Skip to main content

Part of the book series: Informatik-Fachberichte ((2252,volume 287))

Abstract

Following reviews of previous approaches to spatial reasoning, a completely qualitative method for reasoning about cardinal directions, without recourse to analytical procedures, is introduced and a method is presented for a formal comparison with quantitative formulae. We use an algebraic method to formalize the meaning of cardinal directions. The standard directional symbols (N, S, E, W) are extended with a symbol 0 to denote an undecided case, which greatly increases the power of inference. Two examples of systems to determine and reason with cardinal directions are discussed in some detail and results from a prototype are given. The deduction rules for the coordination of directional symbols are formalized as equations; for inclusion in an expert system they can be coded as a look-up table (given in the text). The conclusions offer some direction for future work.

Funding from NSF for the NCGIA under grant SES 88-10917, from Intergraph Corporation and Digital Equipment Corporation is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. G. Bobrow, S. Mittal and M. J. Stefik. 1986. Expert Systems: Perils and Promise. Communications of the ACM 29 (9): 880–894.

    Article  Google Scholar 

  • S.-K. Chang, E. Jungert and Y. Li. 1990. “The Design of Pictorial Databases Based Upon the Theory of Symbolic Projection”. In Design and Implementation of Large Spatial Databases. Edited by A. Buchmann, O. Gunther, T. R. Smith and Y.-F. Wang. 303–324. New York NY: Springer Verlag.

    Google Scholar 

  • S. K. Chang, Q. Y. Shi and C. W. Yan. 1987. Iconic Indexing by 2-D String. IEEE Transactions on Pattern Analysis and Machine Intelligence 9 (3): 413–428.

    Article  Google Scholar 

  • S. Dutta. 1988. “Approximate Spatial Reasoning”. In First International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. 126–140. Tullahoma. Tennessee: ACM Press.

    Google Scholar 

  • S. Dutta. 1990. “Qualitative Spatial Reasoning: A Semi-quantitative Approach Using Fuzzy Logic”. In Design and Implementation of Large Spatial Databases. Edited by A. Buchmann, O. Günther, T. R. Smith and Y.-F. Wang. 345–364. New York NY: Springer Verlag.

    Chapter  Google Scholar 

  • A. U. Frank. 1990. “Spatial Concepts, Geometric Data Models and Data Structures”. In GIS Design Models and Functionality. Edited by D. Maguire. Leicester, UK: Midlands Regional Research Laboratory, University of Leicester.

    Google Scholar 

  • A. U. Frank. 1991. Qualitative Spatial Reasoning about Cardinal Directions. In Autocarto 10. Edited by D. Mark and D. White. 148–167.

    Google Scholar 

  • A. U. Frank and D. M. Mark. 1991. “Language Issues for Geographical Information Systems”. In Geographic Information Systems: Principles and Applications. Edited by D. Maguire, D. Rhind and M. Goodchild. London: Longman Co. (in press).

    Google Scholar 

  • J. Freeman. 1975. The modelling of spatial relations. Computer Graphics and Image Processing 4: 156–171.

    Article  Google Scholar 

  • D. Hernández. 1990. Relative Representation of Spatial Knowledge: The 2-D Case. Report FKI-135–90. Munich FRG: Technische Universität München.

    Google Scholar 

  • A. Herskovits. 1986. Language and Spatial Cognition — An Interdisciplinary Study of the Propositions in English. Stiudies in Natural Language Processing. Cambridge UK: Cambridge University Press.

    Google Scholar 

  • R. Jackendoff. 1983. Semantics and Cognition. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • D. M. Mark and A. U. Frank. 1990. Experiential and Formal Representations of Geographic Space and Spatial Relations. Technical Report (in press).: NCGIA.

    Google Scholar 

  • D. M. Mark, A. U. Frank, M. J. Egenhofer, S. M. Freundschuh, M. McGranaghan and R. M. White. 1989. Languages of Spatial Relations: Initiative Two Specialist Meeting Report. Technical Report 89–2.: National Center for Geographic Information and Analysis.

    Google Scholar 

  • D. McDermott and E. Davis. 1984. Planning routes through uncertain territory. Artificial Intelligence 22: 107–156.

    Article  Google Scholar 

  • NCGIA. 1989. The U.S. National Center for Geographic Information and Analysis: An overview of the agenda for research and education. International Journal of Geographical Information Systems 2 (3): 117–136.

    Google Scholar 

  • S. Nirenburg and V. Raskin. 1987. “Dealing with Space in Natural Language Processing”. In Spatial Reasoning and Multi-Sensor Fusion. Edited by A. Kak and S.-s. Chen. 361–370. Pleasan Run Resort, St. Charles, IL: Morgan Kaufmann Publishers.

    Google Scholar 

  • Peuquet and C.-X. Zhan. 1987. An algorithm to determine the directional relationship between arbitrarily-shaped polygons in a plane. Pattern Recognition 20: 65–74.

    Article  Google Scholar 

  • G. Retz-Schmidt. 1987. “Deitic and Intrinsic Use of Spatial Propositions: A Multidisciplinary Comparison”. In Spatial Reasoning and Multi-Sensor Fusion. Edited by A. Kak and S.-s. Chen. 371–380. Pleasan Run Resort, St. Charles, IL: Morgan Kaufmann Publishers

    Google Scholar 

  • F. S. Robert. 1973. Tolerance Geometry. Notre Dame Journal of Formal Logic 14 (1): 68–76.

    Article  MathSciNet  Google Scholar 

  • L. A. Zadeh. 1974. “Fuzzy Logic and Its Application to Approximate Reasoning”. In Information Processing.: North-Holland Publishing Company.

    Google Scholar 

  • C. Zeeman. 1962. “The Topology of the Brain and Visual Perception”. In The Topology of 3-Manifolds. Edited by M. K. Fort. 240–256. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frank, A.U. (1991). Qualitative Spatial Reasoning with Cardinal Directions. In: Kaindl, H. (eds) 7. Österreichische Artificial-Intelligence-Tagung / Seventh Austrian Conference on Artificial Intelligence. Informatik-Fachberichte, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46752-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46752-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54567-5

  • Online ISBN: 978-3-642-46752-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics