Skip to main content

Tracking Drift Types in Changing Data Streams

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8346))

Abstract

The rate of change of drift in a data stream can be of interest. It could show, for example, that a strand of bacteria is becoming more resistant to a drug, or that a machine is becoming unreliable and requires maintenance. While concept drift in data streams has been widely studied, no one has studied the rate of change in concept drift. In this paper we define three new drift types: relative abrupt drift, relative moderate drift and relative gradual drift. We propose a novel algorithm that tracks changes in drift intensity relative to previous drift points within the stream. The algorithm is based on mapping drift patterns to a Gaussian function. Our experimental results show that the algorithm is robust and achieving accuracy levels above 90%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldá, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams (2006)

    Google Scholar 

  2. Bartlett, P., Ben-David, S., Kulkarni, S.: Learning changing concepts by exploiting the structure of change. Machine Learning 41(2), 153–174 (2000)

    Article  MATH  Google Scholar 

  3. Bifet, A., Gavaldá, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining (2007)

    Google Scholar 

  4. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 13–29 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth International Conference on VLDB, vol. 30, pp. 180–191. VLDB Endowment (2004)

    Google Scholar 

  7. Kosina, P., Gama, J., Sebastião, R.: Drift severity metric. In: Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial Intelligence, pp. 1119–1120. IOS Press, Amsterdam (2010)

    Google Scholar 

  8. Sebastião, R., Gama, J.: A study on change detection methods. In: 4th Portuguese Conf. on Artificial Intelligence, Lisbon (2009)

    Google Scholar 

  9. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, P., Zhu, X., Shi, Y.: Categorizing and mining concept drifting data streams. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 812–820. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, D.T.J., Koh, Y.S., Dobbie, G., Pears, R. (2013). Tracking Drift Types in Changing Data Streams. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds) Advanced Data Mining and Applications. ADMA 2013. Lecture Notes in Computer Science(), vol 8346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53914-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53914-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53913-8

  • Online ISBN: 978-3-642-53914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics