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Abstract. We give an iterative algorithm for finding the maximum flow
between a set of sources and sinks that lie on the boundary of a planar
graph. Our algorithm uses only O(n) queries to simple data structures,
achieving an O(n logn) running time that we expect to be practical given
the use of simple primitives. The only existing algorithm for this problem
uses divide and conquer and, in order to achieve an O(n logn) running
time, requires the use of the (complicated) linear-time shortest-paths
algorithm for planar graphs.
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1 Introduction

The problem of finding maximum flow in planar graphs has a long history, start-
ing with the work of Ford and Fulkerson [7] in which the Max-flow, Min-cut
Theorem was proved and the augmenting-paths algorithm was introduced. Since
then, algorithms for maximum flow in planar graphs have fallen into one of three
paradigms: augmenting paths, divide and conquer using small balanced planar
separators, or via shortest paths in the dual. We note a subset of these results
that are relevant to this paper. Borradaile and Klein gave an augmenting-paths
algorithm for maximum st-flow in directed planar graphs that uses dynamic
trees to achieve an O(n log n) running time [3]. For the special case when s and
t are on the same face, an augmenting-paths algorithm can be simulated via Di-
jkstra’s algorithm or, equivalently, determined from shortest-path distances in
the dual graph [9] (details in Section 2). Borradaile et al. gave a rather compli-
cated O(n log3 n)-time divide-and-conquer algorithm for when there are multiple
sources and sinks (not necessarily on a common face) [4]. For the special case
when these sources and sinks are all on a common face1 (such as the bound-
ary of the embedded graph), Miller and Naor gave a simpler divide-and-conquer
algorithm [12].

In this work we give an iterative algorithm for this last boundary-to-boundary
case. While our algorithm does not improve on the asymptotic running time of
Miller and Naor’s work, in order for Miller and Naor’s algorithm to be imple-
mented in O(n log n) time, one requires repeated applications of the linear-time

? Work done while at Oregon State University.
1 Note that there is no planarity-maintaining reduction from this case to the single-

source, single-sink case.
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shortest-paths algorithm of Henzinger et al. [10]. This shortest-paths algorithm
is arguably impractical: it is also a divide-and-conquer algorithm using small
planar separators, involves ‘large constants’ and, to our knowledge, has not been
implemented. Our algorithm, on the other hand, requires just O(n) (with a small
constant) queries to simple data structures: namely a priority queue and a linked
list [6].

Our algorithm is an augmenting-paths algorithm that iterates over the source-
sink pairs. We simulate finding the flow between a given source and sink using
Hassin’s method – via Dijkstra’s algorithm in the dual graph. In order to prevent
searching the same region of the graph multiple times, we search the graph in
a biased way [8], such that we need only reuse the boundary of the searched
region for augmenting further source-sink pairs. In order to reuse these bound-
aries efficiently, we use a simple generalization of priority queues in which queues
are merged whose relative priorities differ by a constant or offset. These offset
queues are implemented using edge weights to encode the offset in a tree imple-
mentation of the heap; doing so does not affect the asymptotic running time of
the basic priority queue operations. Details are given in Appendix A.

We believe that the methods used in this paper may be applicable to other
planar flow problems. For example, in a companion paper [2], we argue that the
augmenting-paths algorithm of Borradaile and Klein for maximum st-flow in
directed planar graphs can also be simulated by Dijkstra in the dual graph; the
details of the implementation in this paper may lead to an O(n log n) algorithm
for maximum st-flow in directed planar graphs that does not require the more
cumbersome dynamic-trees data structure.

1.1 Definitions

We give a brief outline of definitions where we may stray from convention. For
more complete and formal definitions, please refer to Borradaile’s dissertation [5].
We extend any function or property on elements to sets of elements in the natural
way.

Our algorithms are for directed graphs, but we consider the underlying undi-
rected graph where each edge has two oppositely directed darts. Darts are ori-
ented from tail to head. Capacities, c, on the darts are positive and asymmetric,
reflecting the original directed problem. Paths and cycles are sequences of darts
and so are naturally directed; a path or a cycle may visit the same vertex mul-
tiple times; those that do not are simple; a path may be trivial, in which case it
is a vertex. X[a, b] denotes the a-to-b subpath of X where X is a path, cycle or
tree; ◦ denotes the concatenation of paths (which may result in a cycle).

A flow f is an assignment of real numbers to darts that is antisymmetric (for
a dart and its reverse), respects capacities and is balanced at all non-terminal
(non-source, sink) vertices. The value |f | of a flow is the net flow entering the
sinks. A flow is a circulation if there are no terminals. The residual capacities cf
of capacities c w.r.t. flow f are given by:

cf [d] = c[d]− f [d], ∀darts d (1)
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A path or cycle X is residual if the residual capacity of every dart in X is strictly
positive. A dart is saturated if its residual capacity is zero. Residuality is w.r.t.
capacities (such as c or cf ).

An xy-cut in G is a set of darts C, the removal of which leaves no x-to-y
paths. The value of a cut is the total capacity of its darts. The value of the
minimum xy-cut equals to that of the maximum xy-flow [7].

We use the usual definitions for planar graphs and their duals. We denote any
path, cycle, vertex, face, dart in the dual graph with a ∗-superscript. If d is a dart
in G, then d∗ is the corresponding dual dart; if v is a vertex and f is a face in G,
v∗ is a face and f∗ is a vertex in G∗. The boundary of the graph is denoted ∂G
and is taken to be clockwise. We refer to simple cycles as being clockwise (c.w.)
or counterclockwise (c.c.w.); c.w. and c.c.w. depend on the choice of infinite face,
f∞, which, throughout this paper, we will take to be the face common to all the
sources and sinks.

For two non-crossing x-to-y paths P and Q, we say P is left of Q if P ◦rev (Q)
is c.w. A path is leftmost if there are no paths left of it. For an x-to-y path P
that starts and ends on ∂G, we say a face, edge, path, etc. X is (strictly) left of
P if X is (strictly) contained by the c.w. cycle ∂G[x, y] ◦ rev (P ). We say that a
planar flow f is leftmost if every c.w. cycle is non-residual w.r.t. cf . We say that
capacities are c.w. acyclic if every c.w. cycle is non-residual w.r.t. the capacities.

2 Leftmost maximum flows and shortest paths

Khuller, Naor and Klein [11] showed that a flow that is derived from shortest-
path distances in the dual is c.w. acyclic. Formally:

Theorem 1 (Clockwise acyclic flows). Let d be the shortest-path distances
in G∗ from f∗∞ interpreting capacities as lengths. Then every c.w. cycle is non-
residual w.r.t. the flow

f [d] = d[head(d∗)]− d[tail(d∗)] ∀ darts d (2)

where head(d∗) and tail(d∗) are the head and tail vertices of d∗ in G∗.

Earlier, Hassin had used this idea to find a maximum st-flow in an st-planar
graph [9]. We can view his algorithm by turning it into a circulation problem:
introduce a new infinite-capacity arc ts embedded so that every s-to-t residual
path forms a c.w. cycle with ts and then saturate the c.w. cycles. We describe an
equivalent formulation which we use in this paper. Split the dual vertex f∗∞ into
two vertices a∗∞ and b∗∞ such that all the darts in ∂G[s, t]∗ are incident to a∗∞
and all the darts in ∂G[t, s]∗ are incident to b∗∞; denote the resulting graph G∗st.
Let d[x∗] be the shortest-path distance from a∗∞ to x∗ in G∗st, viewing capacities
as lengths. Then the flow assignment fst for G given as in Equation (2) is a
maximum st-flow. It follows directly from Theorem 1 that fst is the leftmost
maximum st-flow.

Since simple cuts in the primal map to simple cycles in the dual (and vice
versa) [13], the darts of an st-cut C form an a∗∞-to-b∗∞ path C∗ in G∗st. If C is
a minimum cut, C∗ is a shortest path.



4 Glencora Borradaile and Anna Harutyunyan

Observation 1 A leftmost flow w.r.t. c.w. acyclic residual capacities is acyclic. [3]

Because of this acyclicity, one can easily show:

Observation 2 Let c be c.w. acyclic capacities and let f the leftmost, max
st-flow for s and t on f∞. Then there is a decomposition of f into unique, non-
crossing s-to-t paths P1, P2, . . . , P` where Pi carries fi > 0 units of flow and Pi is
left of Pj ∀i < j. Further, an augmenting-paths algorithm that always saturates
the leftmost path first saturates the paths P1, . . . , P` in order.

Our algorithm requires c.w. acyclic capacities; the analysis will use this fact
indirectly by invoking Observation 2. We will achieve this property in a pre-
processing step and maintain this as an invariant throughout the algorithm. It
follows from Equation (2) and Observation 2 that, for every primal face x (dual
vertex x∗):

d[x∗] =

{∑i
j=1 fj if x is right of Pi and left of Pi+1∑`
j=1 fj = |f | if x is right of P`

(3)

2.1 st-planar flow via biased search

We describe how to find an st-planar flow via biased search (in the dual) that
does not necessarily search the entire graph, assuming that the initial capacities
are c.w. acyclic. We assume that there are no degree-2 vertices in the primal; any
such vertex could be removed by merging the adjacent darts (in each direction)
and keeping the minimum of the capacities. Parallel darts (not antiparallel) can
be merged by taking the sum of their capacities. We additionally assume that
the finite faces of the primal are triangulated (which can be achieved by the
addition of 0-capacity edges).

b*∞

s

t

a*∞ C*
Pl

Fig. 1. ∂G is the dashed circle and the
dashed s-to-t path is P`. In G∗st, a

∗
∞ is in-

cident to the duals of all the arcs on the
path of the circle c.w. from s to t and b∗∞ is
incident to the duals of all the arcs on the
path of the circle c.w. from t to s. The solid
tree is the search tree used in the biased
search algorithm with the a∗∞-to-b∗∞ path
representing the leftmost cut C∗.

We implicitly and iteratively build
a decomposition as given in Observa-
tion 2 using Dijkstra’s algorithm in
the dual. Initially P1 = ∂G[s, t]. In
phase i, we have already found path
Pi; we maintain that, at the start
of phase i, the faces adjacent to and
right of Pi are in the queue Qi. (Keep
in mind that faces are vertices in the
dual, and we are really just finding
shortest paths in the dual graph, ap-
plying the standard rules for Dijk-
stra’s algorithm.) The priority of face
x is the capacity of the minimum-
capacity dart bounding x in Pi. Say
the minimum priority in the queue is
q; to find Pi+1 we pop faces off the
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queue with priority q until the minimum priority in the queue is > q. Now we
have popped off all the faces between Pi and Pi+1 (by Equation (3)) and Qi+1

contains all the faces to the right of and adjacent to Pi+1.
So far, we have just described Hassin’s algorithm, but have made explicit

the augmenting paths that are implicit in his algorithm. We have also identified
phases. In each phase, all the faces of a given distance label are explored via
0-length darts (in the dual).

We modify the algorithm so that we do not explore the entire graph. Note
that all the faces to the right of P` (the last augmenting path), by Equation (3)
have distance label |f |. Rather than label all these faces, after getting to the start
of phase `, we wish to find the leftmost cut. Let C∗ be the leftmost, shortest a∗∞-
to-b∗∞ path in G∗st; C is the leftmost cut. The part of C∗ that is strictly to the
right of P` consists of 0-length darts, since the sum of the capacities of the darts
in C∗ that are in P1, . . . , P` is |f | by Equation (3). In addition to identifying the
leftmost cut, we wish to not explore any part of the graph strictly right of P`

and C∗. (See Figure 1.)
We find the leftmost cut by at each phase additionally maintaining an or-

dering Ai of the faces in Qi that reflects their order along Pi from t to s. We
maintain and query the ordering using the order maintenance data structure
DSOrder due to Dietz and Sleator [6] which is a circularly linked list with or-
der information determined using 2’s complement arithmetic. (See Appendix B
for details. Each of the operations takes either O(1) or O(log n) time per visited
face.) During a phase, we:

(1) Start with faces that are closest to t in the ordering.
(2) Explore along 0-length darts in the dual in a depth-first leftmost fashion;

this can be done by following the combinatorial embedding of the darts around
a vertex in a c.w. order, using the parent dart in the search tree implicit to
Dijkstra’s algorithm [3].

(3) If we reach b∗∞ during this search, we immediately stop the algorithm.
(More details of this are given below.)

(4) At the end of this 0-length exploration, we remove from the queue and
order any faces that we have reached in this exploration. Suppose T ∗ is the
dual search tree we have explored that contains the shortest paths found by
Dijkstra’s algorithm, rooted at a face adjacent to Pi. We add the never-visited
faces adjacent to T ∗ in their c.w. order around T ∗ (according to their shortest
adjacency to T ∗). This ordering is easily visualized by contracting the edges of
T ∗ and considering the c.w. ordering of the darts around the new (dual) vertex.

At the start of each phase, the queue and the order contain the same set of
elements. The leftmost-bias to the search additionally guarantees that the final
dual search tree T ∗ contains leftmost shortest paths. This can be easily shown
via induction. Since we stop as soon as we reach b∗∞ and we search in a leftmost
fashion, T ∗ does not contain any darts strictly right of both the last flow path
P` found and T ∗[a∗∞, b∗∞]. In this way, we also guarantee:

Observation 3 At the end of this biased search, the queue and order contain
the faces adjacent to and right of P`.
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In our multi-source, multi-sink algorithm, we will reuse this queue and order.
To do so, we need to know the residual capacities of the darts in P`. If a face f
in the queue has exactly one bounding arc in P`, then the priority of f reflects
exactly the residual capacity of that dart. If f has two bounding darts d1 and
d2 in P` (i.e., the head of d∗1 and d∗2 in G∗ is f∗), then, to the right of P`, we can
only push the minimum of these darts’ residual capacities along this section of
P`. (Put another way, if we remove everything strictly to the left of P`, d1 and
d2 would be incident to a degree 2 vertex, which we would remove according to
the rule at the start of this section.) We get:

Observation 4 The priority of a face f in the queue reflects the residual ca-
pacity of the dart(s) bounding the face in P`; the residual capacity is the priority
less |f |.

Subtracting |f | from the priorities in the ending queue can be done in O(1) time
using offset queues (Appendix A). Finally, the DSOrder data structure does
not allow us to pull the first element of the order (having minimum priority in
the queue) but does allow us to sort a subset of items. In doing so, we spend
O(log n)-amortized time per element. We do not wish to repeat this work. If we
reach b∗∞ in the middle of a phase and have a subset of items X that we have
sorted using DSOrder, we break the ties in the priorities of these items in the
priority queue. When we return to use this queue/order, we will not need to
resort these items.

3 Algorithm

For simplicity of presentation we will assume that the terminals are alternating
sources and sinks along ∂G. This can be attained by taking a consecutive group
of sources S, introducing a new source and connecting the new source to every
source in S with an infinite capacity arc. We number the sources and sinks
according to their c.w. ordering on ∂G, s1, t1, s2, t2, . . . , sm, tm, starting with an
arbitrary source. We return the difference between the original capacities and
final residual capacities, which, by Equation (1), is the corresponding flow.

AbstractFlow (G, {s1, t1, s2, t2, . . . , sm, tm}, c)
Saturate all sj-to-ti residual paths ∀i < j and all c.w. cycles.
Let c0 be the resulting residual capacities.
For j = 1, 2, . . . ,m:

for i = j, j − 1, . . . , 1:
let c′ij be the current residual capacities.
Find the leftmost si-to-tj flow fij w.r.t. c′ij .
Let cij be the residual capacities of c′ij w.r.t. fij .

Return c[d]− cmm[d] for all darts d.

The first step can be done with one shortest-path computation in the dual
as follows (in O(n log n) time using Dijkstra’s algorithm, for example); refer to
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(a)

x

s1 tm

sj

ti

P

C

(b)

x

s1

t1 s2

t2

Fig. 2. (a) Illustrating the first step of the AbstractFlow. (b) A simple example
illustrating why this first step cannot be repeated to find the overall maximum flow.
The equivalent step would saturate all c.c.w. cycles. If the solid edges have equal
capacity, this would saturate the s1-to-t2 path, since the method for saturating all
c.c.w. cycles (like for c.w. cycles) saturates all largest such cycles. However, doing so
would create a residual path from s2 to t1.

Figure 2(a). Embed a vertex x in f∞. Connect x to every source and every sink
with infinite-capacity arcs. Embed these arcs so that s1, tm and x are on the
infinite face. Let f be the circulation that saturates all the c.w. residual cycles
in this graph (Theorem 1). Let c0 be the residual capacities of the darts in G
w.r.t. f . Consider any simple path P from sj to ti in G. For j > i, P ◦ tix ◦ xsj
is a c.w. cycle C. Therefore C must be non-residual w.r.t. c0 and, since the arcs
tix and xsj have infinite capacity, P must be non-residual w.r.t. c0.

Note that while the iterative part of the algorithm saturates all si-to-tj paths
∀i < j, we cannot achieve this with a symmetric application of the first step.
The simple example in Figure 2(b) illustrates why.

In the remainder of the paper we will give an efficient implementation of
the double loop of AbstractFlow. We first show that the abstract algorithm
guarantees several useful invariants that limit the region of the graph that is
involved in each iteration. These invariants allow us to explore the graph in such
a way that no region is explored multiple times. Correctness of AbstractFlow
will also follow from these invariants. By iteration i, j, we will mean iteration i
of the inner loop and iteration j of the outer loop.

3.1 Invariants

Since only leftmost flows are augmented we get (by definition and induction):

Invariant 1 There are no clockwise residual cycles in G w.r.t. cij ,∀i ≤ j.

Since the sink is in common to all the iterations of the inner loop, for a given
iteration of the outer loop, we get:
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Invariant 2 There are no residual sj-to-tk paths w.r.t. ci,k for j > i.

More formally, this follows from the Sinks Lemma [4]. The following invariant
shows that we do not undo the progress made by the first step of Abstract-
Flow.

Invariant 3 There are no si-to-tj residual paths s.t. i > j w.r.t. c0 or ck`,
∀k < `.

Proof. We prove this invariant by induction. It holds w.r.t. c0 as argued in Sec-
tion 2. For a contradiction, let ck` be the first residual capacities that introduce
an si-to-tj residual path R (i < j). Then there must be an sk-to-t` path A that
is augmented in iteration k, ` and that uses a dart d in rev (R).

Let x and y be the last and first, resp., vertices of R that are in A. A,
R[si, y] and R[x, tj ] are residual w.r.t. c′k` (the residual capacities at the start of
iteration k, `). It follows that k ≤ j and ` > i, for otherwise we contradict the
inductive hypothesis. However, iteration k, ` comes after i, ` in AbstractFlow.
Invariant 2 tells us that there cannot be an si-to-t` path that is residual w.r.t.
c′k`, contradicting the existence of R[si, y] ◦A[y, t`]. ut

The optimality of the flow found by AbstractFlow follows from the last
invariant (along with Invariants 2 and 3):

Invariant 4 There are no si-to-tj residual paths w.r.t. c`k for any ` and any
k > j.

Proof. We prove this invariant by induction. It holds w.r.t. c′1,j+1 by Invariant 2.
For a contradiction, let c`k be the first residual capacities that introduce an si-
to-tj residual path R. W.l.o.g. assume that i ≤ j as the case i > j is handled
by Invariant 3. Then there must be an s`-to-tk path A that is augmented in
iteration `, k and that uses a dart d in rev (R).

Let x and y be the first and last, resp., vertices of R that A shares. Since A
and R[y, tj ] are residual, ` ≤ j by Invariant 3. However, by Invariant 2, there
are no s`-to-tj paths that are residual w.r.t. c1j , so ` > j, a contradiction. ut

3.2 Unusability Structures

We will illustrate our implementation of AbstractFlow with a recursive al-
gorithm. To that end, we show that the cut and the flow found in iteration i, j
separates the graph into two pieces that act independently for the remainder of
the algorithm. Let P be the rightmost path in the path decomposition of fij

given in Observation 2 (that has non-zero flow). The following lemma allows us
to delete everything strictly to the left of P at the end of iteration i, j for future
iterations without affecting optimality.

Lemma 1. There are no paths from sk to P that are residual w.r.t. cij for
k > i.
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Proof. First we make an observation. Inner iterations j, j−1, . . . , i are equivalent
to adding a new source s, connecting s to sj , sj−1, . . . , si by high-capacity arcs
and saturating the leftmost max stk-flow2. By Observation 2, this is done by
saturating a set of non-crossing s-to-tk paths P = P1, P2, . . . ordered from left
to right. In AbstractFlow, iteration `, k will saturate a contiguous subset P`

of P for i ≤ ` ≤ j. By saturating these paths in order, we first cut sj from tk by
saturating Pj , then cut sj+1 from tk and so on.

For i < k ≤ j, the lemma follows from the fact that iteration k, j precedes i, j:
a path Q, from sk-to-P concatenated with the suffix of P , would be saturated
before P . For k > j, Q would be residual w.r.t. capacities c′ij since fij does not
change the capacities of darts strictly to the right of P ; Q violates Invariant 3.

ut

Let C be the leftmost minimum sitj-cut. The next lemma shows that we can
delete the darts in C (among others on the tj side of the cut) without affecting
optimality. In the biased-search algorithm (Section 2.1), the darts satisfying
Lemma 2 are exactly those that are searched to the right of the last flow path
(T ∗) in finding the leftmost cut (C).

Lemma 2. Let W ∗ be any from-a∗∞ |fij |-length path in G∗sitj that is left of C∗.
Then no s-to-t path that is residual w.r.t. cij uses a dart in W .

Proof. For a contradiction, suppose there is a sk-to-t` path R that is residual
w.r.t. cij that uses a dart of W . Since, by Invariant 3, ` ≥ k, sk must be on the
tj side of C for otherwise, R would have to cross back and forth across C, but
the darts of C are only residual w.r.t. cij from the tj side to the si side.

We have just finished iteration i, j, k > j, and so, by Invariant 3, there is
an sktj-cut K. Take K to be the rightmost of these cuts (defined analogously
to leftmost). In G∗sitj , K∗ is a c.c.w. cycle through b∗∞; K∗ is 0-length (or,
equivalently, composed entirely of darts that are non-residual w.r.t. cij).

K∗ must be left of C∗, for otherwise, the leftmost-ness of C∗ and the rightmost-
ness of K∗ would be violated. If R uses a dart d of W , then d must be on the
sk side of K. Then, in the dual, W ∗ must intersect K∗ at a dual vertex x∗. But
then W ∗[a∗∞, x∗] ◦K∗[x∗, b∗∞] is a a∗∞-to-b∗∞ path of length at most that of W ∗;
W ∗[a∗∞, x∗] ◦K∗[x∗, b∗∞] is left of C∗, contradicting that C is a leftmost cut. ut

Lemmas 1 and 2 allow us to implement AbstractFlow recursively. That is,
AbstractRecursiveFlow, below, finds the same (non-zero) flows fij in the
same order as AbstractFlow. The recursive algorithm has a slightly different
input, as there may be several consecutive sources for the recursive calls. We
illustrate the algorithm without explicitly returning the flow. It is trivial to
determine the flow from the residual capacities found throughout the algorithm.

2 Note that in the implementation, we do not merge the sources in this way as doing
so does not allow us to reuse the work done in previous iterations.
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AbstractRecursiveFlow(G, {s1, t1, . . . , sm, tm}, c)
Saturate all sj-to-ti residual paths ∀i < j and all c.w. cycles.
Let c0 be the resulting residual capacities.
AbstractRecursiveFlowHelper (G, {}, {s1, t1, . . . , sm, tm}, c0)

AbstractRecursiveFlowHelper(G, {s1, s2, . . . , s`−1}, {s`, t`, s`+1, t`+1, . . . , sm, tm}, c)
Find the leftmost s`-to-t` flow f w.r.t. c.
Let c′ be the residual capacities of c w.r.t. f .
Let P be the rightmost path in the path-decomposition of f and let C be the leftmost cut.
Let G1 and G2 be the components resulting from deleting all the darts

strictly to the left of P and the darts of C from G.
If t` ∈ G2:

Let k be the greatest index s.t. tk ∈ G2.
AbstractRecursiveFlowHelper(G2, {}, {s`+1, t`+1, . . . , sk, tk}, c′)
Let h be the smallest index > ` s.t. th ∈ G1.
Extend Q and A to contain all the faces in G∗1,s`th that are incident to a∗∞
AbstractRecursiveFlowHelper(G1, {s1, s2, . . . , s`}, {sh, th, . . . , sm, tm}, c′)

Else:
Let j be the greatest index < ` s.t. sj ∈ G1.
AbstractRecursiveFlowHelper(G1, {s1, s2, . . . , sj}, {s`+1, t`+1, . . . , sm, tm}, c′)

Lemma 3. AbstractRecursiveFlow implements AbstractFlow.

Proof. Refer to Figure 3. By Lemmas 1 and 2, the deleted edges are safe to
remove: solving the problem in the two subproblems will indeed find an op-
timal solution. The s`t` augmentation performed by AbstractRecursive-
FlowHelper corresponds to an iteration of AbstractFlow. If there are
residual source-to-t` paths remaining after this augmentation, then there would
necessarily be one such path from s1, and t` /∈ G2. AbstractRecursive-
FlowHelper would continue to push flow from earlier sources to t`, just as Ab-
stractFlow. Otherwise, both Abstract- and AbstractRecursive-Flow
would move onto the next sink, in which case t` ∈ G2. ut

3.3 Reusing queues for an efficient implementation

s1

P

G1

G2

C

sl

tl

tk

th s1

P
G1G2

C
sj

sl

tl

Fig. 3. The two cases for subproblems for (Ab-
stract)RecursiveFlow. If t` ∈ G2 (left),
there are 2 non-trivial subproblems.

We show how to implement
AbstractRecursiveFlow us-
ing O(n) queries to simple data
structures: the priority queue and
DSOrder data structure (which
is at heart a linked list). The chal-
lenge in doing so can be illus-
trated by a simple example. Sup-
pose s1 has a high-capacity path
P with many edges ending with a
low-capacity star that connects to
each of the sinks. In each iteration
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of the outer loop, we could require augmenting the flow along this long path.
We overcome this barrier by reusing the work from earlier iterations in later
iterations.

We give an implementation (RecursiveFlow) of AbstractRecursive-
FlowHelper. To implement the first step of AbstractRecursiveFlowHelper,
we use the biased-search algorithm described in Section 2.1. Note that the sub-
problem corresponding to terminal sets {s1, s2, . . . , s`−1}, {s`, t`, s`+1, t`+1, . . . , sm, tm}
results from having found maximum flows from s1, s2, . . . , s`−1 to t`. We keep
the queue and order at the end of the biased-search algorithm used to find these
flows.

Formally, we will pass to RecursiveFlow a queue and order for each source
si, i ≤ `. The queue Qi and order Ai contains all the faces adjacent to and right
of ∂G[si, si+1] for i < ` and ∂G[si, ti] for i = `. The order reflects the c.c.w.
ordering of the faces along ∂G. The priority of a face f in Qi is the current
residual capacity of the primal copy of the dart f∗∞f∗. Recall from Section 2.1
that the biased-search algorithm guarantees this at the end of the search.

RecursiveFlow(G, {s1, s2, . . . , s`−1}, {s`, t`, s`+1, t`+1, . . . , sm, tm}, {(Q1, A1), . . . , (Q`, A`)})
1 Find the leftmost s`t`-flow f via biased-search using Q`, A` as the starting queue, order.
2 Let P be the rightmost path in f and let T ∗ be the search tree.
3 Let Q,A be the queue and order at the end of this search.
4 Subtract |f | from the priorities in Q.
5 Delete everything to the left of P in G.
6 Delete from G the darts in T ∗ that are left of P creating components

G1 (that contains s1) and G2.
7 If t` ∈ G2:
8 Initialize the queue Q`+1 and ordering A`+1 of the dual vertices

adjacent to a∗∞ in G∗s`+1t`+1

9 Let k be the greatest index s.t. tk ∈ G2.
10 RecursiveFlow(G2, {}, {s`+1, t`+1, . . . , sk, tk}, {(Q`+1, A`+1)})
11 Let h be the smallest index > ` s.t. th ∈ G1.
12 Extend Q and A to contain all the faces in G∗1,skth that are incident to a∗∞

not currently in Q/A with the appropriate priority/order.
13 RecursiveFlow(G1, {s1, s2, . . . , s`}, {sh, th, . . . , sm, tm}, {(Q1, A1), . . . , (Q`, A`), (Q,A)})
14 Else:
15 Let j be the greatest index < ` s.t. sj ∈ G1.
16 Extend Qj to Q and Aj to A, adding the missing faces in G∗1,sjtk that are incident to a∗∞.

17 RecursiveFlow(G1, {s1, s2, . . . , sj}, {s`+1, t`+1, . . . , sm, tm}, {(Q1, A1), . . . , (Qj , Aj)})

Running time and correctness of RecursiveFlow By Observation 4, Step 4
results in the priorities reflecting exactly the residual capacities of the darts
in P after saturating f . G1 and G2 are the same as the subgraphs created in
AbstractRecursiveFlow, as are the subproblems considered. The removed
darts create a new boundary and so maintain triangulation of the finite faces.
Step 12 can be done in O(log n) per new face added (Appendices A and B).
Adding the faces can be achieved by a left-first search from Q (or from Qj

to Q); this creates the queue and order along the boundary of the graph. In
order to combine the orders Aj and A in line 16, we observe that the order
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Aj is guaranteed to be right of the order A when they are joined together.
The DSOrder data structure allows us to concatenate these orders efficiently
(details in Appendix B).

Finally, we argue that the entire algorithm requires only O(n) queries to
priority queue and DSOrder data structure. The biased-search algorithm uses
O(k) priority-queue and DSOrder queries where k is the size of the search tree
discovered (Section 2.1). This is in part due to the triangulation of the finite
faces; the degree of the vertices from which we search during the biased-search
algorithm have degree 3, so the 0-length darts leaving a vertex can be determined
in constant time.

For the subproblem G1, we start with queues that have already been initial-
ized, so, as argued at the end of Section 2.1, we essentially pick up the search
where we left off, not repeating any computation at the boundary where we left
off (the rightmost path in a previous flow). For the subproblem G2, P forms
part of the boundary and so part of the queue/order ending at t` appear in
this subgraph. However, by Lemma 1, no residual path intersects P . Since the
finite faces are triangulated, no path can intersect a face adjacent to P without
intersecting P . Therefore, none of the faces in the queue/order along P will be
used in the subproblem corresponding to G2. It follows that there are a constant
number of data-structure queries per finite face of the original graph.
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A Priority queues with offsets

We show how to efficiently change all the priorities in a queue by a fixed amount.
This will be used when we wish to merge two priority queues whose relative
priorities differ by a constant. That is, we have two priority queues P and Q
that we want to merge, but the priorities of the items in P are offset from those
in Q by some amount o. We illustrate this for a binomial-heap implementation
of priority queues, but this technique is not limited to a specific implementation
(although the details of handling the offsets will depend on the implementation).

For the purposes of this discussion the details of a binomial heap, beyond
the fact that it is a set of rooted trees, are irrelevant. We refer the reader to any
data structures textbook for details. We will argue that the standard operations
(insert, find minimum, delete minimum, decrease key and merge) will have the
same asymptotic running time with offsets as without. To do so, we annotate
the edges of the trees in the heap with weights, initially zero. We give the roots
of the trees a dummy parent edge so that every item in the queue (node in a
tree) x has a unique parental edge weight w(x). We say that node x has a local
priority p`(x) and a global priority p(x) where p(x) is the sum of p`(x) plus the
parental edge weights on the path to the root of the binomial tree containing x
(including the weight of the dummy root edge). Initially the global priorities are
the same as the local priorities. We will maintain that the heap property holds
for the global priorities (ie. my children’s global priorities are lower than mine).

We describe the modifications we make to the binomial-heap-based priority
queue operations:

insert Unchanged as insert reduces to merge.
find min The minimum priority element is guaranteed to be a root of one of

the trees. When comparing the roots of the trees, first sum the local priority
and dummy root edge weight.

delete min The standard operation is to delete the root that is the minimum
priority element and then merge the resulting child trees with the remaining
trees. We first add the weight of the dummy root edge to the weights of
the child edges; these child edges become dummy parent edges of the trees
before they are merged.

decrease key The standard operation traverses the path from the node in ques-
tion, x to the root and swaps nodes that violate the heap property. First
compute the global priorities of the nodes on the x to root path. Then tra-
verse to the to-root path: say x is a child of y such that p(x) < p(y); let w
be the weight of the edge xy. Swap x and y, add w to p`(x) and subtract w
from p`(y).

merge If we want to merge heap P with heap Q in such a way that the priorities
in P are by an offset o higher than those in Q, o is added to the weight of
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the dummy root edges of P and in comparing the priorities of the roots of
trees in P to those in Q, the global priorities are used. Merging binomial
heaps is otherwise trivial.

We note that our modifications to not increase the asymptotic complexity of
the operations. Although we do not need to maintain local priorities for our
algorithm, we point out that local priorities can be retained. However, in the
decrease-key operation, the weight of sibling edges would need to be modified as
well, and, for binomial heaps, would require O(log2 n) time.

B Maintaining order

In order to maintain the left-to-right order of faces in the priority queue we refer
to an order maintenance data structure DSOrder due to Dietz and Sleator [6].
DSOrder supports the following operations:

1. Insert(X;Y ): Insert a new element Y immediately after element X in the
total order.

2. Delete(X): Remove an element X from the total order.
3. Order(X;Y ): Determine whether X precedes Y in the total order

While there are other data structures that are more efficient asymptoti-
cally [1], DSOrder is attractive for its simplicity, as it only relies on basic
data structures. DSOrder is implemented as a circularly linked list that im-
plicitly encodes the label bits to represent paths in a hypothetical 2−4 tree and
uses 2’s complement arithmetic and a wrapping modulo to efficiently perform
renumbering, giving:

Theorem 2. [6] The amortized time to do Insert on a list containing n records
is O(log n), and the amortized (and worst-case) time to do Delete or Order is
O(1).

DSOrder generally draws its labels from integers in {0, . . . ,M − 1}, where
M is sufficiently large3. Since in our algorithm every face in a newly created
order is right of the faces in the previous order, we modify this range as we move
left-to-right to make simple concatenation possible. I.e. if ni is the largest label
in the order Ai, the labels for Ai+1 are drawn from {ni + 1, . . . , ni +M}, where
M is large w.r.t. the size of the graph. Then, an order B created after an order
A, can be appended to A in constant time via standard linked list operations.

3 M > n2, where n is the size of the order.
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