
Relational Thread-Modular Static Value
Analysis by Abstract Interpretation?

Antoine Miné

CNRS & École Normale Supérieure
45, rue d’Ulm

75005 Paris, France
mine@di.ens.fr

Abstract. We study thread-modular static analysis by abstract inter-
pretation to infer the values of variables in concurrent programs. We
show how to go beyond the state of the art and increase an analysis pre-
cision by adding the ability to infer some relational and history-sensitive
properties of thread interferences. The fundamental basis of this work is
the formalization by abstract interpretation of a rely-guarantee concrete
semantics which is thread-modular, constructive, and complete for safety
properties. We then show that previous analyses based on non-relational
interferences can be retrieved as coarse computable abstractions of this
semantics; additionally, we present novel abstraction examples exploit-
ing our ability to reason more precisely about interferences, including
domains to infer relational lock invariants and the monotonicity of coun-
ters. Our method and domains have been implemented in the AstréeA
static analyzer that checks for run-time errors in embedded concurrent
C programs, where they enabled a significant reduction of the number
of false alarms.

Keywords: static analysis, abstract interpretation, verification, safety, concur-
rency, embedded programs, rely-guarantee methods

1 Introduction

Programming is an error-prove activity and software errors are frequent; it is thus
useful to design tools that help ensuring program correctness. In this article, we
focus on static analyzers, which enjoy several benefits: they are fully automatic
(always terminating and requiring minimal annotations, making them easy to
deploy and cost-effective in industrial contexts), sound (no program behavior,
and so, no bug is overlooked), and they offer a wide range of cost versus precision
choices; however they can exhibit false positives (spurious alarms reported by the
tool, that need to be checked manually), which we naturally wish to minimize.

? This work is supported by the INRIA project “Abstraction” common to CNRS
and ENS in France and by the project ANR-11-INSE-014 from the French Agence
nationale de la recherche.

Abstract interpretation [6] makes it possible to design sound static analyzers in
a principled way, by abstraction of a concrete semantics expressing the proper-
ties of interest. Prior results on Astrée [3] showed that abstract interpretation
could effectively drive the construction of an analyzer that is both efficient and
extremely precise (no or few false alarms), by specializing the abstractions to a
class of properties and a class of programs, in that case: the absence of run-time
error in embedded synchronous control/command avionic C programs. We are
now bent on achieving a similar result for concurrent programs: we are devel-
oping AstréeA [19], a static analyzer to prove the absence of run-time error in
embedded concurrent C programs where several threads are scheduled by a real-
time operating system, communicate through a shared memory, and synchronize
through concurrency primitives (such as mutual exclusion locks).

Although concurrent programming is not new, its use has intensified recently
with the rise of consumer multi-core systems. Concurrent programming is also
increasingly used to improve cost-effectiveness in the critical embedded domain
(e.g., Integrated Modular Avionics [23]), where the need for verification is impor-
tant. Concurrent programs are more challenging to verify than sequential ones:
as a concurrent execution is an interleaving of executions of individual threads
often scheduled with a high level of non-determinism (e.g., driven by inputs from
the environment), the number of possible executions is generally very high. The
verification problem is further complicated by the advent of weakly consistent
memories taking hardware and software optimization into account [2].

A solution to avoid considering interleavings explicitly and the associated
combinatorial exposition of executions is to use thread-modular methods. Ideally,
analyzing a concurrent program should be performed by analyzing individually
each thread. Analyzing threads in isolation is not sound as it ignores their po-
tential interactions, but previous work by Carré and Hymans [4] and ourself [19]
showed that sequential analyses can be easily modified to take interactions and
weakly memory models into account. Unfortunately, these methods are based
on a simplistic, non-relational and flow-insensitive concrete semantics of thread
interactions, which severely limits the precision of any analysis built by abstract-
ing this semantics. In this article, we propose another, more precise semantics,
from which former analyses can be recovered by abstraction, but that also allows
more precise, relational abstractions of thread interferences. It is based on Jones’
popular rely-guarantee proof method for concurrent programs [13], formulated
as a constructive fixpoint semantics in abstract interpretation style.

The rest of this introduction presents our former non-relational interference
analysis, exemplifies its shortcommings to motivate our work, and recalls the
rely-guarantee reasoning proof technique.

Analysis based on non-relational interferences. We illustrate our former
analysis [19] and its limits on the example of Fig. 1. This simple program is
composed of two threads: Thread t2 increments Y by a random value in [1, 3]
while it is smaller than 100, and Thread t1 concurrently increments X while it
is smaller than Y . Both variables are initialized to 0 before the program starts.

t1
(1a) while random do

(2a) if X < Y then
(3a) X ← X + 1

(4a) endif
(5a) done

t2
(1b) while random do

(2b) if Y < 100 then
(3b) Y ← Y + [1, 3]

(4b) endif
(5b) done

Fig. 1. Concurrent program example.

X1b = {[X 7→ 0, Y 7→ 0]} (initialization)
X2b = X1b ∪ X5b (control-flow join at loop head)
X3b = JY < 100 KX2b (filtering by test condition on Y)
X4b = JY ← Y + [1, 3] KX3b (assignment into Y)
X5b = X4b ∪ JY ≥ 100 KX2b (control-flow join after test)

Fig. 2. Concrete equation system for Thread t2 from Fig. 1.

Consider first the simpler problem of analyzing t2 in isolation, viewed as a
sequential program. We wish to infer the set of reachable memory states (i.e.,
the values of X and Y) at each program point. This can be expressed classi-
cally [7] as the least solution of the invariance equation system in Fig. 2, where
each variable Xi is the memory invariant at program point i, with value in

D def
= P({X,Y } → Z), and J · K is the effect of an atomic program operation

(assignment or test) on a set of memory states, e.g.: JY < 100 KX def
= { ρ ∈

X | ρ(Y) < 100 } models a test by filtering states while JY ← Y + [1, 3] KX def
=

{ ρ[Y 7→ ρ(Y) + v] | ρ ∈ X , v ∈ [1, 3] } models an incrementation by a non-
deterministic value. We get, for instance, that the loop invariant at point 2b is:
X = 0 ∧ Y ∈ [0, 102]. An effective analysis is obtained by replacing concrete

variables Xi ∈ D with abstract ones X]i ∈ D] living in an abstract domain D],
concrete operations ∪ and J · K with abstract ones ∪] and J · K], and employ-
ing convergence acceleration techniques O to compute, by iteration, an abstract
solution of the system where ⊇ replaces =. We get an inductive (but not neces-
sarily minimal) invariant. For Fig. 1, a simple interval analysis using widenings
with thresholds can infer that Y ∈ [0, 102]. A similar analysis of t1 would infer
that X and Y stay at 0 as it would ignore, for now, the effect of t2.

We now turn to the analysis of the full program under the simplest con-
current execution model, sequential consistency [14]: a program execution is an
interleaving of tests and assignments from the threads, each operation being
considered as atomic. A straightforward approach is to associate a variable Xi,j
to each pair of control points, i for t1 and j for t2, and construct the product
equation system from that of both threads. For instance, we would have:

X3a,3b = JX < Y KX2a,3b ∪ JY < 100 KX3a,2b (1)

as the point 3a, 3b can be reached either with a step by t1 from 2a, 3b, or a step
by t2 from 3a, 2b. However, this quickly results in large equation systems, and

we discard this method as impractical. The methods proposed in [4,19] consist
instead in analyzing each thread independently as a sequential program, extract-
ing from the analysis (an abstraction of) the set of values each thread stores into
each variable, so-called interferences, and then reanalyzing each thread taking
into account these interferences; more behaviors of the threads may be exposed
in the second run, resulting in more interferences, hence, the thread analyses are
iterated until the set of interferences becomes stable. On our example, in the
concrete, after the first analysis of t1 and t2 reported above, we extract the fact
that t2 can store any value in [1, 102] into Y . In the second analysis of t1, this
information is incorporated by replacing the equation X3a = JX < Y KX2a with:

X3a = JX < (Y | [1, 102]) KX2a (2)

and similarly for X5a, where Y | [a, b] denotes a non-deterministic choice between
the current value of Y and an integer between a and b. The test thus reduces
to X < 102, i.e., t1 increments X to at most 102. Accordingly, it generates new
interferences, on X. As X is not used in t2, the third analysis round is identical
to the second one, and the analysis finishes. By replacing concrete variables,
interferences, and operations with abstract ones, and using extrapolation O to
stabilize abstract interferences, we obtain an effective analysis method.

This method is attractive because it is simple and efficient: it is constructed
by slightly modifying existing sequential analyses and reuses their abstract do-
mains, it does not require much more memory (only the cost of abstract inter-
ferences) nor time (few thread analyses are required in practice, even for large
programs, as shown in Fig. 6 in Sec. 5). Unfortunately, modeling interferences
as a set of variable values that effect threads in a non-deterministic way severely
limits the analysis precision. Even when solving exactly the sequence of concrete
equation systems, we can only deduce that X ∈ [0, 102] ∧ Y ∈ [0, 102] at the
end of Fig. 1 while, in fact, X ≤ Y also holds. Naturally, no derived abstract
analysis can infer X ≤ Y , even if it employs a relational domain able to express
it (such as octagons [17]).

Relational rely-guarantee reasoning. Rely-guarantee is a proof method in-
troduced by Jones [13] that extends Hoare’s logic to concurrent programs. It
is powerful enough to prove complex properties, such as X ≤ Y in our exam-
ple. Rely-guarantee replaces Hoare’s triples {P} s {Q} with quintuples R,G `
{P} s {Q}, requiring us to annotate program points with invariants P and Q,
but also relations R and G on whole thread executions; it states that, if the
pre-condition P holds before s is executed and all the changes by other threads
are included in R, then, after s, Q holds and all the thread’s changes are in-
cluded in G. The annotations required for the program in Fig. 1 are presented in
Fig. 3, including the invariants holding at each program point 1a to 5b, and rely
assertions R1, R2. In particular, to prove that X ≤ Y holds in t1, it is necessary
to rely on the fact that t2 can only increment Y , and so, does not invalidate
invariants of the form X ≤ Y . In Fig. 3, our assertions are very tight, so that
each thread exactly guarantees what the other relies on (R1 = G2 and R2 = G1).

checking t1 :
t1
(1a) while random do

(2a) if X < Y then
(3a) X ← X + 1

(4a) endif
(5a) done

R1 = G2

X is unchanged

Y is incremented
0 ≤ Y ≤ 102

checking t2 :
R2 = G1

Y is unchanged

0 ≤ X ≤ Y

t2
(1b) while random do

(2b) if Y < 100 then
(3b) Y ← Y + [1, 3]

(4b) endif
(5b) done

1a : X = 0 ∧ Y ∈ [0, 102]
2a : X ≤ Y ∧X,Y ∈ [0, 102]
3a : X < Y ∧X ∈ [0, 101] ∧ Y ∈ [1, 102]
4a : X ≤ Y ∧X,Y ∈ [1, 102]
5a : X ≤ Y ∧X,Y ∈ [0, 102]

1b : X = 0 ∧ Y = 0
2b : X ≤ Y ∧X,Y ∈ [0, 102]
3b : X ≤ Y ∧X,Y ∈ [0, 99]
4b : X ≤ Y ∧X ∈ [0, 102] ∧ Y ∈ [1, 102]
5b : X ≤ Y ∧X ∈ [0, 102] ∧ Y ∈ [1, 102]

Fig. 3. Rely-guarantee assertions proving that X ≤ Y holds in the program in Fig. 1.

Rely-guarantee is modular: each thread can be checked without looking at the
other threads, but only at the rely assertions. This is in contrast to Owicki and
Gries’ earlier method [21], where checking a Hoare triple required delving into
the full code of all other threads to check for non-interference. Intuitively, the
rely assertions form an abstraction of the semantics of the threads. While attrac-
tive for its expressive power, classic rely-guarantee relies on user annotations. In
the following, we use abstract interpretation to infer them automatically.

Overview. The article is organized as follows: Sec. 2 presents the formalization
of rely-guarantee in constructive form; Sec. 3 shows how to retrieve our coarse
analysis by abstraction while Sec. 4 presents novel abstractions that convey a
degree of relationality and history-sensitivity; we also discuss there the analysis
in the presence of locks and some uses of trace abstractions. Experimental results
are presented in Sec. 5 and Sec. 6 concludes.

Related work. There is a large body of work on the analysis of concurrent
programs; we discuss here only the ones most related to our work and refer the
reader to Rinard’s survey [22] for general information. We already mentioned
previous work on thread-modular static analyses [4,19] which only support non-
relational interferences and are limited in precision. Jeannet proposed a precise
relational static analysis [12]; it is not thread-modular and may not scale up.
Works such as [11] bring thread-modular reasoning to model checking. They in-
herit the limitations of the underlying model checking method; in the case of [11],
the system must be finite-state. Moreover, Malkis et al. observed in [15] that it
performs implicitly a non-relational (so-called Cartesian) abstraction; we make
here the same observation concerning our previous work [19], but we go further
by providing non-trivial relational abstractions. Recent works [10,1] seek to alle-
viate the burden of providing user annotations in rely-guarantee proof methods,
but do not achieve complete automation. Our approach is fundamentally similar

to Cousot and Cousot’s formulation of the Owicki, Gries, and Lamport proof
methods in abstract interpretation form [8], but applied to Jones’ method in-
stead. The results in Sec. 2 and Sec. 3 have been partially described before in a
research report [20] and course notes [18]; Sec. 4 and Sec. 5 are novel.

2 Rely-Guarantee in Abstract Interpretation Form

The first step in any abstract interpretation is the formalization of the concrete
semantics in a constructive form, using fixpoints. We show how, in a very general
setting, the concrete semantics of a concurrent program can be presented in a
thread-modular way.

2.1 Programs and Transition Systems

Programs. Our programs are composed of a finite set T of threads (the un-
bounded case is discussed in Sec. 3.3). We denote by L the set of program points.
A thread t ∈ T is specified as a control-flow graph by: an entry point et ∈ L, and
a set of instructions inst t ⊆ L × Inst × L. For now, Inst contains assignments
X ← e and comparisons e ./ e′ (it will be enriched with synchronization prim-
itives in Sec. 4.4). We denote by V the (possibly unbounded) set of variables;
they are global and shared by all the threads. We denote by V the domain of
variable values. To stay general, we deliberately refrain from specifying the set
V, the syntax of expressions e, e′ and of comparison operators ./.

Transition systems. Following Cousot and Cousot [7], we model program
semantics as labelled transition systems, a form of small-step semantics which is
very general and allows reasoning independently from the chosen programming
language. A transition system (Σ,A, I, τ) is given by: a set Σ of program states; a
set A of actions; a set I ⊆ Σ of initial states; a transition relation τ ⊆ Σ×A×Σ;
we will note 〈σ, a, σ′〉 ∈ τ as σ

a→τ σ
′. We instantiate transition systems on our

programs as follows:

– Σ
def
= C ×M: states 〈L, ρ〉 ∈ Σ consist of a control state L ∈ C def

= T → L
associating a current location L(t) ∈ L to each thread t ∈ T and a memory

state ρ ∈M def
= V → V associating a value ρ(V) ∈ V to each variable V ∈ V;

– I
def
= { 〈λt. et, λV . 0〉 }: we start with all the threads at their entry point and

variables at zero;
– A def

= T : actions record which thread generates each transition;
– transitions model atomic execution steps of the program:

{ 〈L, ρ〉 t→τ 〈L′, ρ′〉 | 〈L(t), ρ〉 →t 〈L′(t), ρ′〉 ∧ ∀t′ 6= t : L(t′) = L′(t′) }
where 〈`, ρ〉 →t 〈`′, ρ′〉

def⇐⇒ ∃i ∈ Inst : 〈`, i, `′〉 ∈ inst t ∧ ρ′ ∈ J i Kρ

i.e.: we choose a thread t to run and an instruction i from thread t; we let
it update t’s control state L(t) and the global memory state ρ (the thread
transition being denoted as 〈L(t), ρ〉 →t 〈L′(t), ρ′〉), while the other threads
t′ 6= t stay at their control location L(t′).

2.2 Monolithic Concrete Semantics

We first recall the standard, non-modular definition of the semantics of transition
systems. An execution trace is a (finite or infinite) sequence of states interspersed

with actions, which we denote as: σ0
a1→ σ1

a2→ · · · . As we are interested solely in
safety properties, our concrete semantics will ultimately compute the so-called
state semantics, i.e., the set R of states reachable in any program trace. It is
defined classically as the following least fixpoint:1

R def
= lfpR, where R

def
= λS. I ∪ {σ | ∃σ′ ∈ S, a ∈ A : σ′

a→τ σ } . (3)

We also recall [5] that R is actually an abstraction of a more precise semantics:
the trace semantics F , that gathers the finite partial traces (i.e., the finite prefixes
of the execution traces). The semantics F can also be defined as a fixpoint:

F def
= lfpF , where

F
def
= λX. I ∪ {σ0

a1→ · · ·σi
ai+1→ σi+1 | σ0

a1→ · · ·σi ∈ X ∧ σi
ai+1→ τ σi+1 } .

Indeed, R = αreach(F), where αreach(T)
def
= {σ | ∃σ0

a1→ · · ·σn ∈ T : ∃i ≤ n :
σ = σi } forgets the order of states in traces. The extra precision provided by
the trace semantics will prove useful shortly in our thread-modular semantics,
and later for history-sensitive abstractions (Sec. 4.3).

The connection with equation systems is well-known: R is the least solution
of the equation R = R(R). By associating a variable Xc with value in P(M) to
each c ∈ C, we can rewrite the equation to the form ∀c ∈ C : Xc = Fc(X1, . . . ,Xn)
for some functions Fc. The solution satisfies R = { 〈c, ρ〉 | c ∈ C, ρ ∈ Xc }, i.e.,
Xc partitions R by control location. We retrieve standard equation systems for
sequential programs (as in Fig. 2) and derive effective abstract static analyses
but, when applied to concurrent programs, C is large and we get unattractively
large systems, as exemplified by (1) in the introduction.

2.3 Thread-Modular Concrete Semantics

We can now state our first contribution: a thread-modular expression of R.

Local states. We define the reachable local states Rl(t) of a thread t as the
state abstraction R where the control part is reduced to that of t only. The
control part of other threads t′ 6= t is not lost, but instead stored in auxiliary
variables pct′ (we assume here that L ⊆ V). Thread local states thus live in

Σt
def
= L ×Mt where Mt

def
= Vt → V and Vt

def
= V ∪ { pct′ | t′ 6= t }. We get:

Rl(t) def
= πt(R) where

πt(〈L, ρ〉)
def
= 〈L(t), ρ [∀t′ 6= t : pct′ 7→ L(t′)]〉

extended element-wise as πt(X)
def
= {πt(x) | x ∈ X } .

(4)

1 Our functions are monotonic in complete powerset lattices. By Tarski’s theorem, all
the least fixpoints we use in this article are well defined.

πt is one-to-one: thanks to the auxiliary variables, no information is lost, which
is important for completeness (this will be exemplified in Ex. 3).

Interferences. For each thread t ∈ T , the interferences it causes I(t) ∈ P(Σ×
Σ) is the set of transitions produced by t in the partial trace semantics F :

I(t)
def
= αitf (F)(t), where

αitf (X)(t)
def
= { 〈σi, σi+1〉 | ∃σ0

a1→ σ1 · · ·
an→ σn ∈ X : ai+1 = t } .

(5)

Hence, it is a subset of the transition relation τ of the program, reduced to the
transitions that appear in actual executions only.

Fixpoint characterization. Rl and I can be directly expressed as fixpoints
of operators on the transition system, without prior knowledge of R nor F . We
first express Rl in fixpoint form as a function of I:

Rl(t) = lfpRt(I), where

Rt(Y)(X)
def
= πt(I) ∪ {πt(σ′) | ∃πt(σ) ∈ X : σ

t→
τ
σ′ } ∪

{πt(σ′) | ∃πt(σ) ∈ X : ∃t′ 6= t : 〈σ, σ′〉 ∈ Y (t′) }
Rt has type: (T → P(Σ ×Σ))→ P(Σt)→ P(Σt) .

(6)

The function Rt(Y) is similar to R used to compute the classic reachability
semantics R in (3) of a thread t, but it explores the reachable states by inter-
leaving two kinds of steps: steps from the transition relation of the thread t, and
interference steps from other threads (provided in the argument Y).

Secondly, we express I in fixpoint form as a function of Rl :

I(t) = B(Rl)(t), where

B(Z)(t)
def
= { 〈σ, σ′〉 | πt(σ) ∈ Z(t) ∧ σ t→

τ
σ′ }

B has type: (
∏
t∈T {t} → P(Σt))→ T → P(Σ ×Σ) .

(7)

The function B(Z)(t) collects all the transitions in the transition relation of the
thread t starting from a local state in Z(t).

There is a mutual dependency between equations (6) and (7), which we
solve using a fixpoint. The following theorem, which characterizes reachable local
states Rl in a nested fixpoint form, is proved in [18]:

Theorem 1. Rl = lfpH, where H
def
= λZ. λt. lfpRt(B(Z)) .

We have the following connection with rely-guarantee proofs R,G ` {P} s {Q}:

– the reachable local states Rl(t) correspond to state assertions P and Q;
– the interferences I(t) correspond to rely and guarantee assertions R and G;
– proving that a given quintuple is valid amounts to checking that ∀t ∈ T :
Rt(I)(Rl(t)) ⊆ Rl(t) and B(Rl)(t) ⊆ I(t), i.e., a post-fixpoint check.

Our fixpoints are, however, constructive and can infer the optimal assertions
instead of only checking user-provided ones. Computing lfpRt(I) corresponds
to inferring the state assertions P and Q of a thread t given the interferences I,
while computing lfpH infers both the interferences and the state assertions.

Thread-modularity is achieved as each function Rt(Y) only explores the tran-
sitions 〈σ, t, σ′〉 generated by the thread t in isolation, while relying on its argu-
ment Y to know the transitions of the other threads without having to explore
them. Note that Rt(Y) has the same control space, L, as the reachability op-
erator R for t considered in isolation. Given an equation system characterizing
lfpR after control partitioning: ∀` ∈ L : X` = F`(X1, . . . ,Xn), lfpRt(Y) can be
characterized very similarly, as ∀` ∈ L : X` = F ′`(X1, . . . ,Xn) ∪ apply`(Y)(X`),
where each F ′` extends F` to pass auxiliary variables unchanged, but is still de-
fined only from the instructions in inst t, while apply` applies interferences from
Y at `. Hence, Y being fixed, Rt(Y) is similar to an analysis in isolation of t.
Finally, computing lfpH by iteration corresponds to reanalyzing threads with
Rt(Y) until Y stabilizes. Although the semantics is concrete and uncomputable,
we already retrieve the structure of the thread-modular static analysis from pre-
vious work [19] recalled in Sec. 1.

Completeness. Given any Rl(t), we can easily recover R as R = π−1t (Rl(t))
because πt is one-to-one. We deduce that Thm. 1 gives a complete method to
infer all safety properties of programs.

Example 1. Consider our example from Fig. 1. We do not presentRl and I in full
as these are quite large; we focus on the interferences generated by t2 at point 3b.
They have the form 〈〈(`, 3b), (x, y)〉, 〈(`, 4b), (x, y′)〉〉 where y ∈ [0, 99], y′ ∈ [y+
1, y+3], and x = 0 if ` = 1a, x ∈ [0, y] if ` = 2a or ` = 5a, x ∈ [0, y−1] if ` = 3a,
and x ∈ [1, y] if ` = 4a. Note that, in the full transition relation τ , Y ← Y +[1, 3]
generates a much larger set of transitions: 〈〈(`, 3b), (x, y)〉, t2, 〈(`, 4b), (x, y′)〉〉
where y′ ∈ [y + 1, y + 3], with no constraint on x nor y.

3 Retrieving Existing Analyses

We now express our former analysis based on non-relational and flow-insensitive
interferences as an abstraction of the thread-modular concrete semantics.

3.1 Flow-Insensitive Abstraction

A first abstraction consists in reducing the domains by forgetting as much control
information as possible. In order to avoid losing too much precision, individual
thread analyses should remain flow-sensitive with respect to their own control
location. Thus, on local states, we remove the auxiliary variables using an ab-
straction αnf

R from P(L ×Mt) to P(L ×M) and, on interferences, we remove

the control part entirely using an abstraction αnf
I from P(Σ×Σ) to P(M×M):

αnf
R (X)

def
= { 〈`, ρ|V 〉 | 〈`, ρ〉 ∈ X }

αnf
I (Y)

def
= { 〈ρ, ρ′〉 | ∃L,L′ ∈ C : 〈〈L, ρ〉, 〈L′, ρ′〉〉 ∈ Y } .

Applying these abstractions to Rt and B gives rise to the following coarser
version of (6)–(7), from which we derive an approximate fixpoint semantics Rlnf :

Rlnf def
= lfpλZ. λt. lfpRnf

t (Bnf (Z)), where

Bnf (Z)(t)
def
= { 〈ρ, ρ′〉 | ∃`, `′ ∈ L : 〈`, ρ〉 ∈ Z(t) ∧ 〈`, ρ〉 →t 〈`′, ρ′〉 }

Rnf
t (Y)(X)

def
= Rloc

t (X) ∪Anf
t (Y)(X)

Rloc
t (X)

def
= {〈et, λV . 0〉} ∪ { 〈`′, ρ′〉 | ∃〈`, ρ〉 ∈ X : 〈`, ρ〉 →t 〈`′, ρ′〉 }

Anf
t (Y)(X)

def
= { 〈`, ρ′〉 | ∃ρ, t′ 6= t : 〈`, ρ〉 ∈ X ∧ 〈ρ, ρ′〉 ∈ Y (t′) } .

(8)

We retrieve in Rnf
t the interleaving of local transitions Rloc

t and interferences

Anf
t (Y) from Y . Interferences are handled in a flow-insensitive way: if a thread

t′ can generate a transition between two memory states at some point, we assume
that it can happen at any point in the execution of t.Rlnf could be turned into an
effective static analysis by reusing stock abstractions for memory states P(M)
and relations P(M×M); however, abstracting relations can be inefficient in the
large and we will abstract interferences further in the next section.

Example 2. When computing Rlnf in Fig. 1, we obtain the assertions in Fig. 2.
For instance, the interferences from t2 are { 〈(x, y), (x′, y′)〉 | x = x′, y ≤ y′ ≤
y+3, x, y ∈ [0, 99], x ≤ y }. This shows that auxiliary variables and flow-sensitive
interferences are not always necessary to infer interesting properties.

Example 3. Consider a program composed of two identical threads reduced to
an incrementation: t1 is (1a)X ← X + 1(2a) and t2 is (1b)X ← X + 1(2b). At 2a,
the state with auxiliary variables is (pc2 = 1b ∧X = 1) ∨ (pc2 = 2b ∧X = 2). It
implies X ∈ [1, 2], but also the fact that t2 can only increment X when pc2 = 1b,
i.e., when X = 1. If we forget the auxiliary variables, we also forget the relation
between pc2 and X, and no upper bound on X is stable by the effect of t2;
we get the coarser invariant: X ≥ 1. We retrieve here a classic result: modular
reasoning on concurrent programs is not complete without auxiliary variables.

3.2 Non-Relational Interference Abstraction

After removing control information, interferences live in P(M×M). Such re-
lations provide two flavors of relationality: input-output relationality and rela-
tionships between variable values. To recover the analysis described in Sec. 1,
we only remember which variables are modified by interferences and their new
value, using the following abstraction αnr

I from P(M×M) to V → P(V):

αnr
I (Y)

def
= λV . {x ∈ V | ∃〈ρ, ρ′〉 ∈ Y : ρ(V) 6= x ∧ ρ′(V) = x } (9)

which forgets variable relationships as it abstracts each variable separately, and
all but the simplest input sensitivity. Applying this abstraction to the flow-
insensitive interference semantics (8), we derive the following, further approxi-

mated fixpoint semantics:

Rlnr def
= lfpλZ. λt. lfpRnr

t (Bnr (Z)), where

Bnr (Z)(t)
def
= αnr

I (Bnf (Z)(t))

Rnr
t (Y)(X)

def
= Rloc

t (X) ∪Anr
t (Y)(X)

Anr
t (Y)(X)

def
= { 〈`, ρ[V 7→ v]〉 | 〈`, ρ〉 ∈ X, V ∈ V, ∃t′ 6= t : v ∈ Y (t′)(V) } .

(10)

Example 4. When computingRlnr in Fig. 1, we obtain the abstract interferences
[X 7→ [1, 102], Y 7→ ∅] for t1 and [X 7→ ∅, Y 7→ [1, 102]] for t2, which is sufficient
to infer precise bounds for X and Y , but not to infer the relation X ≤ Y :
when t1 is analyzed, we allow t2 to store any value from [1, 102] into Y , possibly
decrementing Y and invalidating the relation X ≤ Y .

Soundness. The soundness of (8) and (10) is stated respectively as ∀t ∈ T :

Rlnf (t) ⊇ αnf
R (Rl(t)) and Rlnr (t) ⊇ αnr

R (αnf
R (Rl(t))). It is a consequence of the

general property: α(lfpF) ⊆ lfpF] when α ◦ F ⊆ F] ◦ α [5, Thm. 1]. This
soundness proof is far simpler than the ad-hoc proof from [19], and we find it
more satisfying to construct systematically a sound analysis by abstraction of
a concrete semantics rather than presenting an analysis first and proving its
soundness a posteriori.

Static analysis. We can construct a static analysis based on (10): state sets X
are abstracted by associating to each program point an element of a (possibly
relational) domain abstracting P(M); interferences Y associate to each thread
and variable in V an abstract value abstracting P(V) (for instance, an interval).

Actually, partitioning Rnr
t does not give the equations in Sec. 1 and [19], but

an alternate form where interferences are applied on all variables at all equations.
For instance, instead of X3a = JX < (Y | [1, 102]) KX2a (2), we would get:

X ′3a = JX < Y KX ′2a ∪ JY ← [1, 102] KX ′3a .

The first form (2) is more efficient as it takes interferences into account lazily,
when reading variables, and it avoids creating extra dependencies in equations.
The correctness of this important optimization is justified by the fact that the
variables X` in (2) actually represent local states up to pending interferences.
Given the non-relational interferences Y ∈ T → V → P(V), we have: X ′` =
{ ρ | ∃ρ′ ∈ X` : ∀V : ρ(V) = ρ′(V) ∨ ∃t′ 6= t : ρ(V) ∈ Y (t′)(V) }. The operators
J · K are modified accordingly to operate on pairs 〈X`, Y 〉 instead of X ′` , as shown
in (2) and, more systematically, in [19].

3.3 Unbounded Thread Instances

Up to now, we have assumed that the set T of threads is finite. Allowing an
infinite T is useful, however, to analyze programs with an unbounded number of

threads. We consider, in this section only, the useful case where T is composed
of a finite set Ts of syntactic threads, a subset of which T∞ ⊆ Ts can appear
more than once (and possibly infinitely often) in T .

The fixpoint formulations of Thm. 1, as well as (8), (10), (11) do not require
a finite T ; an infinite T still results in a well defined, if uncomputable, con-
crete semantics. Finiteness is required to construct an effective static analysis,
for three reasons: (i) iterating over the threads in Thm. 1 should terminate, (ii)
control states must be finitely representable, and (iii) maps from threads to ab-
stract interferences must be finitely representable. Applying the flow-insensitive
abstraction from Sec. 3.1 removes infinite control states, solving (ii). As the
local states and interferences of two instances of a syntactic thread are then
isomorphic, we abstract threads from T to Ts by storing information for and
iterating over only one instance of each thread in T∞, solving (i) and (iii). This
abstraction changes slightly the interpretation of the test t′ 6= t when applying
interferences. For instance, Anr

t from (10) is changed into:

Anr
t (Y)(X)

def
= { 〈`, ρ[V 7→ v]〉 | 〈`, ρ〉 ∈ X∧∃t′ : (t 6= t′∨t ∈ T∞)∧v ∈ Y (t′)(V) }

i.e., we consider self-interferences for threads with several instances. This ab-
straction makes the analysis of programs with an unbounded number of threads
possible, but with some limit on the precision. The resulting analysis is uniform:
it cannot distinguish between different instances of the same thread nor express
properties that depend on the actual number of running threads.

4 Relational Interferences

We now construct novel interference abstractions that enjoy a level of relation-
ality and flow-sensitivity. We apply them on some examples, including Fig. 1.

4.1 Invariant Interferences

The non-relational abstraction of Sec. 3.2 applies interferences independently to
each variable, destroying any relationship. To improve the precision, we infer
relationships maintained by interferences, i.e., holding both before and after the
interference. We use the following abstraction αinv

I from P(M×M) to P(M),
which joins the domain and the codomain of a relation on states:

αinv
I (Y)

def
= { ρ | ∃ρ′ : 〈ρ, ρ′〉 ∈ Y ∨ 〈ρ′, ρ〉 ∈ Y } .

Note that this abstraction is able to express relations between variables modified
by a thread and variables not modified, such as X ≤ Y for t2 in Fig. 1. However,
unlike our former abstraction αnr

I (10), αinv
I forgets which variables have been

modified. To construct our analysis, we thus combine them in a reduced product :

Rlrel def
= lfpλZ. λt. lfpRrel

t (Brel(Z)), where

Brel(Z)
def
= 〈λt. αnr

I (Bnf (Z)(t)), λt. αinv
I (Bnf (Z)(t))〉

Rrel
t (〈Y nr , Y inv 〉)(X)

def
= Rloc

t (X) ∪ (Anr
t (Y nr)(X) ∩Ainv

t (Y inv))

Ainv
t (Y inv)

def
= { 〈`, ρ〉 | ` ∈ L, ρ ∈ Y inv (t) } .

(11)

Designing a static analysis derived on this abstraction is straightforward. Inter-
ference invariants Y inv (t) ∈ P(M) are abstracted in any classic domain (e.g.,
octagons [17] to expressX ≤ Y). Computing abstract invariants αinv

I (Bnf (Z)(t))
reduces to computing the abstract join ∪] of the abstract environments of all the
program points of t. Applying abstract interferences in Rrel

t reduces to standard
abstract set operators ∪] and ∩]. A drawback is that the optimization used in
(2) to apply interferences lazily, only at variable reads, can no longer be per-
formed here, resulting in a much slower analysis. We will alleviate the problem
in Sec. 4.4 by using relational invariant interferences only at a few key locations.

4.2 Monotonicity Interference

We now give an example abstraction providing input-output relationality on
interferences. In order to complete the analysis of Fig. 1, we propose a simple
domain that infers the monotonicity of variables. Interferences are abstracted

from P(M×M) to maps V → D, where D def
= {1,>} indicates whether each

variable is monotonic (1) or not (>), hence the following abstraction:

αmon
I (Y)

def
= λV . if ∀〈ρ, ρ′〉 ∈ Y : ρ(V) ≤ ρ′(V) then 1 else > .

We would, as before, apply αmon
I to (8) and combine it with (10) or (11) to get a

new reduced product fixpoint semantics. We do not present these formulas, but
rather focus on the key operations in a static analysis. Firstly, we infer approx-
imate monotonicity information for interferences αmon

I (Bnf (Z)(t)): during the
analysis of t, we gather, for each variable V , the set of all the assignments into V ,
and set V to 1 if they all have the form V ← V + e where e evaluates to positive
values, and set V to > otherwise. Secondly, we use monotonicity information
when applying interferences after an affine comparison operator e1 ≤ e2: if all
the variables in e1 and e2 have monotonic interferences and appear in e2 (resp.
e1) with positive (resp. negative) coefficient, then J e1 ≤ e2 K can be applied after
applying the non-relational interferences. In Fig. 1, for instance, we would get:
X3a = JX < Y K(JX < (Y |[1, 102]) KX2a) instead of (2). Using these abstrac-
tions, we can prove that, at the end of the program, X ≤ Y holds. The domain
is inexpensive as it associates a single binary information to each variable.

4.3 Trace Abstractions

Although state semantics are complete for safety properties, it is often useful
to start from a more expressive, trace concrete semantics to embed some infor-
mation about the history of computations in subsequent abstractions. A classic
example is trace partitioning [16] where, in order to avoid or delay abstract joins
(which often cause imprecision), a disjunction of abstract elements is maintained,
each one keyed to an abstraction of sequences of control locations leading to the
current location (such as, which branch was followed in the previous test).

We can construct a trace version of the thread-modular concrete semantics
from Sec. 2.3 and its abstractions from Sec. 3 and Sec. 4 by upgrading Rt to

t1

while random do

if H < 10, 000 then
H ← H + 1

endif
done

t2

while random do

C ← H
done

t3

while random do

if random then T ← 0
else T ← T + (C − L) endif
L← C

done

Fig. 4. Clock example motivating history-sensitive invariants.

append states to partial executions. Applying this idea, for instance, to the flow-
insensitive semantics of Sec. 3.1 which is the basis of our abstractions, we get:

Rnf
t (Y)(X)

def
= {〈et, λV . 0〉} ∪

{ 〈〈`0, ρ0〉, . . . , 〈`, ρ〉, 〈`′, ρ′〉〉 | 〈〈`0, ρ0〉, . . . , 〈`, ρ〉〉 ∈ X, 〈`, ρ〉 →t 〈`′, ρ′〉 } ∪
{ 〈〈`0, ρ0〉, . . . , 〈`, ρ〉, 〈`, ρ′〉〉 | 〈〈`0, ρ0〉, . . . , 〈`, ρ〉〉 ∈ X,∃t′ 6= t : 〈ρ, ρ′〉 ∈ Y (t′) }
Rnf
t has type: (T → P(M×M))→ P((L ×M)∗)→ P((L ×M)∗)

From the point of view of thread t, an execution is composed of a sequence of
local states (without auxiliary variables) in L ×M; it starts at its entry point
et and is extended by either an execution step 〈`, ρ〉 →

t
〈`′, ρ′〉 of thread t

or an interference form Y that leaves its local control location unchanged. The
semantics can be translated, as before, into an equation system resembling that
of the sequential analysis of the thread t in isolation (Fig. 2) by associating
to each control location ` ∈ L a variable X` that stores (an abstraction of) the
partial traces that end in the control state `. A natural consequence is the ability
to use classic trace partitioning techniques intended for sequential programs [16]
when analyzing each thread, independently from interferences.

We illustrate the use for concurrency-specific trace abstractions on the ex-
ample in Fig. 4. This program, inspired from an actual software, contains three
threads: t1 increments a clock H, t2 samples the clock in a latch C, and t3 ac-
cumulates elapsed durations with respect to C into T . We wish to infer that
T ≤ L ≤ C ≤ H, i.e., the accumulated time does not exceed the total elapsed
time. This information can be inferred from the monotonicity of L, C, and H;
for instance, the assignment L ← C where C is monotonic implies that L ≤ C
holds despite interferences. However, the monotonicity domain of Sec. 4.2 can
only infer the monotonicity of H, not that of C. In particular, in that domain, it
would be unsound for the semantics JC ← H K]X] to deduce the monotonicity
of C from that of H. Otherwise, in the following example, if both H and H ′

were monotonic, we would deduce wrongly that C is also monotonic:

if random then C ← H else C ← H ′ endif . (12)

We need to infer a stronger property, namely that the sequence of values stored
into C is a subsequence of the values stored into H. This is implied by the
assignment C ← H but not by (12), and it implies the monotonicity of C. The
subsequence abstraction αsub

R is an abstraction from sequences of states local to

a thread, i.e., in P((L ×M)∗), to V → P(V), which is defined as:

αsub
R (X)(V)

def
= {W | ∀〈〈`0, ρ0〉, . . . , 〈`n, ρn〉〉 ∈ X : ∃i0, . . . , in :
∀k : ik ≤ k ∧ ik ≤ ik+1 ∧ ∀j : ρj(V) = ρij (W) } .

It associates to each variable V the set of variables W it can be considered
a subsequence of. Some meaningful subsequence information can be inferred
by only looking at simple assignments of the form V ← W . The domain is
inexpensive; yet, in a reduced product with the monotonicity domain, it allows
inferring all the properties required to precisely analyze Fig. 4.

4.4 Lock Invariants

We now enrich our programs with mutual exclusion locks, so-called mutexes,
to provide thread synchronization. We assume a finite set M of mutexes and
two instructions: lock(m) and unlock(m), to respectively acquire and release a
mutex m ∈M. The semantics is that, at any time, each mutex can be held by at
most one thread. To reflect this, our transition systems are enriched as follows:

– Σ
def
= C ×M× S: states 〈L, ρ, s〉 ∈ Σ include a new scheduler component

s ∈ S def
= M → (T ∪ {⊥}) which remembers, for each mutex, which thread

holds it, if any, or ⊥ if the mutex is unlocked;
– I

def
= {〈λt. et, λV . 0, λm.⊥〉}: all mutexes are initially unlocked;

– instructions 〈`, lock(m), `′〉 ∈ inst t and 〈`, unlock(m), `′〉 ∈ inst t generate
respectively the following transition sets:

{ 〈L[t 7→ `], ρ, s〉 t→τ 〈L[t 7→ `′], ρ, s[m 7→ t]〉 | 〈L, ρ, s〉 ∈ Σ, s(m) = ⊥}
{ 〈L[t 7→ `], ρ, s〉 t→τ 〈L[t 7→ `′], ρ, s[m 7→ ⊥]〉 | 〈L, ρ, s〉 ∈ Σ, s(m) = t } .

Consider the example in Fig. 5.(a), where two identical threads increment a
counter X up to 100. The use of a mutex m ensures that X is not modified
between the test X < 100 and the subsequent incrementation. Ignoring the
mutex in the concrete would give a range of [0, 101] instead of [0, 100] and, with
flow-insensitive interferences, we would not find any upper bound on X (the case
is similar to Ex. 3). We now show that partitioning with respect to the scheduler
state (a technique introduced in [19]) can make the analysis more precise.

Returning to our most concrete, thread-modular semantics of Sec. 2.3, we
enrich the local states Rl of a thread t with information on the set of locks it
holds: Rl(t) ∈ Σt

def
= L × Mt × P(M). We define Rl(t) def

= πt(R) where the
projection πt to local states from (4) is extended to handle s ∈ S as follows:

πt(〈L, ρ, s〉)
def
= 〈L(t), ρ [∀t′ 6= t : pct′ 7→ L(t′)] , s−1(t)〉 . (13)

Moreover, we distinguish two kinds of interferences in (C ×M)× (C ×M):
– interferences from t that do not change the set M of mutexes held by t:

Iu(t)(M)
def
=

{ 〈〈Li, ρi〉, 〈Li+1, ρi+1〉〉 |
∃〈L0, ρ0, s0〉

a1→ · · · 〈Ln, ρn, sn〉 ∈ F : ai = t, s−1i−1(t) = s−1i (t) = M }

t1

while random do

lock(m)
if X < 100 then

X ← X + 1
endif
unlock(m)

done

t2

while random do

lock(m)
if X < 100 then

X ← X + 1
endif
unlock(m)

done

t1

while random do

lock(m)
if X > 0 then

X ← X − 1
Y ← Y − 1

endif
unlock(m)

done

t2

while random do

lock(m)
if X < 10 then

X ← X + 1
Y ← Y + 1

endif
unlock(m)

done

(a) (b)

Fig. 5. (a) two identical threads concurrently incrementing a counter X protected by
a lock m; and (b) an abstract producer/consumer with resources X and Y .

– critical sections that summarize a sequence of transitions beginning with
lock(m) by t, ending with unlock(m) by t, and containing transitions from
any threads in-between:

Is(t)(m)
def
=

{ 〈〈Li, ρi〉, 〈Lj , ρj〉〉 | ∃〈L0, ρ0, s0〉
a1→ · · · 〈Ln, ρn, sn〉 ∈ F :

i < j, si(m) = sj(m) = ⊥, ∀k : i < k < j =⇒ sk(m) = t } .

As in (6), the semantics of a thread t is computed by interleaving execution
steps from the thread and from interferences. However, due to mutual exclusion,
interferences in Iu(t′)(M ′) cannot fire from a local state 〈`, ρ, M〉 of a thread
t 6= t′ when M ∩M ′ 6= ∅. For instance, in Fig. 5.(a), no interference generated
by X ← X + 1 in t2 can run in t1 between lock(m) and unlock(m). Moreover,
mutual exclusion ensures that, if some interference in Iu(t′)(M ′) such that m ∈
M ′ fires from a local state 〈`, ρ, M〉 before t locks m, then t′ must finish its
critical section protected by m before t can lock m; hence, the interference is
subsumed by a transition from Is(t′)(m). If the program is well-synchronized,
i.e., every access to a variable V is protected by a mutex associated to the
variable, then all the interferences are included in Is(t′)(m). Hence, it makes
sense to abstract Iu(t′)(M ′) in a coarse way, and use these interferences only
in case (hopefully rare) of an unsynchronized access (i.e., a data race), while a
more precise abstraction of Is(t′)(m) is used for well-synchronized accesses.

Following Sec. 3.2, we use a flow-insensitive and non-relational abstraction

of Iu, i.e.: Inr ,u(t′)(M ′)
def
= αnr

I (αnf
I (Iu(t′)(M ′))). By partitioning local thread

states with respect to the program location ` ∈ L and the mutexes held M ∈
P(M), and applying the optimization technique that an equation variable X`,M
represents a set of local states up to the pending interferences in Inr ,u(t′)(M ′),
assignments V ← e give rise to equations of the form X`,M = JV ← e KX`′,M ,
where e is modified to incorporate all the interferences in Inr ,u(t′)(M ′) such
that t′ 6= t and M ∩M ′ = ∅ on variables appearing in e, and similarly for tests.
An abstraction of the interferences in Is(t′)(m) is incorporated when t locks m.

When 〈`, lock(m), `′〉 ∈ inst t, we generate, for each M ∈ P(M), an equation:

X`′,M∪{m} = X`,M\{m} ∪
⋃
{ apply(Is(t′)(m))(X`,M\{m}) | t′ 6= t }

where the exact definition of apply depends on the abstraction chosen to ap-
proximate Is and is discussed below. An unlock(m) instruction generates the
simple equation: X`′,M\{m} = X`,M∪{m}.

Example 5. As Fig. 5.(a) is well synchronized, the interference from Inr ,u on the
assignment X < 100 and the test X ← X + 1 are empty. When choosing the
flow-insensitive non-relational abstraction from Sec. 3.2 for Is as well as Iu, the
interference caused by the critical section on both threads is [X 7→ [1, 100]], i.e.,
any value in [1, 100] can be stored intoX. The apply function is given byAnr

t from
(10). The resulting equation for lock(m) is thus: X`′,{m} = JX ← [1, 100] KX`,∅∪
X`,∅. This is sufficient to infer that X is always in [0, 100]. Recall that an analysis
with the same non-relational abstraction but without interference partitioning
would not find any bound on X.

To gain more precision, the invariance abstraction from Sec. 4.1 can be used
for Is. The resulting analysis will infer relational properties of variables that are
guaranteed to hold outside critical sections, but are possibly broken inside. We
call them lock invariants by analogy with class invariants: in a well synchronized
program, threads cannot observe program states where the invariant is broken
by the action of another thread. Unlike the method of Sec. 4.1, we do not need
to apply complex relational operations at all program points: the interferences
are inferred by joining the environments only at lock and unlock instructions,
while the apply function that incorporates interferences, given by Rrel

t (11), is
only applied at lock instructions, which ensures an efficient analysis.

Example 6. Consider the program in Fig. 5.(b) that models an abstract pro-
ducer/consumer, where X and Y denote the amount of resources. The non-
relational interference analysis is sufficient to prove that X is bounded thanks
to the explicit tests on X, but it cannot find any bound on Y . Using the invari-
ant interference abstraction parameterized with the octagon domain [17], it is
possible to infer that X = Y is a lock invariant. This information automatically
infers a bound on Y from the bound on X.

4.5 Weakly Consistent Memories

In the previous sections, we have assumed a sequentially consist model of execu-
tion [14]. Actually, computers may execute programs under more relaxed models,
where different threads may hold inconsistent views of the memory [2], hence
creating behaviors outside the sequentially consistent ones.

We justify informally the soundness of our interference analysis with respect
to weakly consistent memories as follows: firstly, as proved in [19], flow-insensitive
non-relational interference abstractions are naturally sound in a wide variety of
memory models, hence our abstraction Inr ,u is sound; secondly, lock and unlock

monotonicity relational lock analysis time memory iterations alarms
domain invariants

× × 25h 26mn 22 GB 6 4616

X × 30h 30mn 24 GB 7 1100
X X 110h 38mn 90 GB 7 1009

Fig. 6. Experimental results for AstréeA on our 1.7 Mlines 15 threads code target.

instructions provide memory synchronization points, so that any sound abstrac-
tion of Is is also sound in relaxed models. Finally, the monotonicity abstractions
proposed in Sec. 4.2 and Sec. 4.3 only rely on the ordering of sequences of assign-
ments to each variable independently, and so, are sound in any memory model
that guarantees it (such as the widespread Total Store Ordering).

5 Experimental Results

We have implemented our method in AstréeA, a static analyzer prototype [19]
that extends Astrée. The Astrée analyzer [3] checks for run-time errors in em-
bedded synchronous C programs. A specificity of Astrée is its specialization and
design by refinement: starting from an efficient and coarse interval analyzer, we
added new abstract domains until we reached the zero false alarm goal (i.e., a
proof of absence of run-time error) on a pre-defined selection of target industrial
codes, namely avionic control-command fly-by-wire software. The new abstrac-
tions are made tunable by end-users, to adapt the analysis to different codes in
the same family. The result is an efficient and precise (few alarms) analyzer on
general embedded C code, which is extremely precise (no alarm) on a restricted
family of avionic embedded codes, and which is usable in industrial context [9].

The AstréeA prototype extends Astrée to analyze concurrent C programs. As
Astrée, it does not support dynamic memory allocation nor recursivity (function
calls are inlined for maximum precision) by design, as these are forbidden in
most embedded platforms. It is also a specialized analyzer. Our main target is
a large avionic code composed of 15 threads (without dynamic thread creation)
totaling 1.7 Mlines of C and running under a real-time operating system based
on the ARINC 653 specification; it performs a mix of numeric computations,
reactive computations, network communications, and string formatting. More
information on Astrée, AstréeA, ARINC 653, and our target application can be
found in [3,20,19].

Using the design by refinement that made the success of Astrée, we started
[19] with a simple analysis that reuses Astrée’s sequential analysis and domains
(including domains for machine integers, floats, pointers, relational domains,
etc.), on top of which we added the simple non-relational abstraction of thread
interferences from Sec. 3.2. The analysis time, peak memory consumption, as well
as the number of iterations to stabilize interferences and the number of alarms
are reported in the first line of Fig. 6. The framework presented in this article
was developed when it became clear that non-relational interferences were too

coarse to infer the properties needed to remove some false alarms (an example of
which was given in Fig. 4). The second line of Fig. 6 presents experimental results
after adding the monotonicity and subsequence domains of Sec. 4.2 and Sec. 4.3,
while the last line also includes the relational lock invariants from Sec. 4.4. The
monotonicity domain provides a huge improvement in precision for a reasonable
cost; this is natural as it is a specialized domain designed to handle very specific
uses of clocks and counters in our target application. The relational lock invariant
domain can remove a few extra alarms, but it is not as well tuned and efficient
yet: for now, it inherits without modification Astrée’s relational domains and
packing strategies (i.e., choosing a priori which variables to track in a relational
way). Nonetheless, relational lock invariants are versatile and general purpose by
nature; we believe that, by parameterizing them in future work with adequate
relational domains and packing strategies, they have the potential to further
improve the precision at a more reasonable cost.

Implementation-wise, adding these new domains did not require a large effort;
in particular, the overall architecture of AstréeA and existing domains required
only marginal changes. We benefited from casting the former analysis as an ab-
straction of a more concrete semantics, from which alternate abstractions could
be derived and combined under a unified thread-modular analysis framework.

6 Conclusion

We have proposed a framework to design thread-modular static analyses that
are able to infer and use relational and history-sensitive properties of thread
interferences. This was achieved by a reinterpretation of Jones’ rely-guarantee
proof method as a constructive fixpoint semantics, which is complete for safety
properties and can be abstracted into static analyses in a systematic way, thus
following the abstract interpretation methodology. We then proposed several
example abstractions tailored to solve specific problems out of the reach of pre-
vious, non-relational interference abstractions, and motivated by actual analysis
problems. We presented encouraging results on the analysis of an embedded
industrial C code using the AstréeA prototype analyzer.

AstréeA is very much a work in progress, and further work is required in
order to improve its precision (towards the zero false alarm goal) and widen its
application scope (to analyze more classes of embedded concurrent C software
and hopefully enable a deployment in industry). This will require the design of
new abstractions, in particular to improve our relational lock invariant inference.
Another interesting promising area is the development of trace-related abstrac-
tions, with potential generalization to inferring maximal trace properties, which
includes liveness properties, in a thread-modular way.

References

1. H. Amjad and R. Bornat. Towards automatic stability analysis for rely-guarantee
proofs. In VMCAI’11, volume 5403 of LNCS, pages 14–28. Springer, 2009.

2. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification
problem for weak memory models. In POPL’10, pages 7–18. ACM, Jan. 2010.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI’03, pages
196–207. ACM, June 2003.

4. J.-L. Carré and C. Hymans. From single-thread to multithreaded: An efficient
static analysis algorithm. Technical Report arXiv:0910.5833v1, EADS, Oct. 2009.

5. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science, 277(1–2):47–103, 2002.

6. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In ISP’76, pages 106–130. Dunod, Paris, France, 1976.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’77,
pages 238–252. ACM, Jan. 1977.

8. P. Cousot and R. Cousot. Invariance proof methods and analysis techniques for
parallel programs. In Automatic Program Construction Techniques, chapter 12,
pages 243–271. Macmillan, New York, NY, USA, 1984.

9. D. Delmas and J. Souyris. Astrée: from research to industry. In SAS’07, volume
4634 of LNCS, pages 437–451. Springer, Aug. 2007.

10. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of
multithreaded programs. Theoretical Computer Science, 338(1–3):153–183, 2005.

11. C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN’03, volume
2648 of LNCS, pages 213–224. Springer, 2003.

12. B. Jeannet. Relational interprocedural verification of concurrent programs. Soft-
ware & Systems Modeling, 12(2):285–306, 2013.

13. C. B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, Jun. 1981.

14. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. In IEEE Trans. on Computers, volume 28, pages 690–691.
IEEE Comp. Soc., Sep. 1979.

15. A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification is carte-
sian abstract interpretation. In ICTAC’06, volume 4281 of LNCS, pages 183–197,
2006.

16. L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based
static analyzer. In ESOP’05, volume 3444 of LNCS, pages 5–20. Springer, 2005.

17. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

18. A. Miné. Static analysis by abstract interpretation of sequential and multi-thread
programs. In MOVEP’12, pages 35–48, Dec. 2012.

19. A. Miné. Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods in Computer Science, 8(26):63, Mar. 2012.

20. A. Miné. Static analysis by abstract interpretation of concurrent programs. Ha-
bilitation report, École normale supérieure, May 2013.

21. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6(4):319–340, Dec. 1976.

22. M. C. Rinard. Analysis of multithreaded programs. In SAS’01, volume 2126 of
LNCS, pages 1–19. Springer, Jul 2001.

23. C. B. Watkins and R. Walter. Transitioning from federated avionics architectures
to integrated modular avionics. In DASC’07, volume 2.A.1, pages 1–10. IEEE,
Oct. 2007.

	Relational Thread-Modular Static Value Analysis by Abstract Interpretation

