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Abstract. We survey recent results on the topological complexity otext-free
w-languages which form the second level of the Chomsky hibseof languages
of infinite words. In particular, we consider the Borel hietay and the Wadge hi-
erarchy of non-deterministic or deterministic contextefo-languages. We study
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1 Introduction

The Chomsky hierarchy of formal languages of finite wordsr@vénite alphabet is
now well known, [HU79]. The class of regular languages atepy finite automata
forms the first level of this hierarchy and the class of confeee languages accepted
by pushdown automata or generated by context-free gramimans its second level
[ABB96]. The third and the fourth levels are formed by thesslaf context-sensitive
languages accepted by linear-bounded automata or gethbraieype-1 grammars and
the class of recursively enumerable languages acceptedtiygTmachines or gener-
ated by Type-0 grammars [Chd56]. In particular, contegeflanguages, firstly intro-
duced by Chomsky to analyse the syntax of natural languges, been very useful
in Computer Science, in particular in the domain of prograngranguages, for the
construction of compilers used to verify correctness ofpans, [HMUO1].

There is a hierarchy of languages of infinite words which ialagous to the Chom-
sky hierarchy but where the languages are formed by infindeds/ over a finite al-
phabet. The first level of this hierarchy is formed by the €labregularv-languages
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accepted by finite automata. They were first studied by Bircbrder to study deci-
sion probems for logical theories. In particular, Buchoyed that the monadic sec-
ond order theory of one successor over the integers is daeidasing finite automata
equipped with a certain acceptance condition for infinitedgpnow called the Buichi
acceptance condition. Well known pioneers in this reasearea are named Muller,
Mc Naughton, Rabin, Landweber, Choueka, [MU163,Neu66aRdtan69,Cho74]. The
theory of regulaw-languages is now well established and has found many apiplits
for specification and verification of non-terminating syste see[[Tho90,Sta97a,PP04]
for many results and references. The second level of tharlciey is formed by the class
of context-freev-languages. As in the case of languages of finite words ietliout that
anw-language is accepted by a (non-deterministic) pushdowena@aton (with Buchi
acceptance condition) if and only if it is generated by a ernfree grammar where
infinite derivations are considered. Context-free langsagf infinite words were first
studied by Cohen and Gold, [CG77.CG[78a], Linha, [Lin75A6iLin77], Boasson, Ni-
vat, [Niv78/Niv77,Boa79,BN80], Beauquier, [Bea84], ske survey[[Sta97a]. Notice
that in the case of infinite words Type-1 grammars and Typeabnghars accept the
samew-languages which are also thelanguages accepted by Turing machines with a
Bichi acceptance condition [CG78b,Stad97a], see alsatmdaimental study of Engel-
friet and Hoogeboom oX-automata, i.e. finite automata equipped with a storage type
X, accepting infinite words,[EH93].

Context-freev-languages have occurred recently in the works on gamesglay infi-
nite pushdown graphs, following the fundamental study ofillawicz, [Wal00,ThoOR]
[Ser04h,Fin05c].

Since the sef’ of infinite words over a finite alphabét is naturally equipped with
the Cantor topology, a way to study the complexity oflanguages is to study their
topological complexity. The first task is to locatelanguages with regard to the Borel
and the projective hierarchies, and next to the Wadge luleyaxhich is a great refine-
ment of the Borel hierarchy. It is then natural to ask for dability properties and to
study decision problems like : is there an effective proceda determine the Borel
rank or the Wadge degree of any context-frelanguage ? Such questions were posed
by Lescow and Thomas in_[LT94]. In this paper we survey somenmeresults on the
topological complexity of context-free-languages. Some of them were very surprising
as the two following ones:

1. there is al-counter finitary languagé such thatL“ is analytic but not Borel,
[Ein03H].

2. The Wadge hierarchy, hence also the Borel hierarchy-t&fhguages accepted
by real timel-counter Biichi automata is the same as the Wadge hierafchy o
languages accepted by Buchi Turing machiries, [Fin06a].

The Borel and Wadge hierarchiesrmafn deterministicontext-freev-languages are not
effective. One can neither decide whether a given contedsf-language is a Borel
set nor whether it is in a given Borel cla&, or ITI?. On the other handeterministic
context-freav-languages are located at a low level of the Borel hierartttey are all
AY-sets. They enjoy some decidability properties althoughesimportant questions in
this area are still open. We consider also the links with thtéons of ambiguity and of



degrees of ambiguity, and the special case-giowers, i.e. ofv-languages in the form
Vv, whereV is a (context-free) finitary language. Finally we state sgaespectives
and give a list of some questions which remain open for fushely.

The paper is organized as follows. In Section 2 we recall tht@ons of context-free
w-languages accepted by Biichi or Muller pushdown autoniatpological notions
and Borel and Wadge hierarchies are recalled in Section Seétion 4 is studied the
case of non-deterministic context-fredanguages while deterministic context-free
languages are considered in Section 5. Links with notiorawdfiguity in context free
languages are studied in Section 6. Section 7 is devote@ &picial case af-powers.
Perspectives and some open questions are presented iediisins.

2 Context-freew-languages

We assume the reader to be familiar with the theory of formglénguages [Tho90,Stag97a].
We shall use usual notations of formal language theory.

When X' is a finite alphabet, aon-empty finite wordver X is any sequence =
ai...ax, Wherea; € X fori =1,...,k,andk is anintegee> 1. Thelengthof x is k,
denoted byz|. Theempty wordhas no letters and is denoted byits length is0. For
x=ay...ax, Wewritex(i) = a; andz[i] = z(1)...z(i) fori < k andz[0] = A. X*
is theset of finite wordgincluding the empty word) over'.

ForV C X*, the complement o¥ (in X*) is X* — V denoted/ —.

The first infinite ordinalis w. An w-word over X is anw -sequencei; ...a, ...,
where for all integers > 1, a; € X. Wheno is anw-word over ', we write
o=o0(1)o(2)...0(n)..., whereforalli, (i) € X, ando[n] = o(1)0(2)...0(n)
foralln > 1ando[0] = A

The usual concatenation product of two finite wotdsndv is denoted:.v (and some-
times justuv). This product is extended to the product of a finite werhd anv-word
v: the infinite wordu.v is then thev-word such that:

(wv)(k) = u(k)if k <|ul, and (uw.v)(k)=v(k —|ul)if & > |ul.

The prefix relationis denoted=: a finite wordw is aprefixof a finite wordv (respec-
tively, an infinite wordv), denotedu C v, if and only if there exists a finite word
(respectively, an infinite worab), such thatv = w.w. The set of w-wordsover the
alphabet? is denoted by~*. An w-languageover an alphabel is a subset of’«.
The complement (irlE*) of anw-languaged/ C X* is X% — V, denoted/ .

ForV C X*, thew-power ofV is :

Ve={o=up...up...€ X¥|Vi>1 u; €V}
We now define pushdown machines and the classobntext-free languages.

Definition 1. A pushdown machine (PDM) is a 6-tupd = (K,X,T0,q0, Zo),
where K is a finite set of states), is a finite input alphabet]" is a finite pushdown
alphabet,gy € K is the initial state,Z, € I is the start symbol, and is a mapping
from K x (X U {A}) x I to finite subsets ok x I'* .

If v € 't describes the pushdown store content, the leftmost synibbenassumed



to be on “top” of the store. A configuration of a PDM is a pdiy, v) whereq € K and
yel™.

Fora € YU{\}, B,y €e I'*andZ € I, if (p,B) is in é(q,a, Z), then we write
a:(q,27) —um (p, BY).

—7, IS the transitive and reflexive closure wef ;. (The subscript\/ will be omitted
whenever the meaning remains clear).

Leto = ajasz...a, ... be anw-word overX'. an infinite sequence of configurations
r = (gi,7i)i>1 is called a complete run d¥/ on o, starting in configuratior{p, ), iff:

1 (q1.m) = (p,7)
2. for eachi > 1, there exist$; € X U {\} satisfyingb; : (¢i,vi) —ar (¢it1,Yit1)
such thatuias...a, ... =biby... b, ...

For every such runfn(r) is the set of all states entered infinitely often during run
A complete run of M ono , starting in configuratior(qo, Zo), will be simply called
“arun of M ongo”.

Definition 2. A Biichi pushdown automaton is a 7-tuglé = (K, X, I, 0, qo, Zo, F)
whereM'’ = (K, X, T, 6, q0, Zp) is a PDM andF C K is the set of final states. The
w-language accepted b/ is

L(M) = {o € X¥ | there exists a complete runof M ono such thatln(r)NE # 0}

Definition 3. A Muller pushdown automaton is a 7-tuglé = (K, X', I, 6, g0, Zo, F)
whereM’ = (K, X, T, 6, qo, Zo) is a PDM andF C 2¥ is the collection of designated
state sets. Thev-language accepted b/ is

L(M) ={c € X¥ | there exists a complete runof A/ ono such that/n(r) € F}

Remark 4. We consider here two acceptance conditionsfavords, the Bichi and the
Muller acceptance conditions, respectively denoted Zptance and 3-acceptance in
[Lan69] and in [CG78a] andin f, M) and(inf, =) in [Sta97a]. We refer the reader to
[CGT77.CG78a,Sta97a,EHB3] for consideration of weakeregtance conditions, and
to [GTWO02,PP04] for the definitions of other usual ones likbR, Street, or parity
acceptance conditions. Notice however that it seems tledatter ones have not been
much considered in the study of context-fremnguages but they are often involved in
constructions concerning finite automata reading infiniteds.

Notation. In the sequel we shall often abbreviate “Muller pushdowromaton” by
MPDA and “Buchi pushdown automaton” by BPDA.

Cohen and Gold and independently Linna established a desgization Theorem for
w-CFL. We shall need the notion of*Kleene closure” which we now firstly define:

Definition 5. For any family£ of finitary languages, the-Kleene closure of is :

w—KC’(E) = {U?ZlUi.Viw | Vi € [l,n] U,V € E}



Theorem 6 (Linna [Lin75], Cohen and Gold [CG77]). Let CFL be the class of
context-free (finitary) languages. Then for anylanguage L the following three con-
ditions are equivalent:

1. L e w—KC(CFL).
2. There exists & P D A that acceptd..
3. There exists &1 PD A that acceptd..

In [CG71] are also studiedv-languages generated hycontext-free grammars and it
is shown that each of the conditions 1), 2), and 3) of the alithemrem is also equiv-
alent to: 4)L is generated by a context-free gramrmiaby leftmost derivations. These
grammars are also studied by Nivat in [Ni{77,.Niv78]. Then eam let the following
definition:

Definition 7. An w-language is a context-free-language iff it satisfies one of the
conditions of the above Theorem. The class of context-fe@guages will be denoted
byCFL,,.

If we omit the pushdown store in the above Theorem we obta&rckiaracterization of
languages accepted by classical Muller automata (MA) @hB&automata (BA) :

Theorem 8. For any w-language L, the following conditions are equivalent:

1. L belongs tav— KC(REG),

whereREG is the class of finitary regular languages.
2. There exists a MA that accepts
3. There exists a BA that accefts

An w-language L satisfying one of the conditions of the above Theorem igdah
regularw-language. The class of regularlanguages will be denoted BYEG,,,.

It follows from Mc Naughton’s Theorem that the expressiverpoof deterministic MA
(DMA) is equal to the expressive power of non deterministi&,Nle. that every regular
w-language is accepted by a deterministic Muller automdidau66.PP04]. Notice
that Choueka gave a simplified proof of Mc Naughton’s Theoiref€ho74]. Another
variant was given by Rabin ih [Rabi69]. Unlike the case ofdimititomata, deterministic
MPDA do not define the same class af-languages as non determinisfi€e PD A.
Let us now define deterministic pushdown machines.

Definiton9. APDM M = (K,X,T,0,q9, Zo) is said to be deterministic iff for
eachg e K,Z € I',anda € X:

1. 6(q,a, Z) contains at most one element,
2. (g, \, Z) contains at most one element, and
3. if§(q, \, Z) is non empty, thefi(q, a, Z) is empty for alle € X.

It turned out that the class ab-languages accepted by determinigdi® D A is strictly
included into the class ofw-languages accepted by deterministicP D A. This lat-
est class is the clasBCF'L,, of deterministic context-free-languages. We denote
DCFL the class of deterministic context-free (finitary) langesg



Proposition 10 ([CG784]).

1. DCFL, is closed under complementation, but is neither closed uadien, nor
under intersection.
2. DCFL, C w—KC(DCFL)C CFL, (these inclusions are strict).

3 Topology

3.1 Borel hierarchy and analytic sets

We assume the reader to be familiar with basic notions ofltmyonvhich may be found
in [Mos80.,LT94,Kec95,Sta9%a,PR04]. There is a naturatimen the set> of infinite
words over a finite alphabéef containing at least two letters which is called fhrefix
metricand defined as follows. Far,v € X andu # v let §(u, v) = 2~ eretw.v) where
Ipret(u,v) 1S the first integen such that thgn + 1)** letter of u is different from the
(n + 1)%¢ letter ofv. This metric induces o the usual Cantor topology for which
open subsetsf X* are in the formiV. X«, whereWW C X*. Asetl C X is aclosed
setiff its complement“ — L is an open set. Define now tB®rel Hierarchyof subsets
of Xv:

Definition 11. For a non-null countable ordinat, the classex? andII? of the Borel
Hierarchy on the topological space“ are defined as follows:

3¢ is the class of open subsets¥%f, IY is the class of closed subsets¥f,

and for any countable ordinal > 2:

33, is the class of countable unions of subset&'sfin |, _, I15.

IT;, is the class of countable intersections of subsets‘oin U, ., =9.

Recall some basic results about these classes :

Proposition 12.

(@) T2 UIIS € =5, NI, ,, for each countable ordinat > 1.
(b) Uy<o X = Uy<oI19 © X9 N1IIY, for each countable limit ordinab.
(c) AsetiW C X¥ isinthe class? iff its complement is in the clad3?.

(d) 0 — 110 # 0 andII? — X0 # () hold for every countable ordinat > 1.

For a countable ordinat, a subset of* is a Borel set ofank « iff it is in X0 U TI?,
butnotinlJ, ., (25 UTIL).

There are also some subsets!sf which are not Borel. Indeed there exists another hi-
erarchy beyond the Borel hierarchy, which is called thegmtije hierarchy and which
is obtained from the Borel hierarchy by successive apjtinatof operations of pro-
jection and complementation. The first level of the projextiierarchy is formed by
the class ofanalytic setsand the class ofo-analytic setsvhich are complements of
analytic sets. In particular the class of Borel subset&ofis strictly included into the
classX1 of analytic setswhich are obtained by projection of Borel sets.



Definition 13. A subsetA of ¥ is in the classX{ of analytic sets iff there exists
another finite set” and a Borel subseB of (X' x Y)“ such thatr € A + Jy € Y¥
such that(z,y) € B, where(x, y) is the infinite word over the alphabét x Y such
that (x,y)(i) = (z(i),y(¢)) for each integei > 1.

Remark 14. Inthe above definition we could takkin the clasd19. Moreover analytic
subsets of.« are the projections of19-subsets o« x w, wherew* is the Baire
space,[Mos80].

We now define completeness with regard to reduction by coatia functions. For a
countable ordinaky > 1, a setF’ C X is said to be &9 (respectivelyI1®, 31)-
complete seiff for any setE C Y (with Y a finite alphabet)& € X9 (respectively,
E € 1Y, E € X1) iff there exists a continuous functigh: Y~ — X such thatt’ =
fU(F). =Y (respectiveyIIY)-complete sets, with an integer> 1, are thoroughly
characterized ir [Sta86].

In particularR = (0*.1)« is a well known example dfI$-complete subset df0, 1}~.
It is the set ofw-words over{0, 1} having infinitely many occurrences of the letter
Its complemen{0, 1} — (0*.1)~ is aX9-complete subset df0, 1}~.

We recall now the definition of the arithmetical hierarchywflanguages which form
the effective analogue to the hierarchy of Borel sets ofdirainks.

Let X be a finite alphabet. Anv-language L. C X“ belongs to the clas&',, if and
only if there exists a recursive relatidty, C (N)"~! x X* such that

L={ceX“|3a1...Qunan (a1,...,an_1,0[an, +1]) € Rr}

where(@); is one of the quantifiers or 3 (not necessarily in an alternating order). An
w-language L C X“ belongs to the clasH,, if and only if its complemenX* — L
belongs to the clas¥),. The inclusion relations that hold between the classgand
11,, are the same as for the corresponding classes of the Borald¢tg. The classes
X, and 1, are included in the respective clas®$% and X9 of the Borel hierarchy,
and cardinality arguments suffice to show that these inohssare strict.

As in the case of the Borel hierarchy, projections of arithioa sets (of the second
II-class) lead beyond the arithmetical hierarchy, to theydical hierarchy of w-
languages. The first class of this hierarchy is the (ligleffatassy] of effective analytic
setswhich are obtained by projection of arithmetical sets. Adanguage L C X¥
belongs to the clas&] if and only if there exists a recursive relatidty, C (N) x
{0,1}* x X* such that:

L={ce X“|3r(r € {0,1}¥ AVnIm((n,7[m],oc[m]) € Ry))}

Then an w-language L C X* is in the classY} iff it is the projection of an w-
language over the alphah®&t x {0, 1} which is in the clasdl,. The (lightface) class
117 of effective co-analytic sets simply the class of complements of effective analytic
sets. We denote as usual = X N I1{.



Recall that that anu-language L C X* is in the classY] iff it is accepted by a non
deterministic Turing machine (readingwords) with a Bichi or Muller acceptance
condition [Sta97a].

The Borel ranks of (lightface)\! sets are the (recursive) ordinglsc w, wherew{™

is the first non-recursive ordinal, usually called the Cheikdeene ordinal. Moreover,
for every non null ordinakr < w{X, there exist som&? -complete and som&l? -
complete sets in the clags}.

On the other hand, Kechris, Marker and Sami proved in [KM 388 the supremum of
the set of Borel ranks of (lightface);-sets is the ordinaf.. This ordinal is proved to
be strictly greater than the ordingl which is the first nomA} ordinal. In particular, the
ordinal~3 is strictly greater than the ordinak’®. Remark that the exact value of the
ordinalyi may depend on axioms of set theory, see [KMS89,Finh06a] faerdetails.
Notice also that it seems still unknown whetlegrery non null ordinaly < ~4 is the
Borel rank of a (lightface}| -set,

3.2 Wadge hierarchy

We now introduce the Wadge hierarchy, which is a great refararof the Borel hier-
archy defined via reductions by continuous functigns, [Mad83].

Definition 15 (Wadge [Wad83]).Let X, Y be two finite alphabets. Fat C X and
L' CY¥, Lis said to be Wadge reducible I8 (L <y L') iff there exists a continuous
functionf : X« — Y“, such thatl, = f~*(L/).

L and L’ are Wadge equivalent ifft <y, L'’ and L’ <y L. This will be denoted by
L =w L'. And we shall say that <y L' iff L <y L’ butnotL’ <y L.

A setL C X% is said to be self dual iff. =y L—, and otherwise it is said to be non
self dual.

The relation<yy is reflexive and transitive, angy; is an equivalence relation.
Theequivalence classex =y are calledVadge degrees

The Wadge hierarchyy/ H is the class of Borel subsets of a 3&t, whereX is a finite

set, equipped witkly and with=y.

ForL C X*andL' C Y¥,if L <y L'andL = f~!(L’) wheref is a continuous
function fromX* intoY, thenf is called a continuous reduction bfto L’. Intuitively

it means thaf. is less complicated thah’ because to check whetherc L it suffices

to check whethef (z) € L’ wheref is a continuous function. Hence the Wadge degree
of an w-language is a measure of its topological complexity.

Notice that in the above definition, we consider that a subsetX¥ is given together
with the alphabefX. This is important as it is shown by the following simple exdem
Let L; = {0,1}* C {0,1}¥ andL, = {0,1}¥ C {0,1,2}*. So the languages,
and L, are equal but considered over the different alphaBgts= {0,1} and X, =
{0,1,2}. Itturns out thatl; <w Ls. InfactL; is openand closed inX{ while Ly is
closed but non open ixy’.

We can now define thd/adge classf a setL:



Definition 16. Let L be a subset oK. The Wadge class df is :
[L] ={L'| L’ C Y¥ for afinite alphabet” and ' <y L}.

Recall that eacBorel classX? andII? is aWadge class

AsetL C XvisaX? (respectiveM1?)-complete seiff for any setl’ C Yv, L' isin
30 (respectiveMT1?) iff L' <y L . It follows from the study of the Wadge hierarchy
thata sef. C X« isaXx? (respectivelyIT? )-complete seiff it is in 3% but not inIT?,
(respectively, ifI% but notinXx?).

There is a close relationship between Wadge reducibility games which we now
introduce.

Definition 17. LetL C X“ and L’ C Y. The Wadge gam®@/ (L, L’) is a game with
perfect information between two players, player 1 who isharge of L and player 2
who is in charge of /.

Player 1 first writes a lettet;; € X, then player 2 writes a lettér, € Y, then player
1 writes a lettera, € X, and so on.

The two players alternatively write lettesis, of X for player 1 andb,, of Y for player
2.

Afterw steps, the player 1 has written anword ¢ € X“ and the player 2 has written
anw-wordb € Y“. The player 2 is allowed to skip, even infinitely often, paed he
really writes anw-word inw steps.

The player 2 wins the play ift[€ L +» b € L], i.e. iff :

[(ae Landbe L) or (a¢ Landb ¢ L' and b is infinite)].

Recall that a strategy for player 1 is a function (Y U {s})* — X . And a strategy for
player 2 is a functiorf : X+t — Y U {s}.

o is a winning stategy for player 1 iff he always wins a play wihernuses the strategy
o, i.e. when thent” letter he writes is given by,, = o(by ...b,_1), Wwhereb; is the
letter written by player 2 at stejpandb; = s if player 2 skips at step

A winning strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart G&%& ), with X a borel set, is
determined, se¢ [KecB5]. This implies the following detigracy result :

Theorem 18 (Wadge)Let L C X“ and L’ C Y“ be two Borel sets, wher& and
Y are finite alphabets. Then the Wadge gaifiéL, L’) is determined : one of the two
players has a winning strategy. Add<, L’ iff the player 2 has a winning strategy in
the gaméV (L, L’).

Theorem 19 (Wadge).Up to the complement andyy, the class of Borel subsets of
X, for a finite alphabetX, is a well ordered hierarchy. There is an ordind’ H|,
called the length of the hierarchy, and a md} from W H onto|W H| — {0}, such
thatforallL,L' C X“:

dyy L <dyyL' ++ L <w L' and

&L =d) L' < [L=w L' or L=y L'"].



The Wadge hierarchy of Borel setsfudite rank has lengthts, wherels is the limit
of the ordinalsy,, defined byw; = w; anday,+1 = wi™ for n a non negative integer,
w; being the first non countable ordinal. Themn is the first fixed point of the ordinal
exponentiation of base;. The length of the Wadge hierarchy of Borel setsAlf] =
3% N 110 is thewi” fixed point of the ordinal exponentiation of base, which is a
much larger ordinal. The length of the whole Wadge hieramhBorel sets is a huge
ordinal, with regard to the” fixed point of the ordinal exponentiation of baseg It is
described in[Wad&3,Dup01] by the use of the Veblen fungtion

4 Topological complexity of context-freew-languages

We recall first results about the topological complexity @jularw-languages. Topo-
logical properties of regulav-languages were first studied by L. H. Landweber in
[Lan69] where he characterized regulatanguages in a given Borel class. It turned
out that a regulaw-language is &13-set iff it is accepted by a deterministic Buichi au-
tomaton. On the other hand Mc Naughton’s Theorem implieisitbgularw-languages,
accepted by deterministic Muller automata, are booleanbioations of regulato-
languages accepted by deterministic Buichi automata. fmysare boolean combina-
tions of IT3-sets hence\?-sets. Moreover Landweber proved that one can effectively
determine the exact level of a given regulalanguage with regard to the Borel hierar-
chy.

A great improvement of these results was obtained by Wagherdetermined in an
effective way, using the notions of chains and superch#iesyWadge hierarchy of the
classREG,,, [Wag79]. This hierarchy has length’ and is now called the Wagner
hierarchy, [[Sel95,Sel03a,Sel(3b,S€él98,Sta97a]. Witice¥oo proved in[[WY95] that
one can compute in polynomial time the Wadge degree of a aegdbnguage. Later
Carton and Perrin gave a presentation of the Wagner higrasihg algebraic notions
of w-semigroups/[CP99,CP97,PP04]. This work was completdduparc and Riss in
[DROS].

Context-freev-languages beyond the claAs) have been constructed for the first time
in [Ein01¢]. The construction used an operation of expaaénh of sets of finite or in-
finite words introduced by Duparc in his study of the Wadgedrighy [DupO1]. We are
going now to recall these constructions although some géoresults on the topolog-
ical complexity of context-free-languages were obtained laterin [FinD5a,Fin06a] by
other methods. However the methods of [Fin01c] using Dupaperation of exponen-
tiation are also interesting and they gave other resultsnalniguity and onu-powers

of context-free languages we can not (yet ?) get by otheradstisee Section$ 6 7
below.

Wadge gave a description of the Wadge hierarchy of Borelisef$/ad83]. Duparc
recently got a new proof of Wadge’s results and gave in [Diip@p01] a normal form

of Borel sets in the clasA’, i.e. an inductive construction of a Borel set of every given
degree smaller than the}" fixed point of the ordinal exponentiation of base. The
construction relies on set theoretic operations whichlaecbunterpart of arithmetical



operations over ordinals needed to compute the Wadge degree

In fact Duparc studied the Wadge hierarchy via the study eftctimciliating hierarchy.
Conciliating sets are sets of finite infinite words over an alphabéf, i.e. subsets of
X* U XY = X=v, It turned out that the conciliating hierarchy is isomoxpto the
Wadge hierarchy of non-self-dual Borel sets, via the cpwadenced — A% we now
recall :

For A C X=¥ andd a letter not inX, A? is thew-language oveX U {d} which is
defined by :
Al ={z € (X U{d})* | 2(/d) € A}

wherez(/d) is the sequence obtained frarmwhen removing every occurrence of the
letterd.

We are going now to introduce the operation of exponentiagfacconciliating sets.

Definition 20 (Duparc [Dup01]). Let X be a finite alphabet and-¢ X, and letx be
a finite or infinite word over the alphab&f = ' U {«}.

Thenz“ is inductively defined by:

AT =,

and for a finite wordu € (X U {«})*:

(u.a)< =u“.q,ifae X,

(u. «) = u* with its last letter removed if.*"| > 0,

e (u. «) =u(1)u(2)...u(Ju| = 1)if [u]| >0,

(u. «=) = Xif [u*| =0,

and foru infinite:

(u)* = limpey (u[n])“, where, giverg,, andv in X*,

v C limpey, Bn <> InVp >0 By|v]] = .

(The finite or infinite wordim,, ¢, 5., is determined by the set of its (finite) prefixes).

Remark 21. For z € X =¥, = denotes the string, once every— occuring inz has
been “evaluated” to the back space operation, proceedingifteft to right insider. In
other wordsz*“~ = x from which every interval of the forfiu « 7 (a € X)) is removed.

For example ifu = (a «)", forn aninteger> 1, oru = (a «)“, oru = (a ««)¥,
then(u)< = A. If u = (ab «)¥ then(u)“ = a* and ifu = bb(« a)* then(u)“< =b.

Let us notice that in Definition 20 the limit is not defined ir thsual way:

for example ifu = bb(« a)“ the finite wordu[n]“ is alternatively equal t® or to
ba: more preciselyu[2n + 1] = b andu[2n + 2] = ba for every integem >

1 (it holds also that:[1]*~ = b andu[2]* = bb). Thus Definition 2D implies that
lim, e, (u[n])< = bsou* =b.

We can now define the operatioh— A~ of exponentiation of conciliating sets

Definition 22 (Duparc [Dup01]). For A C ¥<* and«¢ X, let

A =g {z e (ZU{«<})=¥ |z € A}.



The operation~ is monotone with regard to the Wadge ordering and produce® so
sets of higher complexity.

Theorem 23 (Duparc [Dup01] ).Let A € ¥=¢ andn > 1.if A? C (¥ U {d})*
is a X0-complete (respectivelfiI)-complete) set, thend™~)? is a =0 ;-complete
(respectivelyII? ,-complete) set.

It was proved in[[Fin01c] that the class of context-free iitéiry languages (which are
unions of a context-free finitary language and of a conteeaf-language) is closed
under the operatiosl — A™~. On the other handl — A“ is an operation from the
class of context-free infinitary languages into the classmftext-freew-languages.
This implies that, for each integer > 1, there exist some context-freelanguages
which areX? -complete and some others which &&-complete.

Theorem 24 ([Fin01¢]).For each non negative integer> 1, there exis&” -complete
context-freev-languages4,, andIT? -complete context-free-languagess,,.

Proof. Forn = 1 consider thes{-complete regulaw-language

A ={ae{0,1}¥ |3 a@i)=1}

and thelI{-complete regulax-language

By ={ae{0,1}*¥|Vi «a(i)=0}.

These languages are context-freéanguages becauseE G, C CFL,,.
Now consider thes$-complete regulaw-language

Ay ={a e {0,1}¥ | I<¥i «(i)=1}

and thelTI3-complete regulaw-language

By ={a e {0,1}¥ |3 «fi) =0},

where3<«i means: ” there exist only finitely manysuch that ..” , and
3“¢ means: " there exist infinitely manysuch that . .”.

Ao and B are context-frees-languages because they are reguld@anguages.

To obtain context-freev-languages of greater Borel ranks, consider ri@w(respec-
tively, C; ) subsets of0, 1}=* such tha{ O, )? (respectively(C; )¢ ) areX?-complete
(respectivelyI{-complete ) .

For exampleD; = {z € {0,1}=* | Ji z(i) = 1} andC; = {\}.

We can apply: > 1 times the operation of exponentiation of sets.
More precisely, we define, for a sdtC X =v:

A~0 =4

A~ = A~ and

AN.(n+l) _ (Aw.n)fv .

Now applyn times (for an integen > 1) the operation~ (with different new letters
K1y €725 3y 0y «_n) to Ol andcl.

By Theoreni 2B, it holds that for an integer> 1:
(07 ™) is ax?  ,-complete subset df0, 1, «1, ..., «p,, d}*.
(Crm)*is aIl? , -complete subset of0, 1, «1, ..., «, d}*.



And it is easy to see th&; andC; are in the formF' U F' whereF is a finitary context-
free language and’ is a context-frees-language. Then thew-languageg 07 ™)?
and(Cy )4 are context-free. Hence the claS$"'L,, exhausts the finite ranks of the
Borel hierarchy: we obtain the context-fredanguagesi,, = (O?'(”’l))d andB, =
(C"yd forp > 3.

O

This gave a partial answer to questions of Thomas and Le<ct4] about the hier-
archy of context-free-languages.

A natural question now arose: Do the decidability resultf ah69] extend to context-
free w-languages? Unfortunately the answer is no. Cohen and Golekeg that one
cannot decide whether a given context-freéanguage is in the cladd?, 3¢, or I19,
[CGT7]. This result was first extended to all clas&sandII?, for n an integer> 1,
using the undecidability of the Post Correspondence PnodEIN01¢].

Later, the coding of an infinite number of erasers, n > 1, and an iteration of the
operation of exponentiation were used to prove that theist sgme context-free-
languages which are Borel of infinite rank, [FinD3c].

Using the correspondences between the operation of expatiem of sets and the
ordinal exponentiation of base,, and between the Wadge’s operation of sum of sets,
[Wad83,Dup01], and the ordinal sum, it was proved_in [Firithdt the length of the
Wadge hierarchy of the clagsF'L,, is at leasty, the first fixed point of the ordinal
exponentiation of base. Next were constructed som&’ context-freew-languages

in e, Wadge degrees, whetg is thew'” fixed point of the ordinal exponentiation of
basev, and also som&? -complete context-free-languages| [Fin01b,Fin05b]. Notice
that the Wadge hierarchy abn-deterministicontext-freev-languages is not effective,
[Fin01d].

The question of the existence of non-Borel context-freklanguages was solved by
Finkel and Ressayre. Using a coding of infinite binary traégled in a finite alphabet
X, it was proved that there exist some non-Borel, and &&iwomplete, context-free
w-languages, and that one cannot decide whether a givenxtdree w-language is
a Borel set,[[Fin03b]. Amazingly there is a simple finitammdaagel” accepted by a
1-counter automaton such tHat’ is 31-complete; we shall recall it in Sectiéh 7 below
ONnw-powers.

But a complete and very surprising result was obtained indJ5#,Fin0O6a], which ex-
tended previous results. A simulation of multicounter audita byl-counter automata
was used in[Fin05a,Fin06a]. We firstly recall now the definitof these automata, in
order to sketch the constructions involved in these sinuariat

Definition 25. Let £ be an integer> 1. A k-counter machine-CM) is a 4-tuple
M=(K, X, A, q), whereK is afinite set of stated, is a finite input alphabety, € K
is the initial state, andA C K x (X U{A}) x {0, 1}* x K x {0, 1, —1}* is the transition



relation. Thek-counter maching\ is said to be real time iffA C K x X x {0, 1}* x
K x {0,1,—1}*, i.e. iff there are not any-transitions.

If the machineM is in stateq and¢; € N is the content of thé” counterC; then the
configuration (or global state) of is the(k + 1)-tuple(q, c1, . . ., ck).

Fora € X U{\},q,¢ € K and(cy,...,c;) € NF suchthate; = 0forj € E C
{1,...,k}andc; > 0forj ¢ E,if (¢,a,%1,...,0k ¢, j1,..., k) € Awherei; =0
for j € Eandi; = 1for j ¢ E, then we write:

a:(gecr,. . cn) ~»m (dser+ g1, ek + k)

Thus we see that the transition relation must satisfy:
if (¢,a,%1,...,i%,¢,j1,---,jk) € Aandi, = 0 for somem € {1,...,k}, then
Jjm = 0or j, =1 (butj,, may not be equal te-1).

Leto = ajas...a, ... be anw-word overX. Anw-sequence of configuratioms=
(gi,ci, ... cp)i>1 is called a run ofM on o, starting in configuratior(p, c1, ..., ¢),
iff:

(1) (q1,¢,...¢ct) = (p, 1y cx) . ‘
(2) for eachi > 1, there existsh; € X' U {A} such thatb; : (g, ci,...c;) —m
(Git1, czlﬂ, . c}:l) such that eitherajas...a, ... =biba... by, ...

or biby...b,...Iisafinite prefix of ajas...a, ...

The runr is said to be complete whenas ... a, ... = bibs...b, ...
For every such runln(r) is the set of all states entered infinitely often during run
A complete run- of M on o, starting in configurationq, 0, ..., 0), will be simply

called “arun of M ono”.

Definition 26. A Biichik-counter automaton is a 5-tuplet=(K, X, A, qo, F'), where
M'=(K, X, A, qo) is ak-counter machine and” C K is the set of accepting states.
The w-language accepted byt is

L(M)= {0 € X¥| there exists arunraM ono such thaiin(r) N F' # 0}

The notion of Mullerk-counter automaton is defined in a similar way. One can sé¢e tha
anw-language is accepted by a (real time) Buktuounter automaton iff it is accepted
by a (real time) Mullef:-counter automaton [EH93]. Notice that this result is naen
true in the deterministic case.

We denotedBC(k) (respectivelyr-BC(k)) the class of Biichk-counter automata (re-
spectively, of real time Buichi-counter automata.

We denoteBCL(k),, (respectivelyr-BCL(k),,) the class of w-languages accepted
by Buchik-counter automata (respectively, by real time Bifelziounter automata).

Remark that -counter automata introduced above are equivalent to pughdutomata
whose stack alphabet is in the fof#,, A} whereZ, is the bottom symbol which al-
ways remains at the bottom of the stack and appears only éimekd is another stack
symbol. The pushdown stack may be seen like a counter whaogerntds the integer



N if the stack content is the word"N . Z,,.

In the model introduced here the counter value cannot beased by more than 1 dur-
ing a single transition. However this does not change thesaléw-languages accepted
by such automata. So the cldB€L(1),, is equal to the clas$-ICL,,, introduced in
[Fin01d], and it is a strict subclass of the clas&L,, of context-free w-languages
accepted by Buchi pushdown automata.

We state now the surprising result proved.in [Fin06a], usmidticounter-automata.

Theorem 27 ([Fin06&]).The Wadge hierarchy of the clasdBBCL(1),,, hence also of
the classCFL,, or of every clas€ such thatr-BCL(1),, C CC X1, is the Wadge
hierarchy of the class.] of w-languages accepted by Turing machines withiet
acceptance condition.

We now sketch the proof of this result. It is well known thaesvTuring machine can
be simulated by a (non real tim@jcounter automaton, sele [HU79]. Thus the Wadge
hierarchy of the clasBCL(2),, is also the Wadge hierarchy of the class.efanguages
accepted by Buchi Turing machines.

One can then find, from an-languagel. C X* in BCL(2),,, anotherw-language
6s(L) which will be of the same topological complexity but accepby areal-time
8-counter Biichi automaton. The idea is to add firstly a gi@tspe called a queue to a
2-counter Buchi automaton in order to readvords in real-time. Then the queue can
be simulated by two pushdown stacks or by four counters. Sihisilation is not done
in real-time but a crucial fact is that one can bound the nurabeansitions needed to
simulate the queue. This allows to pad the strings imith enough extra letters so that
the new words will be read in real-time by a 8-counter Buattbanaton. The padding
is obtained via the functiofis which we define now.

Let X be an alphabet having at least two lettdrsbe a new letter not irt, S be an
integer> 1, andfs : ¥« — (X U{E})“ be the function defined, for all € X, by:

0s(z) = 2(1).B5.2(2).ES" 2(3).B5" 2(4) ... x(n).ES" x(n+1).E5" ..
It turns out that ifL. C X is in BCL(2),, then there exists an integ6r> 1 such that
fs(L)isinthe class-BCL(8),,, and, except for some special few cagesL) =w L.

The next step is to simulateraal-time 8-counter Buichi automaton, using onlyeal-
time 1-counter Buchi automaton.

Consider the product of the eight first prime numbers:
K =2.3.5.7.11.13.17.19 = 9699690

Then anv-wordz € X can be coded by the-word

h(z) = A0K 2(1).B.05" A0 2(2).B.05" . A.0%° 2(3).B... B.0X" . A0X" x(n).B...



whereA, B and0 are new letters not il¥’. The mapping: : 2« — (¥ U {4, B,0})¥
is continuous. It is easy to see that thdanguage.(X“)~ is an open subset ¢&' U
{4, B,0})“ and that it is in the classBCL(1),,.

If L(A) C X« is accepted by a real timgcounter Buichi automatod, then one can
construct effectively from4 a 1-counter Biichi automatof, reading words over the
alphabet” U { A, B, 0}, such thatl.(A)= h=(L(B)), i.e.

Ve e X% h(z) € L(B) «— z € L(A)

In fact, the simulation, during the reading bfz) by the 1-counter Biichi automa-
ton 5, of the behaviour of the real tim&counter Biichi automatod readingz, can
be achieved, using the coding of the contént co, ..., cs) of eight counters by the
product2c1.3<2. .. .. (17)¢7.(19)°®, and thespecial shapeof w-words inh(X*) which
allows the propagation of the value of the counters4ofA crucial fact here is that
h(X*)~ isin the class-BCL(1),. Thus thev-language

h(L(A)) UR(Z®)~ = L(B) U h(Z*)~

is in the clasBCL(1),, and it has the same topological complexity asdhlanguage
L(A), (except the special few cases whéig(L(A)) < w).

One can see, from the construction®fthat at mos{ X — 1) consecutive\-transitions
can occur during the reading of arword = by B. It is then easy to see that the

languages(h(L(A))Uh(X*)~) is anw-language in the classBCL(1),, which has
the same topological complexity as thdanguagd.(.A), whereg is the mapping from
(X U{A, B,0})¥into (Y U{A, B, F,0})*, with F' a new letter, which is defined by:

p(x) = FE1 (1) FE 2(2) . FE " 2(3) ... FE L a(n). FE " a(nt1). FEL

Altogether these constructions are used in [Fin06a] to@ftheoreri 27. As the Wadge
hierarchy is a refinement of the Borel hierarchy and, for amyntable ordinaty, 39 -
complete sets (respectivelI -complete sets) form a single Wadge degree, this implies
also the following result.

Theorem 28. LetC be a class ofo-languages such that:
r-BCL(1),, C CC Xi.

(@) The Borel hierarchy of the clagsis equal to the Borel hierarchy of the clasg.

(b) 72 = Sup {a | IL € C such thatL is a Borel set of rankv}.

(c) For every non null ordinab < w{X, there exists somE?-complete and some
1Y -completes-languages in the class.

Notice that similar methods have next be used to get anotir@rising result: the
Wadge hierarchy, hence also the Borel hierarchy, of infipitational relations accepted
by 2-tape Biichi automata is equal to the Wadge hierarchy ofldsse¢-BCL(1),, or
of the class¥{, [Fin06b).



5 Topological complexity of deterministic context-free
w-languages

We have seen in the preceeding section thahafi-deterministidinite machines ac-
ceptw-languages of the same topological complexity, as soonesdhn simulate a
real timel-counter automaton.

This result is still true in theleterministiccase if we consider only the Borel hier-
archy. Recall that regulas-languages accepted by Biichi automataBfesets and
w-languages accepted by Muller automata are boolean cotiisafIT-sets hence
AY-sets. Engelfriet and Hoogeboom proved that this resuttwalso for allw-languages
accepted byleterministic X-automata, i.e. automata equipped with a storage ¥/pe
including the cases df-counter automata, pushdown automata, Petri nets, Turaag m
chines. In particulary-languages acccepted by deterministic Biichi Turing nreeshi
areIIY-sets andu-languages acccepted by deterministic Muller Turing meehiare
AY-sets.

It turned out that this is no longer true if we consider the mfiicer Wadge hierarchy to
measure the complexity af-languages. The Wadge hierarchy is suitable to distinguish
the accepting power of deterministic finite machines regdifinite words. Recall that
the Wadge hierarchy of regularlanguages, now called the Wagner hierarchy, has been
effectively determined by Wagner; it has length [Wag79,Sel95,Sel98].

Its extension tadeterministiccontext-freew-languages has been determined by Du-
parc, its length ig(«@?) [BERO1,Dup03]. To determine the Wadge hierarchy of thesclas
DCFL,, Duparc first defined operations on DMPDA which corresponatttnal op-
erations of sum, multiplication by, and multiplication byw;, over Wadge degrees.
This way are constructed some DMPDA acceptintnguages of every Wadge degree
in the form :

d?/v(A) = wfj.(ij + w?"’l .53',1 + e + w{” .51

wherej > 0Oisanintegerp; > n;j_1 > ... > ny areintegers 0, andd;, d;_1,...,01
are non null ordinalsc w®.

On the other hand it is known that the Wadge degresf a boolean combination of
I13-sets is smaller than the ordina} thus it has a Cantor normal form :

n; Mnj—1 n
a=w .0 +w’ i+t wita

wherej > 0Ois anintegerp; > n;—1 > ... > ng areintegers> 0, andd;, 6;—1,...,61
are non null ordinals: wy, i.e. non null countable ordinals. In a second step it is edov
in [Dup03], using infinite multi-player games, that if suah @rdinal« is the Wadge
degree of a deterministic context-fredanguage, then all the ordinalg, d;_1, ..., 1
appearing in its Cantor normal form are smaller than thenaddi w*. Thus the Wadge
hierarchy of the clas®C'F' L,, is completely determined.



Theorem 29 (Duparc [Dup03]).The Wadge degrees of deterministic context-free
languages are exactly the ordinals in the form :

n; nj—1 n
a=w .0 +w ' i+t wita

wherej > Ois anintegerp; > n;_1 > ... > ng areintegers> 0,andd;, d;_1,...,01
are non null ordinals< w®. ,
The length of the Wadge hierarchy of the cl&6 F L, is the ordinal(w)* = w(").

Notice that theWadge hierarchy &fC F' L, is not determined in an effective way in
[Dup03]. The question of the decidability of problems likgiven two DMPDA A and
B, doesL(A) <y L(B) hold ?” or “given a DMPDAA can we computé?,, (L(.A))?"
naturally arises.

Cohen and Gold proved that one can decide whether an e#fgctivenw-language
in DCFL,, in an open or a closed sét [CG77]. Linna characterizeddhianguages
accepted by DBPDA as thHY-sets inDCF L,, and proved in[[Lin77] that one can
decide whether an effectively giverrlanguage accepted by a DMPDA idH-set or
ax)-set.

Using a recent result of Walukiewicz on infinite games plagadpushdown graphs,
[Wal0Q], these decidability results were extended in [EdjOvhere it was proved that
one can decide whetherdeterministiccontext-freewv-language accepted by a given
DMPDA is in a given Borel clasx!, T1¢, 9, or II3 or even in the wadge class)
given by any regulaw-languagel.

An effective extension of the Wagner hierarchy te-languages accepted by Muller
deterministiaeal time blind (i. e. without zero-testycounter automata has been deter-
mined in [Fin014]. Recall that blind-counter automata form a subclasslefounter
automata hence also of pushdown automata. A bliwdunter Muller automaton is
just a Muller pushdown automatdd = (K, X, I', §, qo, Zo, F) such thatl” = {Z,, I'}
whereZ; is the bottom symbol and always remains at the bottom of twe sMore-
over every transition which is enabled at zero level is atsbéed at non zero level, i.e.
if 6(q,a,Zy) = (p,I"Zy), for somep,q € K, a € ¥ andn > 0, thend(q,a,l) =

(p, I"T1). But the converse may not be true, i.e. some transition manbbled at non
zero level but not at zero level. Notice that blihecounter automata are sometimes
called partially blindl-counter automata as in [Gre78].

The Wadge hierarchy of blind counter-languages, accepted by deterministic Muller
real time blindl-counter automata (MBCA), is studied [n [Fin01a] in a similay as
Wagner studied the Wadge hierarchy of reguldanguages in [Wag79]. Chains and
superchains for MBCA are defined as Wagner did for Muller m#ta. The essential
difference between the two hierarchies relies on the exigt®f superchains of trans-
finite lengtha: < w? for MBCA when in the case of Muller automata the superchains
have only finite lengths. The hierarchyoflanguages accepted by MBCA is effective
and leads to effective winning strategies in Wadge gamasedwet two players in charge
of w-languages accepted by MBCA. Concerning the length of theg&/dierarchy of
MBCA the following result is proved :

Theorem 30 (Finkel [FinO1a]).



(@) The length of the Wadge hierarchy of blind countetanguages inAg is w?.
(b) The length of the Wadge hierarchy of blind counéetanguages is the ordina}*
(hence it is equal to the length of the Wagner hierarchy).

Notice that the length of the Wadge hierarchy of blind countdanguages is equal to
the length of the Wagner hierarchy although it is actualljriatsextension of the Wag-
ner hierarchy, as shown already in item (a) of the above #maofhe Wadge degrees
of blind counterw-languages are the ordinals in the form :

n; nj—1 n
a=w .0 +w’ o+t wita

wherej > 0Ois anintegerp; > nj—1 > ... > ng areintegers> 0, andd;, 6;—1,...,61
are non null ordinals< w?. Recall that in the case of Muller automata, the ordinals
dj,05-1,...,01 are non-negative integers, i.e. non null ordinals.

Notice that Selivanov has recently determined the Wadgmattky of w-languages
accepted byleterministicTuring machines; its length ig %)« [Sel03K,Sel03a]. The
w-languages accepted by deterministic Muller Turing maesior equivalently which
are boolean combinations of arithmetiday-sets have Wadge degrees in the form :

n; Mnj—1 n
a=w .0 +w i+t wita

wherej > Oisanintegerp; > n;_1 > ... > ny areintegers> 0, andd;, d;_1,...,01
are non null ordinals< w{.

6 Topology and ambiguity in context-freew-languages

The notions of ambiguity and of degrees of ambiguity are wetwn and important
in the study of context-free languages. These notions haee bxtended to context-
freew-languages accepted by Biichi or Muller pushdown autonmd@mn03a]. Notice
that it is proved in[[Fin03a] that these notions are indepandf the Biichi or Muller
acceptance condition. So in the sequel we shall only conddeBichi acceptance
condition.

We now firstly introduce a slight modification in the definitiof a run of a Bichi
pushdown automaton, which will be used in this section.

Definition 31. Let A = (K, X, I, §, q0, Zo, F) be a Bichi pushdown automaton.
Leto = ajas...a, ... be anw-word overX'. A run of A on o is an infinite sequence
r = (g, Vi, €i)i>1 Where(g;, v;:):>1 IS an infinite sequence of configurationséfind,
foralli>1,¢; € {0,1} and:

1. (Q1771) = (q07ZO)

2. for eachi > 1, there exist$; € X' U {\} satisfying
bi : (qi,vi) =a (qit1,Yit1)
and(si =0iffb; :)\)
and suchthatajas...an ... =biby... b, ...



As before thew-language accepted by is
L(A) = {0 € X¥ | there exists a rum of A ono such thatin(r) N F # ()}

Notice that the numbers € {0, 1} are introduced in the above definition in order to
distinguish runs of a BPDA which go through the same infindguence of configura-
tions but for which\-transitions do not occur at the same steps of the compugatio

As usual the cardinal af is denoted®y and the cardinal of the continuum is denoted
2% The latter is also the cardinal of the set of real numberd theoset-“ for every
finite alphabet” having at least two letters.

We are now ready to define degrees of ambiguity for BPDA andtémtext-freew-
languages.

Definition 32. Let.4 be a BPDA reading infinite words over the alphab&tFor = €
X let a4 (x) be the cardinal of the set of accepting runs4bn x.

Lemma 33 ([Fin03a)).Let.A be a BPDA reading infinite words over the alphabét

Then forallz € X¥ it holds that a4(z) € NU {Rg,2%}.

Definition 34. Let.4 be a BPDA reading infinite words over the alphabgt

(@) Ifsup{aa(x) | z € ¥} € NU {280}, thenay = sup{a4(z) | = € Z¥}.

(b) If sup{aa(z) | z € ¥} = Ry and there is no word: € X such thatw4(x) =
Ro, thenay = N .
(X, does not represent a cardinal but is a new symbol that is thiced here to
conveniently speak of this situation).

(¢) Ifsup{aa(z) | z € X¥} = R, and there exists (at least) one watde X* such
thata4(x) = N, thena 4 = Ry

Notice that for a BPDAA, a4 = 0 iff A does not accept any-word.
We shall consider below that U {X, Ro, 2%} is linearly ordered by the relatioq,
which is defined by Yk € N, k < k + 1 < Ry < Ry < 2%,

Definition 35. For k € NU {R;, R, 2%} let

CFL,(a<k)={L(A)| AisaBPDAwithay <k}

CFL,(a<k)={L(A) | AisaBPDAwithay < k}

NA-CFL, = CFL,(a <1)isthe class of non ambiguous context-frelanguages.
For every integet such thatk > 2, or k € {X;, R, 2%},

A(k) —CFL,=CFL,(a <k)—-CFL,(a <k)

If L € A(k) — CFL, withk € N,k > 2, 0rk € {X;,R, 2%}, thenL is said to be
inherently ambiguous of degrée

Notice that one can define in a similar way the degree of anitlyigtia finitary context-
free language. I/ is a pushdown automaton accepting finite words by final s{ates
by final states and topmost stack letter) thep € N or ay, = R; or oy = No.
However every context-free language is accepted by a pushdatomatonmV/ with
ay < Ny, [ABB96]. We denote the class of non ambiguous context{arguages by
NA—CFL andthe class of inherently ambiguous context-free langsibgA — C F'L.
Then one can state the following result.



Theorem 36 ([Fin03&]).
NA-CFL, Cw—KC(NA-CFL)
A-CFL, ¢ w—KC(A-CFL)

We now come to the study of links between topology and ambjigni context-free

w-languages [Fin03a,FS03].

Using a Theorem of Lusin and Novikov, and another theorenestdptive set theory,
see[[Kec9b, page 123], Simonnet proved the following str@sglt which shows that
non-Borel context-free-languages have a maximum degree of ambiguity.

Theorem 37 (Simonnet([FSOB])Let L(.A) be a context-free-language accepted by
a BPDAA such thatL(.A) is an analytic but non Borel set. The setwivords, which
have2® accepting runs by, has cardinality2™.

On the other hand, it turned out that, informally speakihg,dperatiom™ — A~ con-
serves globally the degrees of ambiguity of infinitary catifeee languages (which are
unions of a finitary context-free language and of a conteed$-language). Then, start-
ing from known examples of finitary context-free languagka given degree of am-
biguity, are constructed in [Fin0Ba] some context-fxelanguages of any finite Borel
rank and which are non-ambiguous or of any finite degree ofiguitly or of degree
Ny .

Theorem 38.

1. For each non negative integer > 1, there existx-complete non ambiguous
context-freew-languagesA,, and TI%-complete non ambiguous context-fiee
languagess,,.

2. Letk be an integer> 2 or k = X, . Then for each integern > 1, there exist
»0-complete context-free-languageskE, (k) and I1%-complete context-free-
languagesF, (k) which are inA(k) — CF Ly, i.e. which are inherently ambiguous
of degreek.

Notice that thev-languagesi,, andB,, are simply those which were constructed in the
proof of Theoreni 24. On the other hand it is easy to see thaBBi2A accepting the
context-freev-language which is Borel of infinite rank, constructed imiB3¢] using an
iteration of the operatiodl — A™, has an infinite degree of ambiguity. Anecounter
Buchi automata accepting context-fredanguages of any Borel rank of an effecive
analytic set, constructed via simulation of multicountgioanata, may also have a great
degree of ambiguity. So this left open some questions wé détlil in the last section.

We indicate now a new result which follows easily from the qfrof Theoren{ 27
sketched in Sectidd 4 above, see [Fin06a]. Consider-lmguagéd. accepted by de-
terministic Muller Turing machine or equivalently bydeterministic 2-counter Muller
automaton. We get first an-languageds(L) € X which has the same topological
complexity (except for finite Wadge degrees), and which ¢iepted by aleterministic
real time8-counter Muller automatoul.



Then one can construct frotd a 1-counter Muller automatois, reading words over
the alphabet’ U {A, B, 0}, such that(L(A)) U h(X¥)~ = L(B) U h(X¥)~, where
h: XY — (XY U{A4, B,0})¥ is the mapping defined in Sectibh 4. Notice that the
counter Muller automatoB which is constructed is now alsteterministic.

On the other hand it is easy to see, from the decompositi@ngiv [Fin06a, Proof of
Lemma 5.3], that thes-languageh(X*)~ is accepted by a-counter Biichi automa-
ton which has degree of ambiguity 2 and théanguagel.(B) isin NA — CFL,, =
CFL,(a < 1) because it is accepted bydaterministic 1-counter Muller automa-
ton. Then we can easily infer, using [Fin03a, Theorem 5.)ptlat thew-language
h(L(A)) Uh(X¥)” = L(B)Uh(X¥)" isinCFL,(a < 3). And thisw-language has
the same complexity ak(.4) Thus we can state the following result.

Theorem 39. For eachw-languagel accepted by @eterministic Muller Turing ma-
chine there is anv-languagel’ € CFL,(a < 3), accepted by d-counter Muller
automatorD with ap < 3, such thatl, =y L'.

7 w-powers of context-free languages

The w-powers of finitary languages are-languages in the fornv“, whereV is a
finitary language over a finite alphab®t They appear very naturally in the character-
ization of the clasREG,, of regularw-languages (respectively, of the clas$'L,,

of context-free w-languages) as the-Kleene closure of the familREG of regular
finitary languages (respectively, of the familyf” of context-free finitary languages) .
The question of the topological complexity©ofpowers naturally arises and was raised
by Niwinski [Niw90], Simonnet[[SIm9?2], and Staiger [Stad.7b

An w-power of a finitary language is always an analytic set bexidtus either the
continuous image of a compactgét 1,...,n}* for n > 0 or of the Baire space®.

The first example of finitary languadesuch that’.* is analytic but not Borel, and even
>1-complete, was obtained i [FinO3b]. Amazingly the languagwas very simple
and even accepted bylacounter automaton. It was obtained via a coding of infinite
labelled binary trees.

We now give a simple construction of this langudgesing the notion of substitution
which we now recall. Asubstitutionis defined by a mapping : X~ — P(I"™*), where
Y ={as,...,a,} andI" are two finite alphabetd, : «; — L; where for all integers
i € [1;n], f(a;) = L; is a finitary language over the alphaliét

Now this mapping is extended in the usual manner to finite wofa;, ...a;,) =
L;, ...L;,, and to finitary languages C X*: f(L) = Uzer f(x). If for each integer
i € [1;n] the languagé.; does not contain the empty word, then the mapgimgay be
extended ta-words: f(z(1)...z(n)...)={ur...up...|Vi>1 wu; € f(z(i))}
and to w-languaged. C X“ by settingf (L) = Uzer f(x).

Let nowX = {0, 1} andd be a new letter not it and

D = {u.dw|u,v € X* and (Jv| =2lu]) or (Jv| =2|u|+1)}



D C (¥ u{d})* is a context-free language accepted bi-eounter automaton. Let
g : X — P((XU{d})*) be the substitution defined by{a) = a.D. AsW = 0*1

is regular,L. = ¢g(W) is a context-free language and it is accepted hy@unter
automaton. Moreover one can prove thatl))~ is 31-complete, hence a non Borel
set. This is done by reducing to thislanguage a well-known example Bf -complete
set : the set of infinite binary trees labelled in the alphdbet } which have an infinite
branch in thdI$-complete set0*.1)~, see[[Fin03b] for more details.

Remark 40. The w-language(g(WW))“ is context-free. By Theorem]37 every BPDA
accepting(g(W))« has the maximum ambiguity arig(W))~ € A(2%) — CFL,,.

On the other hand we can prove thgf1") is a non ambiguous context-free language.
This is used in[[ESQ3] to prove that neither unambiguity nottaguity of context-free
languages are preserved under the operafior> V¢,

Concerning Boreb-powers, it has been proved [n [Fin01c] that for each integer1,
there exist some-powers of context-free languages which Big-complete Borel sets.
These results were obtained by the use of a new operttien V™ overw-languages,
which is a slight modification of the operatiéh— V~. The new operatiol — V'~
conserves-powers and context-freeness. More precisely i W« for some context-
free languagéV, thenV™ = T for some context-free languag@éwhich is obtained
from W by application of a given context-free substitution. Antbitows easily from
[Dup01] that if V C X« is aII!-complete set, for some integer> 2, thenV= is
aIl? , ,-complete set. Then, starting from thE)-complete sef0*.1)~, we get some
IT? -completew-powers of context-free languages for each integer 3.

An iteration of the operatioly — V= was used in[[Fin04] to prove that there exists
a finitary languagé” such that’“ is a Borel set of infinite rank. The languagewas

a simple recursive language but it was not context-freeer, atith a modification of
the construction, using a coding of an infinity of erasersioesly defined in[[Fin03c],
Finkel and Duparc got a context-free langu&gsuch that’“ is a Borel set above the
classA?, [DEO7).

The question of the Borel hierarchy ofpowers of finitary languages has been solved
very recently by Finkel and Lecomte in [FLO7], where a vergpsising resultis proved,
showing that actuallyw-powers exhibit a great topological complexity. For eveonn
null countable ordinak there exist som&? -completew-powers and also somid? -
completev-powers. But thes-powers constructed in [FLO7] are notpowers of context-
free languages, except for the case &fpcomplete set. Notice also that an example of
a regular languag#é such thatZ.* is 39-complete was given by Simonnet [n [Sim92],
see alsd[Lec05] .

8 Perspectives and open questions

We give below a list of some open questions which arise niiutde problems listed
here seem important for a better comprehension of contegtsflanguages but the list
is not exhaustive.



8.1 Effective results

In thenon-deterministicase, the Borel and Wadge hierarchies of contextsrsngua
ges are not effective, [Fin0iLc,Fin03b,Fin01d]. This isswprising since most decision
problems on context-free languages are undecidable. Ootliee hand we can expect
some decidability results in the casedefterministiccontext-freev-languages. We have
already cited some of them : we can decide whether a detestigigiontext-freev-
language is in a given Borel class or even in the Wadge ¢lasef a given regular
w-languagel.. The most challenging question in this area would be to findfeetive
procedure to determine the Wadge degree afdanguage in the clas®CF L,,,.

Recall that the Wadge hierarchy of the cld36' F' L,, is determined in a non-effective
way in [Dup03]. On the other hand the Wadge hierarchy of thsscbf blind counter
w-languages is determined in an effective way, using notidehains and superchains,
in [Ein01a]. There is a gap between the two hierarchies kmxénlind)1-counter au-
tomata are much less expressive than pushdown automata.oOluketry to extend the
methods ofl[Fin01a] to the study d&terministigpushdown automata.

Another question concerns the complexity of decidablejerob. A first question would
be the following one. Could we extend the results of Wilke ¥ad to the class of blind
counterw-languages, i.e. is the Wadge degree of a blind countanguage computable
in polynomial time ? Otherwise what is the complexity of thisblem ? Of course the
guestion may be further posed for classesvdnguages which are located between
the classes of blind counterlanguages and of deterministic context-feeéanguages.
Another interesting question would be to determine the \Wddgrarchy ofu-languages
accepted by deterministic higher order pushdown autonestn(firstly in a non effec-
tive way), [Eng83,CWO0/7].

8.2 Topology and ambiguity

Simonnet’s Theorem 37 states that non-Borel context«frd@nguages have a maxi-
mum degree of ambiguity, i.e. are in the clas@®°) — CFL,,. On the other hand,
there exist some non-ambiguous context-frelnguages of every finite Borel rank.
The question naturally arises whether there exist someanaliguous context-free-
languages which are Wadge equivalent to any gBerel context-freev-language (or
equivalently to anporel X'} -set, by Theorem 28). This may be connected to a result of
Arnold who proved in[[Arn8B] that every Borel subsetBf, for a finite alphabef’,

is accepted by aon-ambiguou§nitely branching transition system with Biichi accep-
tance condition. By Theorem38,ifis an integet> 2 or k = X, then for each integer

n > 1, there existZ?-complete context-free-languages?, (k) and IT%-complete
context-freew-languagesrF,, (k) which are inA(k) — CFL,, i.e. which are inher-
ently ambiguous of degrde More generally the question arises : determine the Borel
ranks and the Wadge degrees of context-frdanguages in class€sF'L,, (« < k) or
A(k) — CFL,, wherek € NU {X;, R, 2%} (k > 2inthe case ofA(k) — CFL,). A

first result in this direction is Theorem139 stated in Sed@ion



8.3 w-powers

The results of[[Fin01c,Fin0&b,Fin04,FLI07] show thapowers of finitary languages
have actually a great topological complexity. Concerningowers of context-free lan-
guages we do not know yet what are all their infinite Borel seartowever the results
of [Ein06a] suggest that-powers of context-free languages or even of languages ac-
cepted byl-counter automata exhibit also a great topological coniglex

Indeed Theorern 28 states that therewaflanguages accepted by Buidhtounter au-
tomata of every Borel rank (and even of every Wadge degrea @ffective analytic
set. On the other hand eaghlanguage accepted by a Buidhcounter automaton can
be written as a finite unioh = | J, ., ,, U;.V;"¥, where for each integér U; andV; are
finitary languages accepted lbycounter automata. Then we can conjecture that there
exist somev-powers of languages accepted bgounter automata which have Borel
ranks up to the ordinaj, although these languages are located at the very low level i
the complexity hierarchy of finitary languages.

Recall that a finitary languagkis a code (respectively, ancode) if every word of. ™
(respectively, every-word of L) has a unique decomposition in wordsigf[BP85)].
Itis proved in [ESOB] that i is a context-free language such thét is a non Borel
set then there arg® w-words of V which have2®° decompositions in words df;

in particular,V is really not anw-code although it is proved in [FS03] thEtmay be a
code (see the example V=g(W) given in Secfibn 7). The follmxjuestion abowBorel
w-powers now arises : are there some context-free code®(tagly,w-codes) such
thatV« is 39 -complete o1 -complete for a given countable ordinak 43 ?
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