Skip to main content

Multiobjective Optimization of Green Sand Mould System Using Chaotic Differential Evolution

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 8160))

Abstract

Many industrial optimization cases present themselves in a multi-objective (MO) setting (where each of the objectives portrays different aspects of the problem). Therefore, it is important for the decision-maker to have a solution set of options prior to selecting the best solution. In this work, the weighted sum scalarization approach is used in conjunction with three meta-heuristic algorithms; differential evolution (DE), chaotic differential evolution (CDE) and gravitational search algorithm (GSA). These methods are then used to generate the approximate Pareto frontier to the green sand mould system problem. The Hypervolume Indicator (HVI) is applied to gauge the capabilities of each algorithm in approximating the Pareto frontier. Some comparative studies were then carried out with the algorithms developed in this work and that from the previous work. Analysis on the performance as well as the quality of the solutions obtained by these algorithms is shown here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  2. Statnikov, R.B., Matusov, J.B.: Multicriteria Optimization and Engineering. Chapman and Hall, New York (1995)

    Book  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Fishburn, P.C.: Additive Utilities with Incomplete Product Set: Applications to Priorities and Assignments. Operations Research Society of America (ORSA), Baltimore, MD, U.S.A (1967)

    Google Scholar 

  6. Triantaphyllou, E.: Multi-Criteria Decision Making: A Comparative Study, pp. 320–321. Kluwer Academic Publishers (now Springer), Dordrecht (2000)

    Book  Google Scholar 

  7. Luyben, M.L., Floudas, C.A.: Analyzing the interaction of design and control. 1. A Multiobjective Framework and Application to Binary Distillation Synthesis, Computers and Chemical Engineering 18(10), 933–969 (1994)

    Google Scholar 

  8. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal of Optimization 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  10. Sandgren, E.: Multicriteria design optimization by goal programming. In: Adeli, H. (ed.) Advances in Design Optimization, pp. 225–265. Chapman & Hall, London (1994)

    Google Scholar 

  11. Stanikov, R.B., Matusov, J.B.: Multicriteria Optimization and Engineering. Chapman and Hall, New York (1995)

    Book  Google Scholar 

  12. Grosan, C.: Performance metrics for multiobjective optimization evolutionary algorithms. In: Proceedings of Conference on Applied and Industrial Mathematics (CAIM), Oradea (2003)

    Google Scholar 

  13. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)

    Article  Google Scholar 

  15. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  16. Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Fleischer, M.: The measure of Pareto optima. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Grunert Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  19. Surekha, B., Lalith, K.K., Panduy, A.K., Vundavilli, A.P.R., Parappagoudar, M.B.: Multi-objective optimization of green sand mould system using evolutionary algorithms. International Journal of Advance Manufacturing Technoloqy, 1–9 (2011)

    Google Scholar 

  20. Sushil, K., Satsangi, P.S., Prajapati, D.R.: Optimization of green sand casting process parameters of a foundry by using Taguchi method. International Journal of Advance Manufacturing Technology 55, 23–34 (2010)

    Google Scholar 

  21. Rosenberg, R.S.: Simulation of genetic populations with biochemical properties, Ph.D. thesis, University of Michigan (1967)

    Google Scholar 

  22. Storn, R., Price, K.V.: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces, ICSI, Technical Report TR-95-012 (1995)

    Google Scholar 

  23. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  24. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  25. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE Proceedings of the International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  26. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, USA (2009)

    Chapter  Google Scholar 

  27. Chatterjee, A., Mahanti, G.K.: Comparative Performance of Gravitational Search Algorithm and Modified Particle Swarm Optimization Algorithm for Synthesis of Thinned Scanned Concentric Ring Array Antenna. Progress in Electromagnetics Research B 25, 331–348 (2010)

    Article  Google Scholar 

  28. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, USA (1992)

    Google Scholar 

  29. Babu, B.V., Munawar, S.A.: Differential Evolution for the Optimal Design of Heat Exchangers. In: Proceedings of All-India seminar on Chemical Engineering Progress on Resource Development: A Vision 2010 and Beyond, Bhuvaneshwar (2000)

    Google Scholar 

  30. Babu, B.V., Singh, R.P.: Synthesis & Optimization of Heat Integrated Distillation Systems Using Differential Evolution. In: Proceedings of All- India seminar on Chemical Engineering Progress on Resource Development: A Vision 2010 and Beyond, Bhuvaneshwar (2000)

    Google Scholar 

  31. Angira, R., Babu, B.V.: Optimization of Non-Linear Chemical Processes Using Modified Differential Evolution (MDE). In: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, India, pp. 911–923 (2005)

    Google Scholar 

  32. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: Proceedings of the First European Conference of Artificial Intelligence, pp. 134–142. Elsevier Publishing, Paris (1991)

    Google Scholar 

  33. Jakobson, M.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Communications on Mathematical Physics 81, 38–39 (1981)

    MathSciNet  Google Scholar 

  34. Parappagoudar, M.B., Pratihar, D.K., Datta, G.L.: Non-linear modeling using central composite design to predict green sand mould properties. Proceedings IMechE B Journal of Engineering Manufacture 221, 881–894 (2007)

    Article  Google Scholar 

  35. Shukla, P.K.: On the Normal Boundary Intersection Method for Generation of Efficient Front. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 310–317. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Zitzler, E., Knowles, J.D., Thiele, L.: Quality Assessment of Pareto Set Approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  37. Koza, J.R.: Genetic Programming: On the Programming of Computers by means of Natural Selection. MIT Press, USA (1992)

    MATH  Google Scholar 

  38. Zelinka, I.: Analytic programming by Means of SOMA Algorithm. In: Proc. 8th, International Conference on Soft Computing Mendel 2002, Brno, Czech Republic, pp. 93–101 (2002)

    Google Scholar 

  39. Ganesan, T., Vasant, P., Elamvazuthi, I.: Optimization of Nonlinear Geological Structure Mapping Using Hybrid Neuro-Genetic Techniques. Mathematical and Computer Modelling 54(11-12), 2913–2922 (2011)

    Article  MATH  Google Scholar 

  40. Qu, B.Y., Suganthan, P.N.: Multi-objective evolutionary algorithms based on the summationof normalized objectives and diversified selection. Information Sciences 180, 3170–3181 (2010)

    Article  MathSciNet  Google Scholar 

  41. Li, K., Kwong, S., Cao, J., Li, M., Zheng, J., Shen, R.: Achieving Balance Between Proximity and Diversity in Multi-Objective Evolutionary Algorithm. Information Sciences 182, 220–242 (2011)

    Article  MathSciNet  Google Scholar 

  42. Elamvazuthi, I., Ganesan, T., Vasant, P.: A comparative study of HNN and Hybrid HNN-PSO techniques in the optimization of distributed generation (DG) power systems. International Conference on Advanced Computer Science and Information System (ICACSIS), 195–200 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganesan, T., Elamvazuthi, I., Shaari, K.Z.K., Vasant, P. (2013). Multiobjective Optimization of Green Sand Mould System Using Chaotic Differential Evolution. In: Gavrilova, M.L., Tan, C.J.K., Abraham, A. (eds) Transactions on Computational Science XXI. Lecture Notes in Computer Science, vol 8160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45318-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45318-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45317-5

  • Online ISBN: 978-3-642-45318-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics