Skip to main content

An Investigation of Classification Algorithms for Predicting HIV Drug Resistance without Genotype Resistance Testing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8315))

Abstract

The development of drug resistance is a major factor impeding the efficacy of antiretroviral treatment of South Africa’s HIV infected population. While genotype resistance testing is the standard method to determine resistance, access to these tests is limited in low-resource settings. In this paper we investigate machine learning techniques for drug resistance prediction from routine treatment and laboratory data to help clinicians select patients for confirmatory genotype testing. The techniques, including binary relevance, HOMER, MLkNN, predictive clustering trees (PCT), RAkEL and ensemble of classifier chains were tested on a dataset of 252 medical records of patients enrolled in an HIV treatment failure clinic in rural KwaZulu-Natal in South Africa. The PCT method performed best with a discriminant power of 1.56 for two drugs, above 1.0 for three others and a mean true positive rate of 0.68. These methods show potential for application where access to genotyping is limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Statistics, S.A.: Statistical release Mid-year population estimates (July 2011), http://www.statssa.gov.za/Publications/statsdownload.asp?PPN=P0302

  2. Rossouw, T., Tulio, O., Lessels, R.J.: HIV & TB Drug Resistance & Clinical Management Case Book. South African Medical Research Council Press (2013)

    Google Scholar 

  3. Liu, T.F., Shafer, R.W.: Web resources for HIV type 1 genotypic-resistance test interpretation. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 42(11), 1608–1618 (2006)

    Article  Google Scholar 

  4. Van Laethem, K., De Luca, A., Antinori, A., et al.: A genotypic drug resistance interpretation algorithm that significantly predicts therapy response in HIV-1-infected patients. Antiviral Therapy 7(2), 123–129 (2002)

    Google Scholar 

  5. Rosen, S., Long, L., Sanne, I., et al.: The net cost of incorporating resistance testing into HIV/AIDS treatment in South Africa: a Markov model with primary data. Journal of the International AIDS Society 14(1), 24 (2011)

    Article  Google Scholar 

  6. Robbins, G.K., Daniels, B., Zheng, H., et al.: Predictors of antiretroviral treatment failure in an urban HIV clinic. Journal of Acquired Immune Deficiency Syndromes 44(1), 30–37 (1999)

    Article  Google Scholar 

  7. Parienti, J.J., Massari, V., Descamps, D., et al.: Predictors of virologic failure and resistance in HIV-infected patients treated with nevirapine- or efavirenz-based antiretroviral therapy. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 38(9), 1311–1316 (2004)

    Article  Google Scholar 

  8. Harrigan, P.R., Hogg, R.S., Dong, W.W.Y., et al.: Predictors of HIV drug-resistance mutations in a large antiretroviral-naive cohort initiating triple antiretroviral therapy. The Journal of Infectious Diseases 191(3), 339–347 (2005)

    Article  Google Scholar 

  9. Di Giambenedetto, S., Zazzi, M., Corsi, P., et al.: Evolution and predictors of HIV type-1 drug resistance in patients failing combination antiretroviral therapy in Italy. Antiviral Therapy 14(3), 359–369 (2009)

    Google Scholar 

  10. Larder, B., Revell, A., Mican, J.M., et al.: Clinical evaluation of the potential utility of computational modeling as an HIV treatment selection tool by physicians with considerable HIV experience. AIDS Patient Care and STDs 25(1), 29–36 (2011)

    Article  Google Scholar 

  11. Zazzi, M., Kaiser, R., Sönnerborg, A., et al.: Prediction of response to antiretroviral therapy by human experts and by the EuResist data-driven expert system (the EVE study). HIV Medicine 12(4), 211–218 (2011)

    Article  Google Scholar 

  12. Larder, B., Wang, D., Revell, A., et al.: The development of artificial neural networks to predict virological response to combination HIV therapy. Antiviral Therapy 12(1), 15–24 (2007)

    Google Scholar 

  13. Prosperi, M.C.F., Altmann, A., Rosen-Zvi, M., et al.: Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment. Antiviral Therapy 14(3), 433–442 (2009)

    Google Scholar 

  14. Altmann, A., Rosen-Zvi, M., Prosperi, M., et al.: Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy. PloS One 3(10), e3470 (2008)

    Google Scholar 

  15. Rosen-Zvi, M., Altmann, A., Prosperi, M., et al.: Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics 24(13), 399–406 (2008)

    Article  Google Scholar 

  16. Revell, A.D., Wang, D., Wood, R., et al.: Computational models can predict response to HIV therapy without a genotype and may reduce treatment failure in different resource-limited settings. Journal of Antimicrobial Chemotherapy (March 2013)

    Google Scholar 

  17. Prosperi, M.C.F., Rosen-Zvi, M., Altmann, A., et al.: Antiretroviral therapy optimisation without genotype resistance testing: a perspective on treatment history based models. PloS One 5(10), e13753 (2010)

    Google Scholar 

  18. Libin, P., Beheydt, G., Deforche, K., et al.: RegaDB: Community-driven data management and analysis for infectious diseases. Bioinformatics, 1–5 (April 2013)

    Google Scholar 

  19. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. Data Mining and Knowledge Discovery Handbook, 1–20 (2010)

    Google Scholar 

  20. Madjarov, G., Kocev, D., Gjorgjevikj, D., et al.: An extensive experimental comparison of methods for multi-label learning. An Extensive Experimental Comparison of Methods for Multi-label Learning 45, 3084–3104 (2012)

    Google Scholar 

  21. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. International Joint Conference on Artificial Intelligence 14(12), 1137–1143 (1995)

    Google Scholar 

  22. Sechidis, K., Tsoumakas, G., Vlahavas, I.: On the stratification of multi-label data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 145–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification. Bioinformatics 1(1), 1–16 (2010)

    MathSciNet  Google Scholar 

  24. Rish, I.: An empirical study of the naive Bayes classifier. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (2001)

    Google Scholar 

  25. Tsoumakas, G.: Effective and efficient multilabel classification in domains with large number of labels. In: Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data, MMD 2008 (2008)

    Google Scholar 

  26. Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  27. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101(1-2), 285–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Read, J., Pfahringer, B., Holmes, G., et al.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  30. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Information Processing & Management 45(4), 427–437 (2009)

    Article  Google Scholar 

  31. Baldi, P., Brunak, S.R., Chauvin, Y., et al.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000)

    Article  Google Scholar 

  32. Sokolova, M.V., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  34. Okun, O.: Introduction to Feature and Gene Selection. In: Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations, pp. 117–122. IGI Global, Hershey (2011)

    Chapter  Google Scholar 

  35. Conradie, F., Wilson, D., Basson, A., et al.: The 2012 southern African ARV drug resistance testing guidelines by the Southern African HIV Clinicians Society. Southern African Journal of HIV Medicine 13(4), 162–167 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandt, P., Moodley, D., Pillay, A.W., Seebregts, C.J., de Oliveira, T. (2014). An Investigation of Classification Algorithms for Predicting HIV Drug Resistance without Genotype Resistance Testing. In: Gibbons, J., MacCaull, W. (eds) Foundations of Health Information Engineering and Systems. FHIES 2013. Lecture Notes in Computer Science, vol 8315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53956-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53956-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53955-8

  • Online ISBN: 978-3-642-53956-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics