
ar
X

iv
:1

30
3.

58
62

v2
 [

cs
.D

S]
 2

6
M

ar
 2

01
3

Improved Approximation Algorithm

for the Number of Queries Necessary

to Identify a Permutation

Mourad El Ouali Volkmar Sauerland

Department of Computer Science
Christian-Albrechts-Universität zu Kiel

Kiel, Germany

<meo,vsa>@informatik.uni-kiel.de

November 1, 2018

Abstract

In the past three decades, deductive games have become inter-
esting from the algorithmic point of view. Deductive games are two
players zero sum games of imperfect information. The first player,
called ”codemaker”, chooses a secret code and the second player, called
”codebreaker”, tries to break the secret code by making as few guesses
as possible, exploiting information that is given by the codemaker after
each guess. A well known deductive game is the famous Mastermind
game. In this paper, we consider the so called Black-Peg variant of
Mastermind, where the only information concerning a guess is the
number of positions in which the guess coincides with the secret code.
More precisely, we deal with a special version of the Black-Peg game
with n holes and k ≥ n colors where no repetition of colors is allowed.
We present a strategy that identifies the secret code in O(n log2 n)
queries. Our algorithm improves the previous result of Ker-I Ko and
Shia-Chung Teng (1985) by almost a factor of 2 for the case k = n. To
our knowledge there is no previous work dealing with the case k > n.

Keywords: Mastermind; combinatorial problems; permutations; al-
gorithms

1

http://arxiv.org/abs/1303.5862v2

1 Introduction

In the past three decades, deductive games have become interesting from the
algorithmic point of view. In this kind of games, two players are involved.
They are called the codemaker and the codebreaker, respectively. One of the
most famous games of this kind is Mastermind.

1.1 Problem Description

Mastermind is a two players board game invented in 1970 by the postmaster
and telecommunication expert Mordecai Meirowitz. The original version of
Mastermind consists of a board with twelve (or ten, or eight) rows containing
four holes and pegs of six different colors. The idea of the game is that the
codemaker, say ”Carole”, chooses a secret color combination of four pegs from
the six possible colors and the codebreaker, say ”Paul”, has to identify the
code by a sequence of queries and corresponding information that is provided
by Carole. All queries are also color combinations of four pegs. Information
is given about the number of correctly positioned colors and further correct
colors, respectively. Mathematically, we have two arbitrary positive integers,
n and k. Carole selects a vector y ∈ {1, . . . , k}n and Paul gives in each
iteration a query in form of a vector x ∈ {1, . . . , k}n. Carole replies with a
pair of two numbers:

• A black information black(x, y), which is the number of positions in
which both vectors x and y coincide:

black(x, y) = |{i ∈ {1, . . . , n}; x(i) = y(i)}|.

• A white information white(x, y), which is the number of additional
pegs with a right color but a wrong position:

white(x, y) = max
σ∈Sn

|{i ∈ {1, . . . , n}; y(i) = x(σ(i))}| − black(x, y).

The Black-Peg game is a special version of Mastermind, where Carole answers
only with the black information. A further version is the so-called AB game
in which all colors within a code must be distinct. In this paper, we deal with
a special combination of the Black-Peg game and the AB game, where both
the secret vector and the guesses are permutations (k ≥ n) and the answers
are given by the black information, only.

2

1.2 Related Works

It is not only the playful nature of Mastermind that has attracted the atten-
tion of computer scientists, but more importantly its relation to information-
theoretic and fundamental complexity questions. In 1963, several years be-
fore the invention of Mastermind as a commercial board game, Erdös and
Rényi [6] analyzed the same problem with two colors. One of the earliest
analysis of this game after its commercialization dealing with the case of 4
pegs and 6 colors was done by Knuth [14]. He presented a strategy that
identifies the secret code in at most 5 guesses. Ever since the work of Knuth
the general case of arbitrary many pegs and colors has been intensively in-
vestigated in combinatorics and computer science literature.

In the field of complexity, Stuckman and Zhang [18] showed that it is
NP-complete to determine if a sequence of queries and answers is satisfi-
able. Concerning the approximation aspect, there are many works regarding
different methods [1, 2, 3, 5, 7, 8, 9, 10, 12, 16, 17, 18, 19].

The Black-Peg game was first introduced by Chvátal for the case k = n.
He gave a deterministic adaptive strategy that uses 2n⌈log2 k⌉+ 4n guesses.
Later, Goodrich [11] improved the result of Chvátal for arbitrary n and
k to n⌈log2 k⌉ + ⌈(2 − 1/k)n⌉ + k guesses. Moreover, he proved in same
paper that this kind of game is NP-complete. A further improvement to
n⌈log2 n⌉+k−n+1 for k > n and n⌈log2 n⌉+k for k ≤ n was done by Jäger
and Peczarski [13]. Recently, Doerr et al [4] improved the result obtained by
Chvátal to O(n log log n) and also showed that this asymptotic order even
holds for up to n2 log logn colors, if both black and white information is
allowed.

Another variant of Mastermind is the so-called AB game, also known as
”Bulls and Cows” game. Here, all pegs in the secret code as well as in each
query must have distinct colors.

Concerning the combination of both variants, Black-Peg game and AB
game, there is only one work due to Ker-I Ko and Shia-Chung Teng [15] for
the case k = n. They presented a strategy that identifies the secret permu-
tation in at most 2n log2 n + 7n guesses and proved that the corresponding
counting problem is #P-complete. To our knowledge there is no result for
the case k > n, yet.

3

1.3 Our Contribution

In this paper we consider the Black-Peg game without color repetition. We
present a polynomial-time algorithm that identifies the secret permutation
in less than n log2 n+λn queries in the case k = n and in less than n log2 n+
k + 2n queries in the case k > n. Our performance in the case k = n is an
improvement of the result of Ker-I Ko and Shia-Chung Teng [15] by almost a
factor of 2. Note, that additional difficulty compared to the case considered
by Doerr et al is given here by the fact that color repetition is not only
forbidden for the secret code but also for the guesses.

2 An Algorithm for Permutation-Mastermind

We first consider the case k = n and forbidden color repetition, meaning that
codes are one-line representations of permutations in Sn. For convenience,
we will use the term permutation for both, a mapping in Sn and its one-line
representation as a vector. Our algorithm for finding the secret permutation
y ∈ Sn includes two main phases which are based on two ideas. In the first
phase we guess an initial sequence of n permutations that has a predefined
structure. In the second phase, the structure of the initial sequence and the
corresponding information by the codemaker enable us to identify correct
components yi of the secret code one after another, each by using a binary
search. Recall, that for two codes w = (w1, . . . , wn) and x = (x1, . . . , xn), we
denote by black(w, x) the number |{i ∈ {1, . . . , n} |wi = xi}| of components
in which w and x are equal. We denote the mapping x restricted to the set
{s, . . . , l} with (xi)

l
i=s, s, l ∈ {1, . . . , n}.

2.1 Phase 1

Consider the n permutations, σ1, . . . , σn, that are defined as follows: σ1

corresponds to the identity map and for j ∈ {1, . . . , n − 1}, we obtain σj+1

4

from σj by a circular shift to the right, i.e. we set

σ1 = (1, 2, . . . , n), (1)

σ2 = (n, 1, 2, . . . , n− 1),

σ3 = (n− 1, n, 1, 2, . . . , n− 2),

. . . ,

σn−1 = (3, 4, . . . , n, 1, 2),

σn = (2, 3, . . . , n, 1).

Within those n permutations, every color appears exactly once at every po-
sition and, thus, we have

n
∑

j=1

black(σj, y) = n. (2)

We guess σ1, . . . , σn−1 and obtain the additional information black(σn, y)
from (2).

2.2 Phase 2

The strategy of the second phase identifies the values of y one after another.
This is done by using two binary search routines, called findFirst and
findNext, respectively. The idea behind both binary search routines is
to exploit the information that for 1 ≤ i, j ≤ n − 1 we have σj

i = σj+1

i+1
,

σn
i = σ1

i+1, σ
j
n = σj+1

1 and σn
n = σ1

1 . While, except for an unfrequent special
case, findFirst is used to identify the first correct component of the secret
code, findNext identifies the remaining components in the main loop of
the algorithm. Actually, findFirst would also be able to find the remaining
components but requires more guesses than findNext (twice as much in the
worst case). On the other hand, findNext does only work if at least one
value of y is already known such that we have to identify the value of one
secret code component in advance.

2.2.1 Identifying the First Component

Equation (2) implies that either black(σj, y) = 1 holds for all j ∈ {1, . . . , n}
or that we can find a j ∈ {1, . . . , n} with black(σj, y) = 0.

5

In the first case, which is unfrequent, we can find one correct value of y
by guessing at most n

2
+ 1 modified versions of some initial guess, say σ1.

Namely, if we define a guess σ by swapping a pair of components of σ1, we
will obtain black(σ, y) = 0, if and only if one of the swapped components has
the correct value in σ1.

In the frequent second case, we find the first component by findFirst in
at most 2⌈log2 n⌉ guesses. The routine findFirst is outlined as Algorithm 1
and works as follows: In the given case, we can either find a j ∈ {1, . . . , n−1}
with black(σj , y) > 0 but black(σj+1, y) = 0 and set r := j + 1, or we have
black(σn, y) > 0 but black(σ1, y) = 0 and set j := n and r := 1. We call
such an index j an active index. Now, for every l ∈ {2, 3, . . . , n} we define
the code

σj,l :=
(

(σj
i)

l−1

i=1, σ
r
1, (σ

r
i)

n
i=l+1

)

,

and call the peg at position l in σj,l the pivot peg. From the information
σj
i = σr

i+1 for 1 ≤ i ≤ n−1 we conclude that σj,l is actually a new permutation
as required. The fact that black(σr, y) = 0 implies that the number of
correct pegs up to position l − 1 in σj is either black(σj,l, y) (if yl 6= σr

1) or
black(σj,l, y)− 1 (if yl = σr

1). For our algorithm, we will only need to know
if there exist one correct peg in σj up to position l − 1. The question is
cleared up, if black(σj,l, y) 6= 1. On the other hand, if black(σj,l, y) = 1, we
can define a new guess ρj,l by swapping the pivot peg with a wrong peg in
σj,l. We define

ρj,l :=

{

(

(σj
i)

l
i=1, σ

r
1, (σ

r
i)

n
i=l+2

)

if l < n
(

σr
1, (σ

j
i)

n−1

i=2 , σ
j
1

)

if l = n

assuming for the case l = n, that we know that σj
1 6= y1. We will obtain

black(ρj,l, y) > 0, if and only if the pivot peg had a wrong color before,
meaning that there is one correct peg in σj in the first l−1 places. Thus, we
can find the position m of the left most correct peg in σj by a binary search
as outlined in Algorithm 1.

2.2.2 Identifying a Further Component

For the implementation of findNext we deal with a partial solution vector
x that satisfies xi ∈ {0, yi} for all i ∈ {1, . . . , n}. We call the (indices
of the) non-zero components of the partial solution fixed. They indicate the
components of the secret code that have already been identified. The (indices

6

Algorithm 1: Function findFirst

input : Code y and an active index j ∈ {1, . . . , n}
output: Position m of the left most correct peg in σj

1 if j = n then r := 1 else r := j + 1;
2 a := 1;
3 b := n;
4 m := n ; // correct position in σj to be determined

5 while b > a do

6 l := ⌈a+b
2
⌉ ; // current pivot position

7 Guess σj,l :=
(

(σj
i)

l−1

i=1, σ
r
1, (σ

r
i)

n
i=l+1

)

;
8 s := black(σj,l, y);
9 if s = 1 then

10 if l < n then ρj,l :=
(

(σj
i)

l
i=1, σ

r
1, (σ

r
i)

n
i=l+2

)

;

11 else ρj,l :=
(

σr
1, (σ

j
i)

n−1

i=2
, σj

1

)

;
12 Guess ρj,l;
13 s := black(ρj,l, y);

14 if s > 0 then

15 b := l − 1;
16 if b < m then m := b;

17 else a := l;

18 Return m;

7

of the) zero components are called open. Whenever findNext makes a guess
σ, it requires to know the number of open components in which the guess
coincides with the secret code, i.e. the number

black(σ, y, x) := black(σ, y)− black(σ, x).

Note, that the term black(σ, x) is known by the codebreaker. After the first
component of y has been found and fixed in x, there exists a j ∈ {1, . . . , n}
such that black(σj , y, x) = 0. As long as we have open components in
x, we can either find a j ∈ {1, . . . , n − 1} with black(σj, y, x) > 0 but
black(σj+1, y, x) = 0 and set r := j + 1, or we have black(σn, y, x) > 0 but
black(σ1, y, x) = 0 and set j := n and r := 1. Again, we call such an index j
an active index.

Let j be an active index and r its related index. Let c be the color of some
component of y that is already identified and fixed in the partial solution x.
With lj and lr we denote the position of color c in σj and σr respectively. The
peg with color c serves as a pivot peg for identifying a correct position m in
σj that is not fixed, yet. There are two possible modes for the binary search
that depend on the fact if m ≤ lj . The mode is indicated by a boolean
variable leftSearch and determined by lines 4 to 8 of findNext. Clearly,
m ≤ lj if lj = n. Otherwise, we guess

σj,0 :=
(

c, (σj
i)

lj−1

i=1 , (σ
j
i)

n
i=lj+1

)

,

By the information σj
i = σr

i+1 we obtain that (σj
i)

lj−1

i=1
≡ (σr

i)
lj
i=2

. We further
know that every open color has a wrong position in σr. For that reason,
black(σj,0, y, x) = 0 implies that m ≤ lj. The binary search for the exact
value of m is done in the interval [a, b], where m is initialized as n and [a, b]
as

[a, b] :=

{

[1, lj] if leftSearch = true

[lr, n] else

(lines 9 to 11 of findNext). In order to determine if there is an open correct
component on the left side of the current center l of [a, b] in σj we can define
a case dependent permutation:

σj,l :=

{

(

(σj
i)

l−1

i=1, c, (σ
j
i)

lj−1

i=l , (σ
j
i)

n
i=lj+1

)

if leftSearch = true
(

(σr
i)

lr−1

i=1 , (σr
i)

l
i=lr+1, c, (σ

r
i)

n
i=l+1

)

else

8

Algorithm 2: Function findNext

input : Code y, partial solution x 6= 0 and an active index
j ∈ {1, . . . , n}

output: Position m of a correct open component in σj

1 if j = n then r := 1 else r := j + 1;
2 Choose a color c with identified position (a value c of some non-zero
component of x);

3 Let lj and lr be the positions with color c in σj and σr, respectively;
4 if lj = n then leftSearch := true else

5 Guess σj,0 :=
(

c, (σj
i)

lj−1

i=1 , (σ
j
i)

n
i=lj+1

)

;

6 s := black(σj,0, y, x);
7 if s = 0 then leftSearch := true;
8 else leftSearch := false;

9 if leftSearch then let a := 1 and b := lj ;
10 else let a := lr and b := n;
11 m := n ; // correct position in σj to be determined

12 while b > a do

13 l := ⌈a+b
2
⌉ ; // current position for peg c

14 if leftSearch then σj,l :=
(

(σj
i)

l−1

i=1, c, (σ
j
i)

lj−1

i=l , (σ
j
i)

n
i=lj+1

)

;

15 else σj,l :=
(

(σr
i)

lr−1

i=1
, (σr

i)
l
i=lr+1

, c, (σr
i)

n
i=l+1

)

;
16 Guess σj,l;
17 s := black(σj,l, y, x);
18 if s > 0 then

19 b := l − 1;
20 if b < m then let m := b;

21 else a := l;

22 Return m;

9

In the first case, the first l − 1 components of σj,l coincide with those of σj .
The remaining components of σj,l cannot coincide with the corresponding
components of the secret code if they have not been fixed, yet. This is
because the l-th component of σj,l has the already fixed value c, components
l + 1 to lj coincide with the corresponding components of σr which satisfies
black(σr, y, x) = 0 and the remaining components have been checked to be
wrong in this case. Thus, there is a correct open component on the left side
of l in σj , if and only if black(σj,l, y, x) 6= 0. In the second case, the same
holds for similar arguments. Now, if there is a correct open component to
the left of l, we update the binary search interval [a, b] by [a, l − 1] and set
m := min(m, l − 1). Otherwise, we update [a, b] by [l, b].

2.3 The Main Algorithm

The main algorithm is outlined as Algorithm 3. It starts with an empty
partial solution and finds the components of the secret code y one-by-one.
Herein, the vector v does keep record about the number of open components
in which the permutations σ1, . . . , σn equal y and is, thus, initialized by
vi := black(σi, y), i ∈ {1, . . . , n − 1} and vn := n −

∑n−1

i=1
vi. As mentioned

above, the main loop always requires an active index. For that reason, if
v = 1n in the beginning, we fix one solution peg in σ1 and update x and v,
correspondingly. Every call of findNext in the main loop augments x by a
correct solution value. Since one call of findNext requires at most 1+⌈log2 n⌉
guesses, Algorithm 3 does not need more than (n−3)⌈log2 n⌉+

5

2
n−1 queries

(inclusive at most n
2
+1 initial and 2 final queries, respectively) to break the

secret code.

3 More Colors than Components

Now, we consider the case k > n and forbidden color repetition. Let y =
(y1, . . . , yn) be the code that must be found. We use the same notations as
above.

3.1 Phase 1

Consider the k permutations σ1, . . . , σk, where σ1 corresponds to the identity
map on {1, . . . , k} and for j ∈ {1, . . . , k − 1}, we obtain σj+1 from σj by a

10

Algorithm 3: Mastermind Algorithm for Permutations

1 Let y be the secret code and set x := (0, 0, . . . , 0);
2 Guess the permutations σi, i ∈ {1, . . . , n− 1} defined by (1);
3 Initialize v ∈ {0, 1, . . . , n}n by vi := black(σi, y), i ∈ {1, . . . , n− 1},

vn := n−
∑n−1

i=1
vi;

4 if v = 1n then

5 j := 1;
6 Find the position m of the correct peg in σ1 by at most n

2
+ 1

further guesses;

7 else

8 Choose an active index j ∈ {1, . . . , n} and call findFirst to find
the position of the correct peg in σj by at most 2⌈log2 n⌉ further
guesses;

9 xm := σj
m;

10 vj := vj − 1;
11 while |{i ∈ {1, . . . , n} | xi = 0}| > 2 do

12 Choose an active index j ∈ {1, . . . , n};
13 m := findNext(y, x, j);
14 xm := σj

m;
15 vj := vj − 1;

16 Make at most two more guesses that are obtained from x by assigning
its two remaining zero-components to the two unidentified colors;

11

circular shift to the right. We define k codes σ1, . . . , σk by σj = (σj
i)

n
i=1,

j ∈ {1, . . . , k}, i.e. we set

σ1 = (1, 2, . . . , n),

σ2 = (2, . . . , n− 1, n, n+ 1),

. . . ,

σk−n+1 = (k − n+ 1, k − n+ 2, . . . , k − 1, k),

σk−n+2 = (k − n+ 2, k − n+ 3, . . . , k, 1).

. . . ,

σk−1 = (k − 1, k, 1, . . . , n− 3, n− 2),

σk = (k, 1, . . . , n− 1).

Within those k codes, every color appears exactly once at every position and,
thus, we have

k
∑

j=1

black(σj, y) = n,

similar to (2). Since k > n, this implies that

Lemma 1. There is a j ∈ {1, . . . , k} such that black(σj, y) = 0.

3.2 The Main Algorithm

We are able to apply the routines described in Section 2 by replacing the
n− 1 initial queries with the new k − 1 queries σ1, . . . , σk−1 and initializing
the vector v correspondingly (lines 2 and 3 of Algorithm 3). By Lemma 1, the
case v = 1 will not appear and we can always apply findFirst to identify
the first correct value. For the required number of queries to break the secret
code we have: The initial k − 1 guesses, one call of findFirst to detect
the first correct position (at most 2⌈log2 n⌉ guesses), a call of findNext

for every other but the last two positions (at most 1 + ⌈log2 n⌉ guesses per
position) and one or two final guesses. This yields

Theorem 2. The modified Mastermind Algorithm for Permutations breaks
the secret code in at most (n− 1)⌈log2 n⌉+ k + n− 2 queries.

12

4 Conclusions and Further Work

In this paper we presented a deterministic algorithm for the identification
of a secret code in ”Permutation Mastermind”. A challenge of Permutation
Mastermind is that no color repetition is allowed for a query while most
strategies for other Mastermind variants exploit the property of color repeti-
tion. Further, concerning Permutation Mastermind, we consider for the first
time the case that the number of colors is greater than the code length. The
provided Algorithms were implemented in Matlab and tested for n, k ≤ 1000.

In [15] it is mentioned that a trivial lower bound on the worst case number
of queries for Permutation Mastermind is n, but the authors conjecture that
this number is actually Ω(n log n), a proof of which would close the gap to
the upper bound. The authors show that the search space reduces at most
by a factor of e after the first guess and point out that a similar assertion
for the whole sequence of queries would yield the desired lower bound due
to Stirling’s formula for n!. Experimental, we checked the worst case search
space reduction after the first two queries to be less than e2 for n ≤ 9. Finding
general theoretical formulas w.r.t. this matter remains a very ambiguous
task. However, further experiments may not only increase evidence about
the lower bound conjecture but probably will even give ideas concerning
expedient analysis steps.

[SODA 2013] Benjamin Doerr, Reto Spöhel, Henning Thomas, and Car-
ola Winzen. Playing Mastermind with Many Colors In: Proc. of ACM-SIAM
Symposium on Discrete Algorithms (SODA 2013), pages 695-704, SIAM So-
ciety for Industrial and Applied Mathematics, 2013. arXiv version.

References

[1] L. Berghman, D. Goossens, and R. Leus. Efficient solution for master-
mind using genetic algorithms. Computer Research, 36(6):1880–1885,
2009.

[2] Z. Chen, C. Cunha, and S. Homer. Finding a hidden code by asking
questions. In Proc. of the 22nd Conference on Computing and Combi-
natorics (COCOON’96), pages 50–56. Springer, 1996.

[3] V. Chvátal. Mastermind. Combinatorica, 3:325–329, 1983.

13

[4] B. Doerr, R. Spöhel, H. Thomas, and C. Winzen. Playing Mastermind
with Many Colors. In: Proc. of ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), pages 695–704. SIAM Society for Industrial
and Applied Mathematics, 2013.

[5] B. Doerr, and C. Winzen. Playing Mastermind with constant-size mem-
ory. In Proc. of the symposium on Theoritical Aspects of Computer Sci-
ence (STACS’12), pages 441–452. Scloss Dagstuhl-leibniz-Zentrum für
Informatik, 2012.

[6] P. Erdös and C. Rényi. On Two Problems in Information Theory. Pub-
lications of the Mathematical Institute of the Hungarian Academy of
Science, 8:229–242, 1963.

[7] R. Focardi and F.l. Luccio. Cracking bank pins by playing Mastermind.
In proc. of the 5th international conference on Fun with algorithms
(FUN’10), pages 202–213. Springer, 2010.

[8] J. J. M. Guervós, C. Cotta, and A. M. Gacia. Improving and scal-
ing evolutionary approaches to the Mastermind problem. In proc. of
Applications of Evolutionary Computation (EvoApplications’11), pages
103–112. Springer, 2011.

[9] J. J. M. Guervós, A. M. Mora, and C. Cotta. Optimizing worst case
scenario in evolutionary solution to the Mastermind puzzel. In Proc. of
IEEE Congress on Evolutionary Computation (CEC’11), pages 2669–
2676. IEEE, 2011.

[10] M. T. Goodrich. The Mastermind atack on geonomic data. In Proc. of
the 2009 30th IEEE Symposium on Security and Privacy(SP’09), pages
204–218. IEEE, 2009.

[11] M. T. Goodrich. On the alogorithmic complexity of the Mastermind
game with black-peg results. Information Processing Letters,109:675–
678, 2009.

[12] G. Jäger and M. Peczarski. The number of pessimisric guesses in gener-
alized Mastermind. Information Processing Letters, 109:635–641, 2009.

14

[13] G. Jäger and M. Peczarski. The number of pessimisric guesses in gener-
alized black-peg Mastermind. Information Processing Letters, 111:933–
940, 2011.

[14] D. E. Knuth. The computer as a master mind. Journal of receational
Mathematics, 9:1–5,1977.

[15] K. Ko and S. Teng. On the Number of queries necessary to identify a
permutation. Journal of Algorithms, 7:449–462, 1986.

[16] T. Kalisker and D. Camens. An optimal Mastermind using genetic algo-
rithms. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’03), pages 1590–1591. ACM, 2003.

[17] K. Koyama and T. W. Lai. An optimal Mastermind strategy. Journal
of Recreational Mathematics, 25:251–256, 1993.

[18] J. Stuckman nad G. Zhang. Mastermind is NP-complete. INFOCOMP
Journal of Computer Science, 5:25–28, 2006.

[19] A. Temporel and T. Kovacs. A heuristics hill climbing algorithm for
Mastermind. In proc. of the 2003 UK Workshop on Computational In-
tellegence (UKCT’03), pages 189–196. Springer, 2003.

[20] G. Viglietta. Hardness of Mastermind. In Proc. of the 6th International
Conference on Fun with Algorithms (FUN’12), pages 368–378. Spriger,
2012.

15

	1 Introduction
	1.1 Problem Description
	1.2 Related Works
	1.3 Our Contribution

	2 An Algorithm for Permutation-Mastermind
	2.1 Phase 1
	2.2 Phase 2
	2.2.1 Identifying the First Component
	2.2.2 Identifying a Further Component

	2.3 The Main Algorithm

	3 More Colors than Components
	3.1 Phase 1
	3.2 The Main Algorithm

	4 Conclusions and Further Work

