Skip to main content

Token Dissemination in Geometric Dynamic Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8243))

Abstract

We consider the \(k\)-token dissemination problem, where \(k\) initially arbitrarily distributed tokens have to be disseminated to all nodes in a dynamic network (as introduced by Kuhn et al. STOC 2010). In contrast to general dynamic networks, our dynamic networks are unit disk graphs, i.e., nodes are embedded into the Euclidean plane and two nodes are connected if and only if their distance is at most \(R\). Our worst-case adversary is allowed to move the nodes on the plane, but the maximum velocity \(v_{\max }\) of each node is limited and the graph must be connected in each round. For this model, we provide almost tight lower and upper bounds for \(k\)-token dissemination if nodes are restricted to send only one token per round. It turns out that the maximum velocity \(v_{\max }\) is a meaningful parameter to characterize dynamics in our model.

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901), by the EU within FET project MULTIPLEX under contract no. 317532, and the International Graduate School “Dynamic Intelligent Systems”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To upper bound the worst-case traveling distance for a fixed node pair \(u\) and \(v\), we can w.l.o.g. assume that \(u\) is static while \(v\) moves with velocity of at most \(2v_{\max }\).

  2. 2.

    Note that \(n\) is not known by the nodes beforehand but as described by Kuhn et al. [10] it can be determined involving the dissemination procedure itself using different estimates for \(n\).

References

  1. Bienkowski, M., Byrka, J., Korzeniowski, M., Meyer auf der Heide, F.: Optimal algorithms for page migration in dynamic networks. J. Discrete Algorithms 7(4), 545–569 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Analysis and optimization of randomized gossip algorithms. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 5, pp. 5310–5315 (2004)

    Google Scholar 

  3. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis and applications. In: INFOCOM, pp. 1653–1664 (2005)

    Google Scholar 

  4. Brandes, P., Meyer auf der Heide, F.: Distributed computing in fault-prone dynamic networks. In: TADDS, pp. 9–14 (2012)

    Google Scholar 

  5. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity of information spreading in dynamic networks. In: SODA, pp. 717–736 (2013)

    Google Scholar 

  6. Dimakis, A.G., Sarwate, A.D., Wainwright, M.J.: Geographic gossip: Efficient averaging for sensor networks. IEEE Trans. Sig. Process. 56(3), 1205–1216 (2008)

    Article  MathSciNet  Google Scholar 

  7. Hannes, F., Stefan, R., Ivan, S.: Routing in wireless sensor networks. In: Misra, S., Woungang, I., Misra, S.C. (eds.) Guide to Wireless Sensor Networks, pp. 81–111. Springer, London (2009)

    Google Scholar 

  8. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks via network coding. In: PODC, pp. 381–390 (2011)

    Google Scholar 

  9. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180. Springer, Heidelberg (2012)

    Google Scholar 

  10. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: STOC, pp. 513–522 (2010)

    Google Scholar 

  11. Kempkes, B., Meyer auf der Heide, F.: Local, self-organizing strategies for robotic formation problems. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSENSORS 2011. LNCS, vol. 7111, pp. 4–12. Springer, Heidelberg (2012)

    Google Scholar 

  12. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News 42(1), 82–96 (2011)

    Article  Google Scholar 

  13. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-case optimal and average-case efficient geometric ad-hoc routing. In: MobiHoc, pp. 267–278 (2003)

    Google Scholar 

  14. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: PODC, pp. 63–72 (2003)

    Google Scholar 

  15. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Brief announcement: naming and counting in anonymous unknown dynamic betworks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 437–438. Springer, Heidelberg (2012)

    Google Scholar 

  16. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and computation in possibly disconnected synchronous dynamic networks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 269–283. Springer, Heidelberg (2012)

    Google Scholar 

  17. Oshman, R.: Distributed computation in wireless and dynamic networks. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, September 2012

    Google Scholar 

  18. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: DIALM-POMC, pp. 104–110 (2005)

    Google Scholar 

  19. Das Sarma, A., Molla, A.R., Pandurangan, G.: Fast distributed computation in dynamic networks via random walks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 136–150. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Abshoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abshoff, S., Benter, M., Cord-Landwehr, A., Malatyali, M., Meyer auf der Heide, F. (2014). Token Dissemination in Geometric Dynamic Networks. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2013. Lecture Notes in Computer Science(), vol 8243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45346-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45346-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45345-8

  • Online ISBN: 978-3-642-45346-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics