
A Pre-initialization Stage of Population-based Bio-
inspired Metaheuristics for Handling Expensive

Optimization Problems

Muhammad Marwan Muhammad Fuad

Forskningsparken 3, Institutt for kjemi, NorStruct
The University of Tromsø - The Arctic University of Norway

NO-9037 Tromsø, Norway
mfu008@post.uit.no

Abstract: Metaheuristics are probabilistic optimization algorithms which are
applicable to a wide range of optimization problems. Bio-inspired, also called
nature-inspired, optimization algorithms are the most widely-known
metaheuristics. The general scheme of bio-inspired algorithms consists in an
initial stage of randomly generated solutions which evolve through search
operations, for several generations, towards an optimal value of the fitness
function of the optimization problem at hand. Such a scenario requires repeated
evaluation of the fitness function. While in some applications each evaluation
will not take more than a fraction of a second, in others, mainly those
encountered in data mining, each evaluation may take up several minutes,
hours, or even more. This category of optimization problems is called expensive
optimization. Such cases require a certain modification of the above scheme. In
this paper we present a new method for handling expensive optimization
problems. This method can be applied with different population-based bio-
inspired optimization algorithms. Although the proposed method is independent
of the application to which it is applied, we experiment it on a data mining task.

Keywords: Bio-inspired Optimization, Differential Evolution, Expensive
Optimization, Genetic Algorithms, Metaheuristics, Optimization Applications
in Data Mining.

1 Introduction

Optimization is an important problem that has many applications. In an optimization
problem we try to find a solution that minimizes or maximizes the value of a function
that we call the fitness function or the objective function. Optimization problems can
be discrete/ continuous/hybrid, constrained/unconstrained, single objective/
multiobjective, unimodal /multimodal. Optimization algorithms can be classified in
several ways one of which is whether they are single solution –based algorithms or
population-based algorithms. The term metaheuristics in the optimization literature
refers to probabilistic optimization algorithms which are applicable to a large variety

 2

of optimization problems. Many of these metaheuristics are inspired by natural
processes hence the term bio-inspired or nature-inspired optimization algorithms. The
general scheme used in all these algorithms is the following; an initial stage where a
population of feasible solutions is randomly generated. The fitness function of these
solutions is evaluated. The solutions with the highest values of the fitness function are
favored and are given a higher possibility to survive the optimization process. The
algorithm repeats for a certain number of generations or cycles, or it is terminated by
a predefined stopping criterion.

As we can see from the above scheme, fitness function evaluation is a central part
of bio-inspired optimization. While in some applications each evaluation will not take
more than a fraction of a second, in others each evaluation may take up to several
minutes, hours, or even more. This category of optimization is called expensive
optimization. Such cases require a certain modification of the above scheme.

Data mining is a branch of computer science that handles several tasks, most of
which demand extensive computing. As with other fields of research, different papers
have proposed applying bio-inspired optimization to process data mining tasks [2],
[3], [4], [5], [6], [7]. However, most of these applications are expensive optimization
problems that require certain considerations.

In this paper we present a new method for handling expensive optimization
problems. This method can be applied to different population-based bio-inspired
optimization algorithms. Although the proposed method is independent of the
application to which it is applied, we test it on a data mining task of setting weights
for different segments of time series data according to their information content.

This paper is organized as follows: Section 2 is a background section. In Section 3
we present the new method. The experiments we conducted are reported in Section 4,
and we conclude with Section 5.

2 Background

Although bio-inspired algorithms use different search strategies, they all share a
common frame that is a based on the following steps:

. Initialization: In this step a collection of individuals (called chromosomes,
particles, or agents, according to the algorithm) that represent a feasible solution to an
optimization problem is generated randomly.

. Fitness Function Evaluation: The objective of this step is to rank the different,
so-far examined, solutions of the problem, to determine their quality.

. Update: The term “update” here does not refer to the narrow meaning of it as it
used in Particle Swarm Optimization (PSO), but it refers to a meta operation that
directs the metaheuristics at iteration t+1 towards the region in the search space where
a better solution is likely to be found. This update is based on the fitness evaluation at
iteration t . This step is the abstract form of the selection step used in the Evolutionary
Algorithms (EA) family.

. Mutation: This is a random alteration of a certain percentage of chromosomes.
The objective of this operation is to allow the optimization algorithm to explore new
regions in the search space.

 3

. Iteration: This is not a step by itself, it is the repetition of the last three steps for a
predefined number of times (generations, cycles, iterations, depending on the
algorithm) which is usually predefined, or until the algorithm is terminated by a
stopping criterion.

The performance of bio-inspired optimization highly depends on running the
algorithm for a number of iterations sufficient to allow the solutions to evolve,
otherwise the algorithm will, at best, only reach a local extreme point. The number of
iterations, in turn, is dependent of the computational cost of fitness function
evaluation. In general the number of fitness function evaluations can (roughly) be
given by:

sPop.nItrnEval = (1)

Where nEval is the number of fitness function evaluations, nItr is the number of
iterations (generations) and sPop is the population size. We say that relation (1) is an
approximate one because there are quite a number of variations; for instance, most
algorithms will add to that relation another term related to the evaluations resulting
from mutation, others will recycle evaluations from previous generations, etc.

One of the trivial techniques to handle expensive optimization problems is simply
to reduce the number of generations nItr. While this may be acceptable to a certain
degree, it could have serious consequences when nItr is drastically decreased. Bio-
inspired optimization algorithms are supposed to mimic natural phenomena. For
instance; EA simulate evolution of species as it happens over thousands of
generations. This is the reason why many applications set nItr to 1000 or 2000 or even
more. But when in some applications of expensive optimization nItr is set to 10, for
instance, this changes the whole nature of the bio-inspired algorithm. At best, the
algorithm in this case can only find a local extreme point, but in other cases the whole
optimization process becomes meaningless. Besides, it is important to remember that
the random initialization of the population assumes that the algorithm will be run for a
certain number of generations enough to “erase” the effect of initialization of the
population with specific chromosomes.

3 The Proposed Method

3.1 The Principle

One of the techniques that have already been proposed in bio-inspired optimization to
avoid stagnating in a local extreme point is to run the algorithm several times, with
different initial populations, and the best result of all these runs is kept. Although this
approach is completely inappropriate for expensive optimization problems because it
requires too many fitness function evaluations, our method stems from a similar idea;
instead of running the algorithm several times, which is not computationally feasible,
and instead of running the algorithm once for a limited number of iterations for
expensive optimization problems, as has previously been discussed in Section 2, we

 4

propose a new method that runs the algorithm for a limited number of iterations, but
using an optimally initialized population.

3.2 Optimization of the Initial Population

As mentioned earlier, our method is based on running an expensive optimization
algorithm for a small number of iterations but using an optimally-chosen initial
population. However, we should keep in mind that this “optimality” of the initial
population should not be determined by any evaluation of the expensive fitness
function, otherwise the method would not make sense. The direct result of this
requirement is that optimization of the initial population will be problem-independent.
To put it simply; we have two separate and independent optimization problems; one is
a sub-optimization problem, which is the problem of optimizing the initial population,
we call this problem the secondary optimization problem and refer to it with
(SecOptim), and the other is the original optimization problem with the expensive
fitness function. We call this problem the main optimization problem and we refer to
it with (MainOptim). MainOptim starts the optimization process with an optimal
initial population obtained through SecOptim.

As a fitness function of SecOptim we choose one that gives as much information as
possible about the search space of MainOptim since this initial population will
eventually be used to optimize MainOptim. This choice of our fitness function for
SecOptim originates from one of the rules on which PSO is based, which is the rule of
separation [8]. According to this rule each particle should avoid getting too close to
its neighbors. The intuition behind this rule is that when two particles are close it is
very likely that the value of the fitness function for both of them will not be very
different. Based on the same intuition, between two different populations we have to
choose the one whose chromosomes are as scattered as possible because such a
population will give a better representation of the search space. Thus our choice for
the fitness function for SecOptim will be the one that maximizes the average distance
of the chromosomes of the population, i.e.:

 () ()∑ ∑
−

= +=−
=

1secPopSize

1i

secPopSize

1ij
jisecOptim ch,chd

1secPopSizesecPopSize
2f (2)

where secPopSize is the population size of SecOptim , ch is the chromosome. d is a
distance, which we choose to be the Euclidean distance. Notice that
() ()ijji ch,chdch,chd = so we only need to take half of the summation in (2).
The other component of SecOptim is the search space. As indicated earlier,

SecOptim is a separate optimization problem from MainOptim with its own search
space. The search space of SecOptim is a discrete one whose points are feasible
solutions of MainOptim. In other words, the search space of SecOptim is a pool of
solutions of MainOptim . The cardinality of this pool is denoted by poolSize.

Now all the elements of SecOptim are defined. poolSize is a new element that is
particular to our method. In the experimental section we discuss this element further.

 5

3.3 The Algorithm

Briefly, our method as described in Section 3.1 and 3.2, adds to the original
optimization problem MainOptim another optimization problem SecOptim the
outcome of which is the initial population of MainOptim . The aim of this process is
to reduce the number of fitness function evaluations of MainOptim by starting the
optimization process with an optimal initial population.

4 Application - Experiments

In this section we show how our algorithm is applied through an example of an
optimization problem with an expensive fitness function. First we will present the
problem and then we will discuss how our method is applied to it, and in the final part
of this section we will conduct experiments to test our method.

4.1 The Problem

A time series is a collection of observations at intervals of time points. One key to
mining time series data is to reduce their dimensionality so that they can be handled
efficiently and effectively. Most time series data mining tasks require calculating the
similarity between the time series. This similarity is quantified using a similarity
measure or a distance metric. In [7] we presented a new distance of time series data,
WPAAD, which is defined as:

() () []10
1

2
,w;rsw

N
nR,SWPAAD i

N

i iii ∈−= ∑ =
 (3)

Where n is the length of the time series, N is the number of frames in the reduced
space, and where the time series are segmented into equal-sized frames, is (ir) is the
mean of the data points S (R) that lie within that frame. The weights in (3) are set
using the differential evolution (DE) which we present later in this paper. We called
the dimensionality reduction technique based on this distance the Differential
Evolutionary Weighted Piecewise Aggregate Approximation (DEWPAA)

4.2 Our Proposed Algorithm

The problem we presented in Section 4.1 is an example of expensive optimization
problems, so we will use our algorithm, which we call the PreInitialAlgo to show that
by starting the optimization process of DEWPAA with an optimized population
resulting from our method, we can get the same results of DEWPAA but by a much
smaller number of generations, thus with much fewer fitness function evaluations. In
the language of our PreInitialAlgo, the optimization process of DEWPAA is
MainOptim, and SecOptim is the optimization process that yields an optimal initial

 6

population for DEWPAA. Since MainOptim and SecOptim are independent, we can
use two different optimization algorithms if we wish to, so for our experiments we
apply the Genetic Algorithms for SecOptim and the differential evolution for
MainOptim. Figure 1 illustrates how PreInitialAlgo is applied. But let us first give a
brief description of the Genetic Algorithms and the Differential Evolution.

The Genetic Algorithms (GAs): GAs are widely-known bio-inspired optimization
algorithms. GA starts by randomly generating a number of chromosomes. This step is
called initialization. The fitness function of each chromosome is evaluated. The next
step is selection. The purpose of this procedure is to determine which chromosomes
are fit enough to survive. Crossover is the next step in which offspring of two parents
are produced to enrich the population with fitter chromosomes. The last element is
Mutation of a certain percentage of chromosomes.

The Differential Evolution (DE): In

DE for each individual, which we call
the target vector iT

r
, of the population

we randomly choose three mutually
distinct individuals; 1rV

r
, 2rV
r

, 3rV
r

which
combine to form the donor vector

()321 rrr VVFVD
rrrr

−+= . F is called the
mutation factor . Then a trial vector
R
r

is formed from elements of iT
r

and

D
r

. This includes utilizing another
control parameter rC called the

crossover constant. In the next step R
r

is
compared with iT

r
to decide which one

of them will survive in the next
generation.

4.3 Experiments

We conducted our experiments on the datasets available at [1] to compare
PreInitialAlgo with DEWPAA. For each tested data set we ran PreInitialAlgo for 20
generations to get the weights iw in relation (3) that minimize the classification error
of the training datasets, and then we used these optimal values iw to classify the
corresponding testing datasets to get the classification error. We repeated this process
for three compression ratios 1:8, 1:12, and 1:16. We then ran DEWPAA for 100
generations to get iw , also for the same compression ratios. The experiments were
conducted on Intel Core 2 Duo CPU with 3G memory. We present in Table 1 the
results of our experiments. As we can see in Table 1 the classification error of
PreInitialAlgo is equal to, or even better than, that of DEWPAA even though the
former is run only for 20 generations while the latter is run for 100 generations, which

 Optimal Solution of Main Problem

Main Fitness Function Evaluation

Main Problem Initialization
Secondary Problem Initialization

Stopping
Criteria?

Selection

Pool Initialization

Secondary Fitness Function
Evaluation

Crossover

Mutation

Secondary Fitness Function
Evaluation

 No
 Yes

Target
Donor

Trial Vector

Main Fitness Function Evaluation

Replacement

Stopping
Criteria? No Yes

Fig. 1. A scheme of PreInitialAlgo using GA
and DE

 7

Table 1. Comparison of classification accuracy between PreInitialAlgo and DEWPAA on
different datasets for compression ratios 1:8, 1:12, and 1:16

Compression Ratios Dataset Method
1:8 1:12 1:16

PreInitialAlgo 0.397 0.260 0.479 Lighting7
DEWPAA 0.438 0.384 0.479

PreInitialAlgo 0.378 0.337 0.387 MedicalImages
DEWPAA 0.379 0.353 0.378

PreInitialAlgo 0.213 0.180 0.131 Lighting2
DEWPAA 0.213 0.197 0.197

PreInitialAlgo 0.095 0.077 0.082 MALLAT
DEWPAA 0.094 0.094 0.094

PreInitialAlgo 0.240 0.302 0.364 FaceUCR
DEWPAA 0.238 0.316 0.366

PreInitialAlgo 0.194 0.246 0.200 FISH
DEWPAA 0.194 0.240 0.229

PreInitialAlgo 0.063 0.110 0.147 synthetic_control
DEWPAA 0.053 0.113 0.160

means that DEWPAA requires 5 times more fitness function evaluations than
PreInitialAlgo, yet its performance is the same, or even not as good, as that of
PreInitialAlgo.

The experiments we conducted also included wall clock time comparison. We
present in Table 2 the run time of the experiments presented in Table 1. As we can see
from the results presented in Table 2, PreInitialAlgo is on average 5 times faster than
DEWPAA, yet the classification errors of both methods are the same in general, which
proves the effectiveness of PreInitialAlgo.

The results presented in Table 1 and Table 2 were those for poolSize =1000. We
conducted other experiments for different values of poolSize higher than that, and the
results were similar.

An interesting thing to mention is that we computed the wall clock time of
SecOptim; it took only between 7-12 seconds, which is very small compared to the
optimization process of MainOptim, so this additional secondary optimization
problem we added did not require but a very small additional computational cost, yet
the gain was high. (The wall clock time of SecOptim is independent of the dataset,
since, as we mentioned earlier, SecOptim is independent of MainOptim)

Table 2. Run time comparison between PreInitialAlgo and DEWPAA for the experiments
presented in Table 1

Compression Ratios Dataset Method
1:8 1:12 1:16

PreInitialAlgo 00h 19m 59s 00h 13m 20s 00h 09m 34s Lighting7
DEWPAA 01h 36m 29s 01h 11m 20s 00h 51m 08s

PreInitialAlgo 03h 09m 23s 02h 03m 36s 01h 39m 58s MedicalImages
DEWPAA 16h 35m 59s 11h 25m 40s 08h 48m 33s

PreInitialAlgo 00h 32m 12s 00h 21m 56s 00h 17m 00s Lighting2
DEWPAA 02h 30m 13s 01h 31m 27s 01h 16m 06s

PreInitialAlgo 00h 43m 19s 00h 29m 30s 00h 18m 42s MALLAT
DEWPAA 03h 30m 42s 02h 08m 55s 01h 37m 23s

PreInitialAlgo 01h 04m 04s 00h 41m 55s 00h 32m 33s FaceUCR
DEWPAA 05h 31m 19s 03h 27m 50s 02h 49m 21s

PreInitialAlgo 02h 57m 03s 02h 47m 01s 01h 53m 45s FISH
DEWPAA 16h 12m 54s 11h 23m 10s 07h 23m 10s

PreInitialAlgo 01h 04m 47s 00h 58m 27s 00h 30m 11s synthetic_control
DEWPAA 05h 56m 10s 04h 01m 09s 03h 12m 27s

 8

5 Conclusion

We presented in this paper a new method, PreInitialAlgo, for handling expensive
optimization problems such as those encountered in data mining. The new method is
applied to population-based bio-inspired algorithms. The basis of our method is to
start the optimization process using an optimal initial population. This optimal
population is the outcome of another, secondary optimization problem, which is
independent of the original problem. We showed experimentally how our new method
can substantially improve the performance of the optimization algorithm in terms of
speed.

In this paper we used DE and GA as optimizers for the main and secondary
optimization problems, respectively. As future work, we would like to test different
combinations of bio-inspired algorithms to see which two methods can work best
together to yield the best results.
 Another direction of future work is to apply the secondary problem using a different
fitness function, which could give better results yet.

References

1. Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L. & Ratanamahatana, C.A: The UCR
Time Series Classification/Clustering Homepage:

 www.cs.ucr.edu/~eamonn/time_series_data/ (2011)
2. Muhammad Fuad, M.M.: ABC-SG: A New Artificial Bee Colony Algorithm-Based

Distance of Sequential Data Using Sigma Grams. The Tenth Australasian Data Mining
Conference - AusDM 2012, Sydney, Australia, 5-7 December, (2012)

3. Muhammad Fuad, M.M.: Differential Evolution versus Genetic Algorithms: Towards
Symbolic Aggregate Approximation of Non-normalized Time Series. Sixteenth
International Database Engineering & Applications Symposium– IDEAS’12 , Prague,
Czech Republic,8-10 August, 2012 . Published by BytePress/ACM (2012)

4. Muhammad Fuad, M.M.: Genetic Algorithms-Based Symbolic Aggregate Approximation.
14th International Conference on Data Warehousing and Knowledge Discovery - DaWaK
2012 – Vienna, Austria, September 3 – 7. Published in LNCS (2012)

5. Muhammad Fuad, M.M.: Particle Swarm Optimization of Information-Content Weighting
of Symbolic Aggregate Approximation. The 8th International Conference on Advanced
Data Mining and Applications -ADMA2012, 15-18 December 2012, Nanjing, China.
Published in LNCS/LNAI (2012)

6. Muhammad Fuad, M.M.: Towards Normalizing the Edit Distance Using a Genetic
Algorithms–Based Scheme. The 8th International Conference on Advanced Data Mining
and Applications -ADMA2012, 15-18 December 2012, Nanjing, China. Published in
LNCS/LNAI (2012)

7. Muhammad Fuad, M.M.: Using Differential Evolution to Set Weights to Segments with
Different Information Content in the Piecewise Aggregate Approximation. 16th
International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems – KES 2012– San Sebastian, Spain, September 10 - 12,2012. Published by IOS
Press in “Frontiers of Artificial Intelligence and Applications (FAIA)” series (2012).

8. Reynolds, C. W.: Flocks, Herds and Schools: A Distributed Behavioral Model. SIGGRAPH
Comput. Graph. 21, 4 (1987)

