Arabic Character Recognition

Nachum Dershowitz and Andrey Rosenberg*

School of Computer Science, Tel Aviv University, Ramat Aviv, Israel

Abstract. Although optical character recognition of printed texts has
been a focus of research for the last few decades, Arabic printed text,
being cursive, still poses a challenge. The challenge is twofold: segment-
ing words into letters and identifying individual letters. We describe a
method that combines the two tasks, using multiple grids of SIFT de-
scriptors as features. To construct a classifier, we do not use a large
training set of images with corresponding ground truth, a process usu-
ally done to construct a classifier, but, rather, an image containing all
possible symbols is created and a classifier is constructed by extracting
the features of each symbol. To recognize the text inside an image, the
image is split into “pieces of Arabic words”, and each piece is scanned
with increasing window sizes. Segmentation points are set where the clas-
sifier achieves maximal confidence. Using the fact that Arabic has four
forms of letters (isolated, initial, medial and final), we narrow the search
space based on the location inside the piece.

The performance of the proposed method, when applied to printed texts
and computer fonts of different sizes, was evaluated on two independent
benchmarks, PATS and APTI. Our algorithm outperformed that of the
creator of PATS on five out of eight fonts, achieving character correctness
of 98.87%—-100%. On the APTI dataset, ours was competitive or better
that the competition.

1 Introduction

After more than forty years of research, optical character recognition (OCR)
systems for machine-printed text show impressive performance [5]. However,
printed Arabic texts still present difficult challenge. The reasons are manifold:

(a) Even printed text is semi-cursive. Each word consist of one or more pieces
(of an Arabic word) (paws). The letters inside a paw are connected (as
in cursive script) and cannot be easily separated, since finding the correct
segmentation point is itself a challenge.

(b) Many Arabic letters are distinguished one from another only by diacritical
dots or strokes. Misclassifying them can lead to a completely different word.
Diacritical marks representing vowels are often left out and the meaning of
a word is identified from the context.

* This paper is based on A.R.’s M.Sc. thesis, Using SIFT Descriptors for
OCR of Printed Arabic, Tel Aviv University, Feb. 2012 (available at
http://nachum.org/papers/AndreyThesis.pdf).

A4 40

Fig. 1: Initial, medial, final and isolated forms of the letter ha’ in the Arial font.

(¢) The same letter may be written differently, depending on its location in the
word, as there are up to four different variations in form for each letter,
isolated, initial, medial and final (see Fig. 1).

(d) For some fonts, some combinations of letters may result in a new symbol
(ligature). These multiple forms and combinations of letters significantly
increase the number of different graphically-represented symbols a classifier
needs to recognize to well over a hundred, besides punctuation marks and
numerals.

By using features extracted with a grid of scale invariant feature transform
(SIFT) descriptors and a sliding-window technique, we aim to jointly solve the
segmentation and recognition problems for printed Arabic. We scan each paw and
consider different segmentations of it into letters. Each form (initial, medial, final
and isolated) has its own classifier. For each possible segmentation and based on
the location of the window inside the paw, an appropriate classifier is chosen and
a set of letters is suggested. The algorithm chooses those segmentation points
for which the classifier achieves its highest confidence in the recognized letters.

Given a font, we construct a classifier based purely on the images of letters
in all possible forms or combinations of letters that are graphically-represented
by a single symbol. Our classifier does not undergo the classical training phase,
where a part of a tested dataset is used for training, while the other part is used
for performance evaluation. We did not use language models, morphological
information, word lists or any other language resources that are commonly used
to improve performance.

Recently, SIFT descriptors [8] have been suggested for use in OCR. They
were used for Chinese character recognition in [15] and [6], and were applied to
degraded handwritten Latin manuscripts in [4]. The authors of [1] showed that a
SIFT descriptor outperform the classical feature representation methods, such as
PCA, when performing word based classification of cursive Pashto printed text
(very similar to the Arabic printed text). They used the keypoints suggested
in [9] as centres of the SIFT descriptors. SIFT descriptors were also used to
recognize the font of an Arabic printed text [16].

As described in [14], Hidden Markov Model (HMM) serve as a base for most
of the methods that perform recognition of cursive scripts. The author of PATS
dataset [3], the first dataset we used to test our algorithm, uses HMM and a
sliding window to segment and recognize Arabic scripts. See also the recent [2].
In a competition [13] recently conducted by the authors of APTI dataset [12],
the second data set we used to test our algorithm, participated two HMM based
systems. The system that was suggested by the authors themselves did not par-
ticipate in the competition, but was also HMM based. The first system that
participated in the competition is based on the Hidden Markov Model Toolkit

(a toolkit that was originality designed to be used for speech recognition), which
was customized to a purpose of character recognition. The second system that
participated in the competition is based on Bernoulli HMMs (BMMs), that is,
HMMs in which conventional Gaussian mixture density functions are replaced
with Bernoulli mixture probability functions.

The remainder of this paper is organized as follows: In the next section, we
present our proposed algorithm. In Sect. 3, we describe the datasets that were
used to measure performance, compare the results of other OCR algorithms that
were evaluated on those datasets, and analyze the results. Finally, we conclude
with a few observations.

2 SOCR Algorithm

Our algorithm, which we call SOCR for “SIFT-based OCR”, segments and rec-
ognizes the letters of an image containing a single paw, and is described in
Sect. 2.7. Using a sliding-window technique a candidate letter is isolated inside
each window (see Sect. 2.6) and classified using the appropriate classifiers (see
Sect. 2.4). The appropriate classifiers are chosen base on the location of the win-
dow inside the paw and can be either of the four form classifiers (see Sect. 2.3).
The best segmentation points and letters are chosen based on the confidence of
the classifier for the letter to end at this segmentation point.

We assume that the image passed a preprocessing phase and contains only
Arabic text consisting of letters of a predefined alphabet located on a white
background and the baselines are horizontally aligned. We also assume that
the image contains only one line of text. An accurate segmentation of an image
containing more than one line of text to a set of images where each image contains
only one line is out of the scope of this work. While the segmentation of a line or
a word to paws is a significant part of the algorithm and described in Sect. 2.5,
a segmentation of a line into words is required only when the performance in
terms of word recognition rate is a significant performance metric (see Sect. 3.1).
A segmentation into words can be achieved by distinguish between white spaces
and spaces between paws inside a word. We suggest a method for this in Sect. 3.2.
For each input image, we estimate the baseline to be the row having the most
black ink among all rows. The baseline is needed to correctly split the image to
paws (see Sect. 2.5) and to isolate correctly a letter inside a window see Sect. 2.6).
A more accurate baseline estimation that was designed for handwritten texts and
considers the diacritical dots and marks of Arabic [17] was considered, but not
used in this work.

The extraction of features lies at the core of any classification process. The
features of all the unique symbols of a given font (limited to an alphabet) are
extracted during the construction of the classifier as described in Sect. 2.3. Those
features are later compared to the features extracted from the image of a letter
that we are trying to classify as described in Sect. 2.4.

We use a multiple grids of SIFT descriptors as the main feature set. The
structure and extraction process of the grids of descriptors are described in

Sect. 2.1. To fine-tune the classification results produced by the use of SIFT
descriptors, we use additional features. The structure and extraction process of
those additional features are described in Sect. 2.2.

2.1 Extracting a Grid of SIFT Descriptors

Given an image that contains a whole paw or a part of a paw, the following steps
are executed to extract the grid of SIFT descriptors:

1. The image is padded with white to the size of the smallest bounding square
of the paw.

2. The image is split into G X G identical squares, where G is a small constant.

Let W be the width of each square and the scale be W/4.

4. In the middle of each square, extract N descriptors, where M =
{m1,...,my} are the magnification factors.

5. Each extracted descriptor is identified by Dy y m, where x,y are the coordi-
nates of the square in the grid and m is the magnification factor.

©w

When no magnification is used, by design, the grid of descriptors should cover
the whole image without overlapping each other; hence the scale of the descriptor
is always set to W/4 due to the fact that each descriptor has 4 spatial bins in
each spatial direction. Throughout this work, G = 3 and M = {0.5,1.0,1.5}.
Figure 2 shows an example of a grid of SIFT descriptors that were extracted
without using magnification.

Fig.2: A grid of 3 x 3 SIFT descriptors of the letter ta’ of isolated/final form.
Each descriptor is separated by a dashed (red) line.

Alternative Points for SIFT Descriptors Extraction It was suggested
by the author of SIFT to extract descriptors at keypoints where maxima and
minima of the result of difference-of-Gaussians function applied in scale-space to
a series of smoothed and re-sampled images is achieved [9]. While this method
might perform well for complex images, it achieved very low performance on
Arabic letters and had major disadvantages:

(a) The center of (b) The crosshair (¢c) The top outline
mass of the letter of the letter jim is of the letter jim is
jim is marked by the marked by the (red) marked by the semi-
(red) dot. The center dot. The crosshair filled (purple) dots. The
of mass feature is feature is (X/W,Y/H). top-outline feature is
(X/W,Y/H). (t1,...y1,0.,0,. .. tw).

Fig. 3: Additional features of the letter jim.

a) The number of keypoints depends on the resolution.
b) For some simple letters, the method did noy produce any keypoints at all.
¢) Similar shapes can have almost identical sets of descriptors.

Those findings were later, independently, reported in [1]. We overcame these
disadvantages by combining padding to the bounding square, a constant-size
grid of descriptors and the quantization process described in Sect. 2.3.

2.2 Extracting Additional Features

Additional features are used to penalize the confidence of letters that are sug-
gested by the SIFT classifier (see Sect. 2.4). The next sections describe the addi-
tional features that we used and how to extract them. We assume that the text
inside the image is bounded by its borders and consists of black pixels located
on a white background.

Center of Mass Feature The center of mass feature f,, is the relative location
(relative to the height and width of the image) of the center of mass of the black
ink. The center of mass of the letter jim is shown in Fig. 3a. Given an image
and a letter, where ¢ and ¢’ are their centers of mass, respectively, the center of
mass penalty used is pm, = 1/(1 + dz (¢,), where d2 gives the square-root of
the Euclidean distance (a commonly used measure).

Crosshair Feature The crosshair feature, f., is the relative location (relative
to the height and the width of the image) of the vertical and horizontal slices
with the largest portion of black ink compared to the white background. The

crosshair of the letter jim is shown in Fig. 3b. Given an image and a letter, where

c and ¢’ are their crosshair features, respectively, the crosshair penalty used is
1

pe=1/(1+dz(c,c)).

Ratio Feature The ratio feature, f,, is the height divided by the width of the
bounding box of the black ink. Given an image and a letter, where o’ and o are
their ratio features, respectively, the ratio penalty used is p, = 1/(1+ (o — 0)?).
The exponent was arbitrary set to be 2 without being optimized for any of the
datasets tested in Sect. 3.

Outline Features Each image has four outline features, top, left, bottom and
right. The top-outline feature, f; = (t1,...,tw), where W is the width of the
bounding box of the black ink, is calculated as follows:

1. For ¢ =1,...,W, let d; be the distance from the top of the bounding box to
the first occurrence of a black pixel in the ¢th column of the image.

2. Fori=1,..,W,let t; be (max{d;} —d;)/(max{d;} —min{d;}), where max-
imum and minimum are taken over all columns.

The left (f;), bottom (fp) and right (f,) outline features are calculated in a
similar manner. The top-outline of the letter jim is shown in Fig. 3c.

Given an image and a letter, where ¢ and ¢’ are its top-outline features,
respectively, the top-outline penalty, ps, is calculated as follows:

1. If the two feature vectors are of unequal length, downscale the longer one,
so they are both of some length n.
2. Define p, = 1/(1 + avgl, |t; — t}|), where avg takes the average.

The left (p;), bottom (pp) and right (p,) outline penalties are calculated in a
similar manner.

Black Ink Histogram Features Each image has a horizontal black ink his-
togram feature and a vertical one. The horizontal black ink histogram feature,
frn=(h1,...,hy), where H is the height of the bounding box of the black ink,
is calculated as follows:

1. Fori=1,...,H, let b; be the number of black ink pixels in row i.
2. Fori=1,...,H, let h; be b;/ max{b;}.

The vertical black ink histogram feature (f,) is calculated in a similar manner.

Given an image and a letter, where h and h’ are its horizontal black ink
histogram features, respectively, the horizontal black ink histogram penalty, py,,
is calculated as follows:

1. If the two feature vectors are of unequal length, downscale the longer one,
so they are both of some length n.
2. Define pj, = 1/(1 + avgl_, |h; — hl|).

The vertical black ink histogram penalty (p,) is calculated in a similar manner.

2.3 Constructing a Classifier

For each classifier C' for font F' and an alphabet X, we execute a series of op-
erations as described below. In Sect. 2.3, we explain how we generated high-
resolution images, each one containing a unique symbol of the alphabet X' writ-
ten in font F. In Sect. 2.3, we explain how to extract the SIFT descriptors and
additional features from each image and group the SIFT descriptors into four
groups based on the location where the unique symbol can appear in a word
(isolated, initial, medial and final). In Sect. 2.3, we describe the quantization
process on the SIFT descriptors and group them into four groups creating a
separate classifier for each of the four forms of letters. Finally, in Sect. 2.3, we
compute a base confidence for each unique symbol.

Creating Images for All Possible Symbols To create an image for each
unique symbol for the alphabet X written in font F, a Word® document that
contains | Y| rows, representing all possible letters of the alphabet, and four
columns, representing the different possible letter forms (isolated, final, medial
and initial) is created. Since some letter combinations are graphically-represented
by a single symbol (ligature), these combinations are referred to as letters and
belong to X'. Each row can have one to four symbols, since some letters do not
have all four letter forms, but only isolated or initial forms, or even only an
isolated form. The resulting document is exported as a high resolution image.
See Sect. 3 for details about the alphabet and the resolution of the image that
was exported for each tested font. The exported image is split into lines and each
line is split into the number of unique symbols it contains resulting in an image
for each possible symbol. We denote each image by L;,, where r € {isolated,
initial, medial, final} is the form of the ith letter of the alphabet X.

Feature Extraction Before we extract features, we assign to each image L; ,
a unique identification number . We extract SIFT descriptors and additional
features as described in Sects. 2.1 and 2.2, respectively. The number of extracted
SIFT descriptors per symbol is NG?, where, as we said, N is the number of
different descriptor magnifications used and G is the size of the grid of descriptors
that were extracted. Each SIFT descriptor of symbol o is denoted D7 .., where
x,y and m are as described in Sect. 2.1. We group the descriptors into 4NG?
groups, each SDy, for a combination of g = (z,y, m,), containing all the relevant

1 o
descriptors D7 , ..

Quantization For each SD,, a quantization is performed using k-means clus-
tering. For each g, k4 is chosen to be the largest number such that the smallest
energy among 1000 runs of kg,-means is smaller than F. For more information
about how F was chosen, see Sect. 3. The k-means process is executed 1000 times
to insure, with a high probability, that the clustering solution is near optimal
(has the smallest energy) and consistent over many runs. The centers of each
of the k4 clusters are the quantized descriptors of SD; and denoted @D,. Each

quantized descriptor QD € QD, is assigned a unique identification number, .
For each 7, we save a mapping, MAP; , to the os of the descriptors that QD is
their quantized descriptor; id € MAP iff QD € QD, is the center of the cluster
to which D;q € SD, belongs. We divide all QD into four groups, based on r,
the form of the letter. Each group serves as the SIFT classifier for that form.

The quantization process is designed to improve the recognition rate. Since
there are letters that look similar, their descriptors might also be very close to
each other. By quantizing, we allow a letter descriptor D, , » to be matched to
one QD, € @D, but since |[MAP]| > 1, the descriptor can be matched to more
than one symbol.

Base Confidence For each symbol, we compute its base confidence. The base
confidence is the confidence value returned by executing the classification process
described in Sect. 2.4 on the image L;, that the o of the symbol was assigned
to. Since the base confidence is used to divide the confidence as the last step in
the classification process, its initial value is set to 1. Since all additional feature
penalties will be equal to 1, the base confidence is actually the SIFT confidence.

In the classification process, the SIFT confidence of the classifier in the sym-
bol o is divided by its base confidence to create a more “comparable metric”
between different symbols of the same form.

2.4 Single Letter Classification

Given an image I, a classifier C' and a letter form r, the classification process
returns the pair (o, c), where c is the confidence of the classifier that I contains
just the symbol o.

First, SIFT descriptors and the additional features are extracted as described
in Sect. 2.1 and Sect. 2.2, respectively. The grid size, G, and the magnification
factors, M, must be the same once that were used to create C'. The extracted
features of I are: a) SD, the set of descriptors Dy y ., where z,y € {1,...,G}
and m € M; b) the additional features fi, fe, fo, fts frs fo, J1s frs fo- Next, we
execute the following operations:

1. Let P’ be an empty list that will hold the predicted os. The os in P’ can
repeat since two descriptors can be matched to the same o, as can be seen
in the next step.

2. For each Dy € SD, we execute the following:

(a) Find @D, € @D, where g = (x,y,m,r), such that Euclidean distance
between D, , ., and @D, is smaller or equal to any other descriptor in
QD,.

(b) Add all the os of MAP] to P'.

3. Let P be the set of unique values of P’.

4. For each o € P execute the following:

(a) Calculate the additional feature penalties iy, De, Po, Pty Pis Pbs Prs Phs Do
as described in Sect. 2.2.

(b) Let the SIFT confidence, ps, be the number of occurrences of o in P’
divided by |P’|.
(c) Let the confidence, ¢;q4, of the classifier C' in I being the symbol o, be
PsPmPePoPtPIPLPrPhDw/ (base confidence of id).
5. The pair (o,c) is the result of the classification process, where ¢ = max;qep ¢
and o is such that ¢, = c.

2.5 Splitting Words into Paws

The classification process described in Sect. 2.7 requires that the classified image
contain a single piece of Arabic word (paw). Given an image containing one line
of Arabic text, we split it into paws.

First, we find and label in ascending order, based on the horizontal position
of the first pixel, all 8-connectivity connected components (CCs). Next we group
the CCs into “rough” paws by executing the following steps for each CC starting
from the one labelled using the smallest label until the one labelled with the
largest label:

1. If the CC does not belong yet to any “rough” paw, add the CC to the paw.

2. While there are CCs that vertically intersect with the “rough” paw, add
them to the paw. A CC and a paw vertically intersect if there is a column
of pixels in the image that contains both pixels that belong to the CC and
the paw.

Next, we split each “rough” paw into “regular” paws (referred to as just paws)
by first finding and labelling in ascending order, based on the horizontal position
of the first pixel, all 4-connectivity CCs. At this point, each 4-connectivity CC
has 2 labels, one 8-connectivity label and one 4-connectivity label. Next, all 4-
connectivity CCs that are located on the baseline are marked as the anchors of
each paw. For each anchor CC, we execute the following steps:

1. Add the anchor CC to the paw.

2. All CCs that have the same 8-connectivity label as the anchor, that either
vertically intersect only with the anchor, or do not intersect with any other
CC at all, are added to the paw.

3. All CCs that are not an anchor, but intersect by more than X% with the
anchor of the current paw are added to the paw.

4. All other CCs that have the same 8-connectivity are added to the paw only
if their width is 10 times smaller or less than the width of the paw. The value
10 was chosen arbitrarily without being optimized for any of the datasets
tested in Sect. 3.

Each “rough” paw is eventually split to a number of paws as the number of
anchor CCs. The percentage of intersection, X, is a font-specific characteristic
that can be a priori calculated for each font. For each font, X will be the minimal
amount of vertical intersection that a diacritical dot or a mark has with the other
parts of the letter. In this work, we used an intersection percentage of 50% to
all fonts but Andalus, which had an intersection percentage of 30%.

2.6 Isolating a Letter Inside a Window

Given a paw and starting and ending positions inside this paw, we would like
to isolate the black ink that belongs to the possible letter that starts and ends
at those positions. If we will always take all the ink between the starting and
ending positions of the window, we might get black ink that belongs to the next
or previous letter. Instead of taking all the black ink, we remove black ink that
is located on the external side of the borders of the window and on the baseline
of the paw. If no black ink is located on the baseline, we remove all the black ink
located on the outer side of the border of the window. This process is expected
to create three connected components that are located on the baseline. On the
image with the cut baseline, we execute the process described in Sect. 2.5, which
splits an image into paws. The second paw retuned by this process is the isolated
letter. If the starting point of the window is the beginning of the paw, the first
paw returned by this process is the isolated letter.

2.7 Paw Classification

The classifications of a paw is one of the main challenges we address in this work.
A paw can consist of one or more letters of different forms depending on their
location in the paw. Since we do not know where one letter ends and the next
letter begins we use a sliding window to scan for letters throughout the paw. A
paw can be one of the three types described below:

— Type 1: A paw that contains one isolated letter.

— Type 2: A paw that starts with initial letter, ends with a final letter and
contains zero or more middle letters.

— Type 3: A paw that contains two isolated-form letters. This case is very rare
and happens when the algorithm that splits words into paws (see Sect. 2.5)
fails to split an image containing two isolated letter into two paws of type 1.

A high level overview of the steps of classifying a paw are as follows:

. Scan for an initial or isolated letter at the beginning of the paw.

. Scan for a final or isolated letter at the end of the paw.

. Decide if the paw is of type 1, 2 or 3.

. If the paw is of type 1 or type 3, then return the best isolated letters and
the confidence in them.

5. Otherwise, if the paw is of type 2, scan for a middle or final letter until some

final letter is found.
6. Return the list of one initial letter, zero or more middle letters and one final
letter. Also return the confidence of the classifier in those letters.

>~ W N

Steps 1, 2 and 3 are explained in detail in Sect. 2.7; step 5 is explained in
detail in Sect. 2.7. The scanning procedure in steps 1, 2 and 5 is described in
Sect. 2.7.

Scanning Given a letter form r and a starting point inside the paw, scanning
is done by classifying a set of windows of increasing sizes, starting at the given
point. Inside each window, a letter is isolated as described in Sect. 2.6 and then
classified using the classifier of form r as described in Sect. 2.4. Each window of
size s is assigned with the result of the classifier on it, (o5, ¢s), and the following
is executed:

1. Let B be the window size that has the highest classifier confidence cp.

2. Let op be the o that was assigned by the classifier to the window of size B.

3. Return op and a list of all pairs (p,cs), where p is the ending point of a
window that the classifier assigned the letter o and ¢, is the confidence of
the classifier for the isolated letter inside the window to be o5.

Scanning is done by increasing the window size from the starting point either
towards the end of the paw or towards the beginning of the paw. The latter
scanning is used when scanning for the best starting point of a final or isolated
letter that end exactly at the end of a paw.

Scanning for Initial and a Final Letter or an Isolated Letter We execute
this kind of scan to identify the type of the paw. First we scan for an initial letter
candidate that starts at the beginning of a paw and a final letter candidate that
ends at the end of the paw, assuming the paw is of type 2:

1. Scan for o9 and Py = {(p1,¢1),---,(Pn,Cn)}, where oq is the o of the best
initial letter starting at the beginning of the paw and P, are the possible
ending positions and confidences of the letter to end at those positions.

2. Scan for o, and P, = {(p1,¢1),---, (Dn,cn)}, where o, is the o of the best
final letter ending at the end of the paw and P, are the possible starting
positions and confidences of the letter to start at those positions.

Second, we scan for an isolated letter candidate that begins at the beginning
of the paw and an isolated letter candidate that ends at the end of the paw,
assuming the paw is either of type 1 or type 3:

1. Scan for 0o, and Py, = {(p1,¢1),- .-, (Pn,Cn)}, where o4, is the o of the best
isolated letter starting at the beginning of the paw and P, are the possible
ending positions and confidences of the letter to end at those positions.

2. Scan for 0 o and P.o = {(p1,¢1),..-,(Pn,cn)}, where o_q is the o of the
best isolated letter ending at the end of the paw and Pq,; are the possible
starting positions and confidences of the letter to start at those positions.

Third, we calculate some intersection ratios between the windows of the candi-
dates as follows:

1. Let the intersection ratio, I, between the isolated letters, oo, and o 4, be
twice the number of pixels shared by the windows with the highest confidence
of 0e.. and o, o divided by the sum of the window sizes.

2. Let the intersection ratio, Iy«, between the initial and final letters, be twice
the number of pixels shared by the windows with the highest confidence of
oo and o, divided by the sum of the window sizes.

3. Let the “unclassified ratio”, Ia@, be one minus the ratio of the number of
pixels not covered by the windows with the highest confidence of o4, and
0.« and the width of the paw.

Fourth, we calculate the confidence of a paw to be one of the three possible
types:

— The confidence of a paw to be of type 1is C1 = cq..C..0la

— The confidence of a paw to be of type 2 is Co = coc. (1 — Iopx)

The confidence of a paw to be of type 3 is C3 = ca. ¢ ola(l — 1)

For C5 to be taken into account, it has to be significantly bigger than Cj,
ie. if Cy/C3 > 0.9, then C3 = 0. The value 0.9 was arbitrary.

Finally, based on the type confidences, we decide whether to return the isolated
letter or letters that we found or to continue and scan for medial letters that are
located between the initial and the final letter that we found:

1. If C5 is the largest confidence, return 4. , 0., the os of the 2 isolated letters
that were found.

2. If C1 is the largest confidence and 0., = 0. @, return oq...

3. If C; is the largest confidence and o0o.. # 0., choose the better isolated
letter. Since the paw is a single isolated letter, taking the confidences of
both possible isolated letters is not enough. It should be taken into account
how many pixels were left outside the best window for each isolated letter.
Based on that, a revised confidence for each isolated letter is calculated:

(a) Ca.. = Ca.. (size of the window that was classified to be 0. and confi-
dence cq..)

(b) ¢.a = ¢ (size of the window that was classified to be o o and confi-
dence ¢_q)

If co.. > c.a, return .., otherwise return o_q.
4. If Cy is the largest confidence continue scanning for medial letters as de-
scribed in Sect. 2.7.

Scanning for Medial Letters We scan for medial letters if the paw was
classified as type 2. At this point, we know the initial letter, oy, and it possible
ending positions and the confidences for the letter to end at those positions, Fp.
We also know the final letter that ends at the end of the paw, o, and its possible
starting positions and the confidences for it to start at those positions, P,. We
do the scanning for medial letters until we find a final letter as follows:

1. Let py¢ be the first possible starting position of o,.

2. Let p; be the last possible starting position of o,.

3. Let ppre be the position where the previous letter has the highest confidence
for ending. At the first iteration of this process, the previous letter is oy,
while on the next iterations, this letter is the previous medial letter.

10.

3

For windows ending before p;, scan for o, and P,, = {(p1,¢1),..., (Dn,cn)},
where o, is the o of the best middle letter starting at p,,. and P, in the
set of possible ending positions and confidences of the letter to end at those
positions. Let (pm, cm) € Py, be the ending position and the confidence for
om to end at this position, where ¢, is the highest confidence among all
possible ending positions.

For windows ending after py, scan for oy, and Py = {(p1,¢1);---, (Pn,¢n)},

where oy, is the o of the best final letter starting at p,,. and Py, is the pos-

sible ending positions and confidences of the letter to end at those positions.

Let (pp«, cpe) € Pos be the ending position and confidence for o, to end at

this position, where ¢, is the highest confidence among all possible ending

positions.

Let the intersection ratio, I,,., between the middle letter, o,,, and the final

letter, o4, be twice the number of pixels shared by the windows with the

highest confidence of o,, and o, divided by the sum of the window sizes.

Update ¢, to be cipv/1 — L.

Let the intersection ratio, I,,., between the final letter, oy, and the final

letter, o4, be twice the number of pixels shared by the windows with the

highest confidence of o3, and o, divided by the sum of the window sizes.

Update cg, to be cg, /I

If the SIFT confidence part, ps, of the higher confidence between ¢, and ¢,

is less than 0.9 (the value 0.9 was chosen arbitrary without being optimized

for any of the datasets tested in Sect. 3), retry and scan starting from all
possible ending positions of the previous letter as follows:

(a) Normalize the confidences of all ending points of the previous letter by
dividing them by the value of the maximal confidence.

(b) Repeat steps 37 to get 0., ¢ and ops, Cpx, the best middle and final
letters and their confidences starting at all possible ending points of the
previous letter.

(¢) For each possible ending point of the previous letter, multiple ¢,, and
cp« by the normalized confidence of the previous letter ending at this
position.

(d) Choose 0w, Ppn = {(p1,¢1)s---,(Pn)} and ope, Ppe =
{(p1,¢1),-.-,(Pn,cn)} to be the ones Wlth the highest c¢,, and cy;, among
all possible endlng positions of the previous letters.

If ¢;, > cp,, save 0, as the next letter and scan, stating from step 3, for the

next letter starting at the position, where the medial letter found has the

highest confidence to end.

Otherwise if ¢,,, < cp,, return the initial letter oo, all medial letters and the

final letter that has the higher confidence. If ¢y, > ¢, return op,; otherwise

return o.

Experimental Results

To test the performance of SOCR, two different datasets were used. First, in
Sect. 3.2, we describe how the PATS dataset was constructed [3] and compare the

results of the algorithm suggested by the author of PATS to the results of SOCR.
then, in Sect. 3.3, we describe how the APTI benchmark was constructed [12]
and provide some initial tests results we did on parts of the dataset.

Common Parameter Configuration

Although all the parameters used in SOCR can be configured, the parameters
that a priori cannot be automatically computed were the same for all datasets
and fonts. The following list contains the common configuration of parameters:

— G — the number grid elements, SIFT descriptors, in each spatial direction
extracted from each given image was set to 3.

— M — the set of descriptor magnification factors was set to {0.5,1.0,1.5}.

— FE — the energy used to compute the optimal & for k-means clustering of the
descriptors as described in Sect. 2.3 was set to 10%.

3.1 Performance Metrics

The performance is reported in terms of character recognition rate (CRR) and
word recognition rate (WRR). CRR was measured using the Levenshtein edit
distance [7] between the predicted word and ground truth. WRR is the ratio
of the number of words having all its letter recognized correctly to the total
number of words. WRR is an important performance parameter for algorithms
that take a language-specific approach, such as using word lists, for training or for
improving the results of the classification process. Since we do not use a language-
specific approach, WRR is less important for our algorithm and reported only
in cases where we were able to split the input images into words.

3.2 PATS Dataset

The PATS dataset consists of 2766 text-line images that were selected from two
standard classic Arabic books. The images were split into images that each con-
tain one line. The dataset includes the fonts Arial, Tahoma, Andalus, Simplified
Arabic, Akhbar, Thuluth, Naskh and Traditional Arabic. Lines written using Ar-
ial, Tahoma, Andalus and Simplified Arabic use 41 different letters and ligatures
(see Table 1a). Akhbar uses three more symbols, while Thuluth, Naskh and Tra-
ditional Arabic use several more symbols that were not taken into consideration
when creating the classifier (see Table 1b).

Using tables like 1la and 1b, a classifier was constructed for each font, as
described in Sect. 2.3. Using the classifier, the SOCR algorithm was executed
on all 2766 lines of each font. See Fig. 4 for a sample line of Tahoma, Andalus
and Thuluth fonts.In Table 2 the performance, in terms of CRR and WRR, is
reported for all 2766 lines and the last 266 lines, along side with the CRR of
executing on the last 266 lines the algorithm suggested by the author of PATS.
SOCR outperforms the algorithm suggested by the author of PATS on Tahoma,
Arial, Andalus, Simplified Ararbic and Akhbar fonts. The classifier constructed

Table 1: Tables of unique symbols that are used to construct classifiers.

(a) Arial

- J Jedw 0N
- 9 J Jwd 0 a0
S N I i
Y Y Y 1
389900 DT D D
.,w%.muL_L.C..Cq)N))<
I B B BT R A IR I I BRI
117999 4 @@ g
IS P R B G . B el
I el — = N9 A A A

(b) Naskh

— 9) eI annd
BN DRI R RS RE SN N S
PR R W §

i~ h 4 A 1 4

puf.b.bttdd.ﬂ.\u D e ow Wy,
599 JJY 0T 5 e Dy
ﬁ.&o\an\aa .«

.o ..A<\n A < < <

w.nm.bnbp.»y.ﬂaﬂ/\:.\.ﬂ.:ﬁ ~

a— \ww 2 1\— a9 .H,.mv \ P2 RV e N .\u .hmv..

P

)

M\\ —2 Ay

M o wy .y% %.y

for fonts Thuluth, Naskh and Traditional Arabic was constructed using a table
of 44 unique letters and combination of letters, but the lines in PATS dataset
included some more combinations. This resulted in a constant failure of the
classifier on those missing combinations and a poor CRR performance.

aseoll (s g9 plawg e alll sho csuidl S3b M, Of ppis>

(a) Tahoma

sl @8 gag glug ale alll gl @ill @uls da s ol gafinn

(b) Andalus

Dol s eosinds bl o st oo

(¢) Thuluth

Fig. 4: Line 88 of various fonts in the PATS dataset.

Table 2: Performance in terms of CRR and WRR of SOCR and the algorithm
suggested by the author of PATS executed on PATS dataset.

SOCR PATS SOCR SOCR

Font CRR-266 CRR-266/CRR-2766 WRR-2766
Tahoma 100.0% 99.68% 100.0% 100.0%
Arial 99.98% 99.90% 99.96% 99.90%
Andalus 98.87% 97.86% 98.58% 94.90%
Simplified Arabic 99.72% 99.70% 99.73% 99.00%
Akhbar 99.83% 99.34% 99.89% 99.72%
Thuluth 87.23% 97.78% 86.16% N/A
Naskh 87.38% 98.09% 85.69% N/A
Traditional Arabic 92.56% 98.83% 91.53% N/A

3.3 APTI Dataset

The Arabic printed text image database (APTI) [12], was created to address
the challenges of optical character recognition of printed Arabic text of multiple
fonts, multiple font sizes and multiple font styles. APTI is designed for the
evaluation of screen-based OCR, systems. The authors suggested numerous OCR

=l il
L -

el el W1 el W) N el Y

Fig.5: A word in Arabic Transparent and sizes 6, 8, 10, 12, 18 and 24 (from left
to right).

evaluation protocols and conducted a competition [13] to test the performance
of state of the art OCR systems. The dataset is split in to six sets, where five
of the six sets of the dataset were publicly available for research and training,
while set number 6 was used for evaluating the submitted systems and known
only to the creators of APTI.

Table 3 shows the performance comparison, in terms of CRR and WRR, of
SOCR and the systems submitted to the competition running the first APTI
protocol. The first protocol tests the ability of a system to recognize the images
of words written using Arabic Transparent font (very similar to Arial) in six
different sizes (6, 8, 10, 12, 18 and 24). See Fig. 5 for a sample image of a
word in the dataset in Traditional Arabic and the six fonts sizes used. Each
system is tested on all six sizes, while the size is known to the system. Three
different systems, IPSAR, UPV-PRHLT and DIVA-REGIM, were evaluated in
the competition using the first protocol on the unpublished set number 6, while
the latter system was declared out of the competition since it was built by the
creators of APTI and optimized for more than a year on the first five sets. The
other two systems also used the first fives sets for training. Since set number
6 is not publicly available, SOCR was evaluated (on the randomly chosen) set
number 4 [11, No. 221] in two different modes. The first mode considers the
variations of the letter alif (no diacritic marks, hamza above, hamza below and
tilda above) as different letters, while the second mode considers all the variation
of alif as the same letter. The approach of the second mode, measuring the quality
of Arabic OCR while considering the different variations of the letter alif as the
same letter, was previously suggested in [10]. Since SOCR, assumes that the
input images are black ink on white background, each image was converted to
a black and white image using a dynamic threshold. Assuming that the value
0 represents a black pixel and value 1 represented a white pixel, the dynamic
threshold was calculated as follows:

— Let s be the standard deviation of the pixel values in the image.
— Let m be the mean value of all the pixels that are smaller than 1 — s.
— Let t = m + s be the dynamic threshold.

All pixels smaller than t are transformed into 0, while all pixels larger or equal
to t are transformed into 1. The APTI dataset uses an alphabet of 43 uniquely
represented letters and combination of letters for Arabic.

From Table 3 it can be seen that SOCR performs competitively with the
other systems, mostly on the larger font sizes. It is important to mention that
all the other three systems used the first five sets to train their classifiers, while
SOCR did not perform any training using those sets. SOCR also used the same

classifier for all font sizes. The difference in performance between the first and
second mode shows that a training phase can be used to create an SOCR classifier
for each font size to significantly improve the performance when running in the
first mode. The training phase can fine tune the SIFT descriptors for each font
size of the different variations of the letter alif.

Table 3: Performance in terms of CRR and WRR of SOCR and the algorithm
suggested by the author of PATS executed on PATS dataset.

[System /Size [[6] 8[10] 12[18] 24|
SOCR WRR/[23.5%[61.9%][63.5%|71.2%84.0%[97.0%
CRR |64.7%|90.1%|92.7%|93.2%|97.1%|99.2%
SOCR WRR/[27.6%|78.9%89.8%|94.0%(99.0%98.5%
Ignore Alif Variation| CRR ||68.2%|94.4%|97.5%|97.6%|99.8%|99.6%
IPSAR WRR|| 5.7%|73.3%]75.0%|83.1%|77.1%|77.5%
CRR ||59.4%|94.2%|95.1%|96.9% |95.7%|96.8%
UPV-PRHLT WRR/[94.5%|97.4%96.7%|92.5%|84.6%|84.4%
CRR ||99.0%|99.6%]99.4%|98.7%96.9%|96.0%
DIVA-REGIM WRR/[86.9%[95.9%[95.7%[93.9%[97.9%[98.9%
CRR ||98.0%|99.2%99.3%|98.8%|99.7%|99.7%

4 Conclusion

We have seen how SIFT descriptors can be successfully used as features of indi-
vidual letters to perform OCR of Arabic printed text. We overcame the challenge
of printed Arabic being a cursive text by performing, jointly, segmentation into
letters and their recognition. While enjoying the benefit of not having a need for
a training set, our method performs competitively compared to other, recently
purposed methods, which require large training sets. More work can be done to
address the scenarios where the method showed a relatively high failure rate.
In the situation where the method fails to distinguish between the variations
of the letter alif, which differ only in diacritical marks, post-processing can be
used to correct the misclassification by matching the recognized word against
a pre-defined list of words. In the situation where the method fails due to a
failure to split two paws, which happens mostly with low resolution fonts, this
post-processing might not suffice, since the probability that most of the letters
of the second paw will not be recognized correctly is high.

Since our classifier consists of four classifiers, one for each possible location
of a letter inside a paw, creating one classifier for all forms can help overcome
the failures that happen when a split fails. On top of that, introducing a learn-
ing phase can, potentially, improve performance by finding the best weights for
penalties and their combination with the segmentation and recognition scores.

Also, image-based verification can be added. By generating an image of the
predicted word or paw, we can measure its visual similarity to the word we are
trying to recognize. Future work should focus on a larger variety of fonts and
sizes and the algorithm should be extended to work well on texts containing
multiple fonts.

References

1. Ahmad, R., Amin, S.H., Khan, M.A.: Scale and rotation invariant recognition
of cursive Pashto script using SIFT features. 6th International Conference on
Emerging Technologies (2010) 299-303

2. Ahmed, I., Mahmoud, S.A., Parvez, M.T.: Printed Arabic text recognition. In:
Maérgner, V., El Abed, H. (eds.): Guide to OCR for Arabic Scripts. Springer,
London (2012) 147-168

3. Al-Muhtaseb, H.A., Mahmoud, S.A., Qahwaji, R.S.R.: Recognition of off-line
printed Arabic text using Hidden Markov Models. Signal Processing 88 (2008)
2902-2912

4. Diem, M., Sablatni, R.: Recognition of degraded handwritten characters using
local features. International Conference on Document Analysis and Recognition
(2009) 221-225

5. Fujisawa, H.: Forty years of research in character and document recognition-an
industrial perspective. Pattern Recognition 41 (2008) 2435-2446

6. Gui, J.P., Zhou, Y., Lin, X.D., Chen, K., Guan, H.B.: Research on Chinese char-
acter recognition using bag of words. Applied Mechanics and Materials 20—23
(2010) 395-400

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10 (1966) 707-710

8. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of the International Conference on Computer Vision. ICCV ’99, Vol. 2. (1999)
1150-1

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 42 (2004) 91-110

10. Magdy, W., Darwis, K.: Arabic OCR error correction using character segment
correction, language modeling, and shallow morphology. In: Proceedings of the
2006 Conference on Empirical Methods in Natural Language Processing. (2006)
408-411

11. Munroe, R.: (Random number) xked.com/221.

12. Slimane, F., Ingold, R., Kanoun, S., Alimi, A., Hennebert, J.: A new Arabic printed
text image database and evaluation protocols. In: International Conference on
Document Analysis and Recognition. (2009) 946-950

13. Slimane, F., Kanoun, S., Abed, H.E., Alimi, A.M., Ingold, R., Hennebert, J.: Ara-
bic recognition competition: Multi-font multi-size digitally represented text. In:
Eleventh International Conference on Document Analysis and Recognition. IEEE
(2011) 1449-1453

14. Steinherz, T., Rivlin, E., Intrator, N.: Offline cursive script word recognition —
a survey. International Journal on Document Analysis and Recognition 2 (1999)
90-110

15. Wu, T., Qi, K., Zheng, Q., Chen, K., Chen, J., Guan, H.: An improved descriptor
for Chinese character recognition. Third International Symposium on Intelligent
Information Technology Application (2009) 400-403

16. Zahedi, M., Eslami, S.: Farsi/Arabic optical font recognition using SIFT features.
Procedia Computer Science 3 (2011) 1055-1059

17. Ziaratban, M., Fae, K.: A novel two-stage algorithm for baseline estimation and
correction in Farsi and Arabic handwritten text line. 19th International Conference
on Pattern Recognition (2008)

