and
S[V{7] for which M (p;) = h*, there is an isomorphism M; between P; and S[V,°],
forall 2 <i <t, and'21§z’§t ZFGV(Pi)\{Pl} A(l(v), U(M;(v)) + X ceps) wle) =
W. Thus, the following lemma implies the correctness of PINQ-Alg.

) 'r"

Lemma 6. Letr € V(P),nl € ﬁ(), n €]V(p) s.t. nl =mnil - n2 =nil,U C
V(H),size € N and U) or an (r,nk, n? U) set PS s.t. |V(PS)| < size. The

s Popy Tops

empty set or (r,nt,n2,U)-set SOL returned by PINQ-Rec(r,n}, n2, U.

size, PS) satzsﬁesr ' o
1. If PS =0, then SOL = 0.
2. Else Yh* € V(H),P* C P:
(a) IfISO(r,n},n?,U,size, PS),. p. =0, then SOL[(4,P*), (5,h*)] = 0.
(b) Else:
i. For each score s st (r,nk,n? 75*,/1*,5) € SOL:
s < s(ISO(r,nk,n? U, size, PS)h*,ﬁ*).

s Popy Tops

20

ii. With probability at least 1 —1/e:
(rynk,n2 P* h*, s(ISO(r,nt, n2, U, size,PS)hmg*)) € SOL.

PROOF. By Step 1 of the pseudocode, the lemma holds for P.S =). We next
assume that PS # (), and prove the lemma by using induction on size. If
1 < size < 3, then by Steps 1 and 3 of the pseudocode, the lemma holds.

Now suppose that size > 3, and assume that the lemma holds V7' €
V(P),nt' e N(p), n? e]\Af() st nt = nil = n2 = nil,U' C V(H),size' <
size and () or an (v’ 0t n2 U')-set PS' st. |V(PS')| < size’. Let h* be a
node in V(H) and P* be a subset of P.

Consider an iteration of Step 4, and denote the elements to which it corre-
sponds by m,nl n2 sizer and (Pp, Pr). Let (Ur,Ug) be a partition chosen
next in an iteration of Step 4(b). If we do not skip the rest of the iteration in
Step 4(b)V1 then by the 1nduct10n hypothesis, the next computed set SOLy,
satisfies [VP, h, s s.t. (m, 2 P h,s) € SOLy : (PS[(1,m)] =0 — h e
Ur) A (PS[(1,m)] 74@—>PS[(1 m) (5,h)] 75(Z))/\ISO(m,nm,nm,UL,szzeL—i—
LPSL),» # (7) As < s(ISO(m,nk nZ UL, sizer + 1 PSL);, p)]- If we do not
skip the rest of the iteration in Step 4(b)x, then PS[(1,p), (2,) (3,n)] #
0 — (PSLUPSR)[(1,p),(2,n)),(3,n2)] # 0, and PSLU(PSR\SOLL) C PS to
which e add (o, (om0, b, AI(m), (0} i PS(1,m)) = 0. By
the induction hypothesis, the set returned by PINQ-Rec in Step 4(b)xi7 which
we next denote by SOLpg, satisfies [VP,h, s s.t. (r,nl,n2,P,h,s) € SOLg :
PS[(1,7),(5,h)] # OAISO(r,n;, 12, Ug, sizer +1, PSg),, p # DA s < s(ISO(r,
ny,n?,Ug, sizeg+1, PSR), p)]. Thus, by the pseudocode and the definitions of
IS0 and s(ISO(...)), we get that if ISO(r,nt,n2,U, size, PS)y. p. = 0 and we

do not skip the rest of the iteration before Step 4(b)xi, then SOLR[(4, 75*) (5, h*)]
=, and otherwise Vs s.t. (r,nl,n2, P* h*,s) € SOLg: s < s(ISO(r,n},n2,U,
size, PS),. p.)]-

Now suppose that ISO(r, nr,nr, U, size, PS)h* p« 7 0. Then, there is a tu-
ple M = (A, My, Mp) € 1SO(r,nt,n2,U, size PS)h* B st s(ISO(r, nk,n? U,
size, PS). p., M) = s(ISO(r, nk,n? U, size PS)h*ﬁp*)

Let T* denote the tree on V(PS, A) rooted at r whose edge set is {{p,n,} :
p € V(PS,A),n, € V(PS, A),{My(p), My (n,)} € E(Sm)}. Order the nodes
of T* by using a preorder as v, va, ..., Usize, where for each p € V(T™*), we first
visit its children which do not belong to P(p) (in an arbitrary order), and then
the children which belong to P(p) in the following order:

1. Let nei;(p) and nei;(p) be neighbors of p (in P(p)) that are its children
in T*, such that ¢ < j (if p has less than two such children, then there is
no order that we need to define).

2. If p = r An2 # nil, then let [be the index for which nei;(r) = n? and
visit nei;(p) before nei;(p) iff | <iVj <.

3. Else if (p = r An2 = nil) or the father of p in T* is not in P(p), then visit
nei;(p) before nei;(p).

21

4. Else let | be the index for which nei;(p) is the father of p. Visit nei;(p)
before nei;(p) iff | <iVj <.

By Lemma 1, there are neighbors v; and v; in 7" such that max{2, [§]} <
V(T (vi,v;))| < |Z]. Denote P, = {P' € P*: 3v € V(T(v;,v;)) s.t. P €
Mp(w)U{P()}}\ {P(v;)}, m =v; and

1. If m = r, then denote n2, = n2.

Else if the father of m in T* belongs to P(m), then denote it by n?.
Else denote n2, = nil.
Let n}, denote the node in (V(T'(v;, v;))NN (m))U{n2,} s.t. N(m,n} n2)

) m’ m

= N(m)NV(T(v;,v;)) (the preorder we have used implies that it exists).

Denote sizer, = |V (T'(vi,v;))| — 1, P = {p € V(T'(vs,v;)) : PS[(1,p)] # 0}
and Pgp = {p ¢ V(T'(v;,v;)) : PS[(1,p)] # 0}. Note that there is an iteration of
Step 4 in which we iterate over these elements. Next consider this iteration.

Denote Sy = {h € U : Ip € V(T'(v;,v;)) s.t. My (p) = h} \ {My(m)} and
Sr={heU:IpeV(PI)\ (V(T(vi,v;)) \ {m}) s.t. My (p) = h} \{My (r)}.

The probability of choosing a partition (Ur,Ug) s.t. S, € U and Sg C Ugr
in a given iteration of Step 4(b) is probz, ***“* probp*****. Consider an iteration in
which such a partition is chosen. We do not skip the rest of the iteration in Step
4(b)vi. By the induction hypothesis, with probability at least 1 — 1/e, the set
SOLy, computed in Step 4(b)vii includes (m,nl ,n2,, Pr, My (m), s(ISO(r,n}k,
n2,Ur, sizer, +1, PSL)MV(m),ﬁL))' Then we do not skip the rest of the iteration
in Step 4(b)x, and by the induction hypothesis, with probability at least 1—1/e,
the set returned by PINQ-Rec in Step 4(b)xi includes (r,n}, n2, P*, h*, s(ISO(r,
nl,n2, Ug,sizer + 1, PSg);. p.)). We have that PS[(1,p), (2,n)),(3,n2)] #
0 — (PSLUPSR)[(1,p),(2,n)),(3,n2)] # 0, and PS,U(PSg\SOLL) C PS to
which we add the set (U, ¢, {(m,n,,n0,, 0, h, A(I(m), 1(h)))}) iff PS[(1,m)] =

- W N

) m? m [
(). These arguments imply that s(ISO(r,nL,n2,Ur, sizer + 1’PSR)h*,P*)
s(ISO(r,nk,n2 U, size, PS) . p-)-

We get that the probability that there is an iteration in which we reach Step
4(b)xi and then the set returned by PINQ-Rec includes (r, nl, n2, P*, h* ,$(ISO(r,
nt,n2, U, size, PS),,. p.)) is at least
1

1— (1~ (1~ 1/e)2proby """ probp™'=¢r)/ (1=1/e) probu " Eprobu™=1t) 4 2
(&

O

Now we analyze the running time of algorithm PINQ-Alg. Assume WLOG
that |V(H)| < |E(H)|. We start by proving the following lemma.

Lemma 7. For any call PINQ-Rec(r,n},n2, U, size, PS) performed during the

execution of PINQ-Alg, we have that |{p € V(P) : PS[(1,p)] # 0} = O(logk).

PrOOF. Algorithm PINQ-Alg calls PINQ-Rec with a set PS s.t. |{p € V(P) :
PS[(1,p)] # 0}] = 1. Lemma 1 and the pseudocode imply that the recursive

22

depth of PINQ-Rec is bounded by O(log k). Moreover, by the pseudocode each
call PINQ-Rec(r’, n!', n2', U, size/, PS") executed by a call PINQ-Rec(r, n}, n2,

U, size, PS) satisfies |[{p € V(P) : PS’[(l,p)] #0} <|{p e V(P): PS[(1, p)] 75
0} + 1, and we thus conclude the lemma. O

Given an input (r,nl,n2, U, size, PS) to PINQ-Rec such that if PS =) then
I = 0and else | = size, let T(I) be the running time of PINQ-Rec(r,nl,n2,U,size,
PS). The pseudocode and Lemma 7 imply the following recurrence relation for
some constants a and b (note that if I > 4, then 2 < [L]):

e IfO<I<4:T()<b-3'E(H).
e Else,

S D

meV (P) n}nel/\?(m) nileﬁ(m) [%ng'gL%j
l - 1 ’ l - 1 ’
(L= (=t g o8k !y (B |4 (1) + T~ 1)
3 21
< b k?b() (3| B(H)|+T(L3J+1)]

Lemma 8. Algorithm PINQ-Alg runs in time O(6.75FkC1os M) 3t | B(H))|).

PrOOF. Algorithm PINQ-Alg runs in time O(T(k + 1)). We prove that for
all 0 < I, T(I) < ¢6.75'k°1°8!13¢|E(H)|, where ¢ is a constant s.t. 1+ b <
clog(22) A 13. 5ckeloe(3%) < kelos! We use induction on I If 0 < I < 4, then
the claim clearly holds.

Now suppose that 4 < [< k + 1, and assume that the claim holds for all
" < 1. Using the induction hypothesis, we get that

T() <b- kb(5 VB E(H)| + ¢ 6.75L 3 141 pelos(L3 1403t B)]
<c- kb+1(43 V3 E(H)| + 6.75¢2 - 6.75 kb Teloa(5 +D3t B ()|
gc-kC(é) 3 E(H)| + 6.75¢ - 6.75 ke l08(32) +elos () 3t p(F)|
< 13.5¢% - 6.75 k185031 | E(H)| < ¢6.75'k° 10813 | E(H)|.
O

In terms of space complexity, by the pseudocode and Lemma 7, we get that
each recursive call to PINQ-Rec uses O(2!|V (H)|log k) space, and the recursive
depth of PINQ-Rec is bounded by O(log k). Thus, we conclude that the space
complexity of PINQ-Alg is bounded by O(2!|V (H)|log? k).

References

[1] R. Y. Pinter, M. Zehavi, Partial information network queries, in: Proc.
IWOCA, 2013, pp. 362-375.

23

2]

[14]

[15]

V. Fionda, L. Palopoli, Biological network querying techniques: Analysis
and comparison, J. Comput. Biol. 18 (2011) 595-625.

F. Sikora, An (almost complete) state of the art around the graph motif
problem, Université Paris-Est Technical reports (2012).

D. W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold Spring
Harbor Laboratory Press: Cold Spring Harbor, New York, 2004.

R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford Univer-
sity Press, 2006.

R. G. Downey, M. R. Fellows, Fixed-parameter tractability and complete-
ness II: on completeness for W[1], Theor. Comput. Sci. 141 (1995) 109-131.

M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness, W.H. Freeman, New York, 1979.

R. Y. Pinter, O. Rokhlenko, D. Tsur, M. Ziv-Ukelson, Approximate labelled
subtree homeomorphism, J. Discrete Algorithms 6 (2008) 480—496.

R. Y. Pinter, O. Rokhlenko, E. Yeger-Lotem, M. Ziv-Ukelson, Alignment
of metabolic pathways, Bioinformatics 21 (2005) 3401-3408.

A. Mano, T. Tuller, O. Béja, R. Y. Pinter, Comparative classification
of species and the study of pathway evolution based on the alignment of
metabolic pathways, BMC Bioinform. 11 (2010) S38.

R. Y. Pinter, M. Zehavi, Algorithms for topology-free and alignment
queries, Technion Technical Reports CS-2012-12 (2012).

N. Alon, R. Yuster, U. Zwick, Color coding, J. Assoc. Comput. Mach. 42
(1995) 844-856.

T. Shlomi, D. Segal, E. Ruppin, R. Sharan, QPath: a method for querying
pathways in a protein-protein interaction networks, BMC Bioinform. 7
(2006) 199.

B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, R. Sharan, QNet: a
tool for querying protein interaction networks, J. Comput. Biol. 15 (2008)
913-925.

G. Blin, F. Sikora, S. Vialette, Querying graphs in protein-protein inter-
actions networks using feedback vertex set, IEEE/ACM Trans. Comput.
Biol. Bioinform. 7 (2010) 628-635.

F. Hiiffner, S. Wernicke, T. Zichner, Algorithm engineering for color-coding
with applications to signaling pathway detection, Algorithmica 52 (2008)
114-132.

24

[17]

[27]

[28]

[29]

H. Wang, T. Xiang, X. Hu, Research on pattern matching with wildcards
and length constraints: methods and completeness, www.intechopen.com/
books/ bioinformatics (2012).

V. Lacroix, C. G. Fernandes, M. F. Sagot, Motif search in graphs: Applica-
tion to metabolic networks, IEEE/ACM Trans. Comput. Biol. Bioinform.
3 (2006) 360-368.

S. Bruckner, F. Hiiffner, R. M. Karp, R. Shamir, R. Sharan, Topology-free
querying of protein interaction networks, in: Proc. RECOMB, 2009, pp.
74-89.

S. Guillemot, F. Sikora, Finding and counting vertex-colored subtrees, in:
Proc. MFCS, 2010, pp. 405-416.

I. Koutis, Faster algebraic algorithms for path and packing problems, in:
Proc. ICALP, 2008, pp. 575-586.

A. Bjorklund, T. Husfeldt, P. Kaski, M. Koivisto, Narrow sieves for pa-
rameterized paths and packings, CoRR abs/1007.1161 (2010).

J. Chen, J. Kneis, S. Lu, D. Molle, S. Richter, P. Rossmanith, S. Sze,
F. Zhang, Randomized divide-and-conquer: Improved path, matching, and
packing algorithms, STAM J. on Computing 38 (2009) 2526-2547.

A. M. Ambalath, R. Balasundaram, R. H. Chintan, K. Venkata, M. Neeld-
hara, P. Geevarghese, M. S. Ramanujan, On the kernelization complexity
of colorful motifs, in: Proc. IPEC, 2010, pp. 14-25.

N. Betzler, R. Bevern, M. R. Fellows, C. Komusiewicz, R. Niedermeier,
Parameterized algorithmics for finding connected motifs in biological net-
works, IEEE/ACM Trans. Comput. Biol. Bioinform. 8 (2011) 1296-1308.

A. Bjorklund, P. Kaski, L. Kowalik, Probably optimal graph motifs, in:
Proc. STACS, 2013, pp. 20-31.

R. Rizzi, F. Sikora, Some results on more flexible versions of graph motif,
in: Proc. CSR, 2012, pp. 278-289.

M. Zehavi, Parameterized algorithms for module motif, in: Proc. MFCS,
2013, pp. 825-836.

R. Dondi, G. Fertin, S. Vialette, Weak pattern matching in colored graphs:
minimizing the number of connected components, in: Proc. ICTCS, 2007,
pp. 27-38.

R. Dondi, G. Fertin, S. Vialette, Finding approximate and constrained
motifs in graphs, in: Proc. CPM, 2009, pp. 221-235.

25

[31] M. R. Fellows, G. Fertin, D. Hermelin, S. Vialette, Upper and lower bounds
for finding connected motifs in vertex-colored graphs, J. Comput. Syst. Sci.
77 (2011) 799-811.

[32] I. Koutis, Constrained multilinear detection for faster functional motif
discovery, Inf. Process. Lett. 112 (2012) 889-892.

26

Figure Captions

Figure 1

An illustration of a randomized divide-and-conquer step in ANQ-Alg.

Figure 2

An illustration of a randomized divide-and-conquer step in PINQ-Alg.

27

