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Abstract. In this paper we study strong and weak bisimulation equids for
continuous-time Markov decision processes (CTMDPs) arddbical charac-
terizations of these relations with respect to the contistiime stochastic logic
(CSL). For strong bisimulation, it is well known that it isristly finer than
CSL equivalence. In this paper we propose strong and weakddetions for
CTMDPs and show that for a subclass of CTMDPs, strong and Wisakula-
tions are both sound and complete with respect to the eguiwas induced by
CSL and the sub-logic of CSL without next operator respettiwVe then con-
sider a standard extension of CSL, and show that it and itdagib without X
can be fully characterized by strong and weak bisimulati@spectively over
arbitrary CTMDPs.

1 Introduction

Recently, continuous-time Markov decision processes (OP8) have received exten-
sive attention in the model checking community, see for edarfb, 39, 27, 28,12, 31].
Analysis techniques for CTMDPs suffer especially from ttatesspace explosion prob-
lem. Thus, as for other stochastic models, bisimulatioati@hs have been proposed
for CTMDPs. In [27], strong bisimulation was shown to be stwvith respect to the
continuous-time stochastic logic [2] (CSL). This resulagantees that one can first re-
duce a CTMDP up to bisimulation equivalence before anatygirOn the other hand,
as indicated in [27], strong bisimulation is not completéwespect to CSL, i.e., logi-
cally equivalent states might be not bisimilar.

CTMDPs extend Markov decision processes (MDPs) with exptialesojourn time
distributions, and subsume models such as labelled tiamsiystems and Markov
chains as well. While linear and branching time equivalsritave been studied for
these sub-models [38, 37, 6, 34], we extend these resultetsetting of CTMDPs. In
this paper we study strong and weak bisimulation relation€TMDPs, and the logical
characterization problem of these relations with respe€SL and its sub-logics.

We start with a slightly coarser notion of strong bisimwdatthan the one in [27],
and then proposeeak bisimulatiorfor CTMDPs. We study the relationship between
strong and weak bisimulations and the logical equivaleimzisced by CSL and CSkk
—the sub-logic of CSL without next operators. Our first cifmttion is to identify a sub-
class of CTMDPs under which our strong and weak bisimulatimrincide with CSL
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and CSlLx equivalences respectively. We discuss then how this cle&3BIDPs can
be efficiently determined, and moreover, we argue that mosiets arising in practice
are among this class.

As for labelled transition systems and MDPs, we also definexéension of CSL,
called CSL¥, which is more distinguishable than CSL. Surprisingly, C#.able to
fully characterize strong bisimulation over arbitrary CDMs, similarly for the sub-
logic without next operator and weak bisimulation.

Since CTMDPs can be seen as models combining MDPs and consrtime Markov
Chains (CTMCs), we will discuss the downward compatibibfythe relations with
those for MDPs [32] and CTMCs in [6]. Summarizing, the papeTttains the following
contributions:

1. We extend strong probabilistic bisimulation defined i@][8ver probabilistic au-
tomata to CTMDPs, and then prove that it coincides with CSuivedence for a
subclass of CTMDPs;

2. We propose a scheme to determine the subclass of CTMDEigetffy, and show
that many models in practice are in this subclass;

3. We introduce a new notion of weak bisimulation for CTMD&sd show its char-
acterization results with respect to CgL-

4. We present a standard extension of CSL that is shown to thesband and com-
plete with respect to strong and weak bisimulations forteaby CTMDPs.

Related work.Logical characterizations of bisimulations have beenisthidxtensively
for stochastic models. For CTMCs, CSL characterizes sthasighulation, while CSL
without next operator characterizes weak bisimulation (B]ir results in this paper
are conservative extensions for both strong and weak biatrons from CTMCs to
CTMDPs. In [18], the results are extended to CTMCs with cumtius state spaces.

For CTMDPs, the first logical characterization result issgrgted in [27]. Itis shown
that strong bisimulation is sound, but not complete witlpees to CSL equivalence. In
this paper, we introduce strong and weak bisimulation ieatfor CTMDPs. For a
subclass of CTMDPs, i.e., those withdistep recurrenstates, we show that they are
also complete for CSL and CSk equivalences respectively.

For probabilistic automata (PAs), Hennessy-Milner logis been extended to char-
acterize bisimulations in [23, 15, 21]. In [17], Desharngtisl. have shown that weak
bisimulation agrees with PCTlequivalence for alternative PAs. Another related paper
for PAs is our previous paper [34], in which we have introdliceepth bisimulations
to characterize logical equivalences induced by PCand its sub-logics.

All proofs are found in the full version of this paper [35].

Organization of the paperSection 2 recalls the definition of CTMDPs and the logic
CSL. Variants of bisimulation relations and their corresging logical characterization
results are studied in Section 3. In Section 4 we presentdiemsion of CSL that fully
characterizes strong and weak bisimulations. We discuSsdétion 5 related work with
MDPs and CTMCs. Section 6 concludes the paper.
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2 Preliminaries

For a finite setS, a distribution is a functions : S — [0,1] satisfying|u| =
> .cs M(s) = 1. We denote byDist(S) the set of distributions oves. We shall use
s,r,t,...andu,v ... to range ovelS and Dist(S), respectively. The support @f is
defined bySupp(u) = {s € S | u(s) > 0}. Given a finite set of non-negative real
numbers{p;};c; and distributions{z1; } ;e ; such that . ; p; = 1 for eachj € J,
> jesPj - 1y is the distribution such tha® ;. ; p; - ps)(s) = > e, pj - 1y(s) for
eachs € S. For an equivalence relatioR over .S, we write u R v if it holds that
u(C) = v(C) for all equivalence class&s € S/R whereu(C) = > .- pu(s), and
moreovel{sjg = {r | s R r} is the equivalence class 6fR containings. The sub-
scriptR will be omitted if it is clear from the context. A distributiq: is calledDirac
if |Supp(r)| = 1, and we letD; denote the Dirac distribution such tHag(s) = 1. We
let RZ° and R>° denote the set of non-negative and positive real numbepscésely.

2.1 Continuous-time Markov Decision Processes
Below follows the definition of CTMDPs, which subsume both F¥and CTMCs.

Definition 1 (Continuous-time Markov Decision Processes)A tupleC = (S, —
,AP, L, sq) is aCTMDP wheres, € S is the initial state,S is a finite but non-empty
set of statesAP is a finite set of atomic propositiong, : S — 247 is a labelling
function, and—C S x R>? x Dist(S) is a finite transition relation such that for each
s € S, there exists\ andp with (s, A, 1) €—.

From Definition 1 we can see that there are both non-detestidirand probabilistic
transitions in a CTMDP. We write 2 wif (s, A\, u) € —, wherel is called exit rate

of the transition. LetSuc(s) = {r | 3(s 2 w).p(r) > 0} denote the successor states
of s, and letSuc*(s) be its transitive closure. A stateis said to besilentiff for all

81,82 € Suc*(s), L(s1) = L(s2) ands;y A w1 implies sy 2 uo. Intuitively, a state

s is silent if all its reachable states have the same labels Bsaddition, they have
transitions with the same exit rates as transitions.dBtates likes are called silent,
since it is not distinguishable from all its successorgegitoy labels or sojourn time

of states. Therefore a silent statand all its successors can be represented by a single
state which is the same asbut with all its outgoing transitions leading to itself. A

CTMC is a deterministic CTMDP satisfying the condition2 1 ands LN w imply
A= X andu =y foranys € S.

2.2 Paths, Uniformization, and Measurable Schedulers

LetC = (S,—, AP, L,sy) be a CTMDP fixed for the remainder of the paper. Let
Paths™(C) = S x (R>Y x S)™ denote the set containing pathstofvith lengthn. The
set of all finite paths of is the union of all finite path®aths*(C) = U, >0 Paths™ (C).
Moreover,Paths™(C) = S x (R>° x §)°° contains all infinite paths anBlaths (C) =
Paths™ (C)UPaths™(C) is the set of all (finite and infinite) paths 6f Intuitively, a path
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is comprised of an alternation of states and their sojoura.tifo simplify the discussion
we introduce some notations. Given a patk s, to, $1,t1 - - - 85, € Paths™(C), |w| =

n is the length ofw, w |= s, is the last state af, w|® = s¢, %o, - - ,s; is the prefix
of w ending at thei + 1)-th state, and|; = s;,¢;, s;+1, - - - is the suffix ofw starting
from the (i + 1)-th state, andv~(¢,, s,+1) is the path obtained by extendingwith
(tn, Snt+1). Letw[i] = s; denote thei + 1)-th state wheré < n andtime(w,i) =

t; the sojourn time in thé: + 1)-th state withi < n. Let w@t be the state at time
tin w, that is,w@t = w[j] wherej is the smallest index such that’_,t; > t.
Moreover, Steps(s) = {(\, ) | (s, A, u) € —} is the set of all available choices
at states. Let {I; C [0,00)}o<i<k denote a set of non-empty closed intervals, then
C(so, 1o, ,Ir, sk+1) is thecylinder sebf pathsw € Paths™ (C) such that[i] = s;
for0 <i < k+ 1andtime(w,i) € I; for 0 <i < k. Let§ pasns=(cy be the smallest
algebra onPaths™ (C) containing all cylinder sets.

As shown in [4], model checking of CTMCs can be reduced to ttoblem of
computing transient state probabilities, which can beesbkfficiently, for instance by
uniformization. In a uniformized CTMC, all states will evel at the same speed, i.e.,
all transitions have the same exit rates. Similarly, we dao define uniformization of
a CTMDP by uniformizing the exit rate of all its transitiofBelow we recall the notion
of uniformizationfor CTMDPs [12, 28].

Definition 2 (Uniformization). Given aCTMDP C = (S,—, AP, L, s¢), the uni-
formizedCTMDPis denoted a€ = (S, —', AP, L, o) where

that ' (7) = u(r) for eachr € Supp(p),

Here E is the uniformization rate fo€, which is a real number equal or greater than
all the rates appearing i@.

By uniformization for each transitiofs, A, 1) we add a self loop te with rate equal
to £ minus the original rate.. After uniformization every state will have a unique exit
rate on all its transitions. As we will show later, this treorsnation will not change the
properties we are interested in under certain classes etisidrs.

Due to the existence of non-deterministic choices in CTMDRsneed to resolve
them to define probability measures. As usual, non-detestidrchoices in CTMDPs
are resolved by schedulers (or policies or adversariesghaenerate a distribution
over the available transitions based on the given histdogrimation. Different classes
of schedulers can be defined depending on the informatiohedser can use in or-
der to choose the next transition. However not all of themsaiigable for our pur-
poses, which we will explain later. In this paper, we shatlu® on one specific class
of schedulers, calletheasurable total time positional scheduléfg P) [28], which is
defined as follows:

Definition 3 (Schedulers).A schedulerr : S x RZ% x (R>Y x Dist(S)) — [0,1]
is measurable ifr(s,t,-) € Dist(Steps(s)) forall (s,t) € S x R=% andn(-, tr) are
measurable for altr € 2(77°*Dist()) ' where
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— m(s,t,-) is adistribution such that (s, t, ) (A, ) = 7(s, t, A, ), and
— (-, tr) : (S x RZ9) +— [0,1] is a function such that for eads, t) € S x R0, it
holds (-, tr)(s,t) = >\ e (S 6, A 1)

The schedulers defined in Definition 3 are total time pos#ipsince they make
decisions only based on the current state and total elapsedwhich are the first and
second parameters afrespectively. The third parameter and fourth parameterads-
note the rate and the resulting distribution of the chosamsition respectively. Given
the current state, the total elapsed timg and a transitior(\, i), = will return the
probability with which(A, 1) will be chosen. This is a special case of the general def-
inition of schedulers, which can make decisions based offuthkistory, for instance
visited states and the sojourn time at each state. Givenedatdrr, a unique prob-
ability measurePr, s can be determined on thealgebra§ p,,s< ¢y inductively as
below: Pr s(C(so,lo, - , Sn),tt) =

1 n=0As=sy (1a)
0 s # 8o (1b)
[ > w(so,tt) (A p) - p(s1) - Ae - Prp g dt otherwise (1c)

tely (A p)€Etr

where Pr, ., is an abbreviation oPr, ., (C(s1,...,sn),tt + 1), tr = Steps(so)
andtt is the parameter denoting the total elapsed time. One nicpepty of TTP
schedulers is that uniformization does not change timeted reachability under TTP
schedulers [28, 31]. This result can be extended to covee properties like CSly and
CSL{x, which shall be introduced soon.

Besides TTP schedulers, there are other different clagsebedulers for CTMDPS,
some of which are insensitive to uniformization, whereassof which may gain or
lose information after uniformization, i.e., propertieseoCTMDP may be changed
by uniformization. To avoid technical overhead in the preaton, we refer to [28]
for an in-depth discussion of these different classes oédglers and their relation to
uniformization.

2.3 Continuous Stochastic Logic

Logical formulas are important for verification purposecs they offer a rigorous and
unambiguous way to express properties one may want to cReckabilistic computa-
tion tree logic (PCTL) [19] is often used to express progartf probabilistic systems.
In order to deal with probabilistic systems with expondrg@ourn time distributions
like CTMCs and CTMDPs, the continuous stochastic logic (E®hs introduced to
reason about CTMCs [2, 4], and recently extended to reasout&TMDPs in [27].
CSL contains both stateand path formulas whose syntax is defined by the following
BNFs:

pu=al-p o Ne| Pup(),
Y =X pU g,

4 The steady-state operator is omitted in this paper for saitplf presentation.
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wherea € AP, p € [0,1],x € {<,<,>,>},andI C [0,00) is a non-empty closed
interval.

We uses |= ¢ to denote that satisfies the state formula while w |= + denotes
thatw satisfies the path formula. The satisfaction relation for atomic proposition and
Boolean operators is standard. Below we give the satisfactiation for the remaining
state and path formulas:

S0 = Poap (@) iff V. Pry oo({w € Paths™(C) |w = ¢}) i p,
w =X iff w1] = @ A time(w,0) € I,

w = o1 UL @y iff Fi.( Z time(w, j) € I Awli] = w2 A (V0 < j < iw[j] = ¢1)).
0<j<i

Intuitively, a states, satisfiesP., (1) iff no matter how we schedule the transitions
of so and its successors, the probability of paths starting fsgrand satisfyingy is
alwayse< p. This operator has the same semantics as in PCTL. Comparfe@Ta,
the main difference arises in the semantics of the path f@snGiven a pathv, we
sayw = x! v, iff the second state i satisfiesp, moreover the sojourn time in the
first state ofw is within the time interval. We sayw | ¢ u’ e, iff along w, a state
satisfyingp, can be reached at some time point/inand all the preceding states if
any satisfyp . If all time bounds are defined to be equal@o), i.e., removing time
restrictions, CSL will degenerate to PCTL.

Different from [4] where the semantics of CSL is continudaghis paper we con-
sider pointwise semantics of CSL. This is mainly becaussémeantics of CSLintro-
duced in Section 4 is also pointwise. However, results iriGe@ are also valid if we
consider continuous semantics.

Logic EquivalencesLet £ denote some logic. We say thaandr are £-equivalent,
denoted bys ~, r, if they satisfy the same set df state formulas, that is, = ¢ iff
r |=  for all state formulasp in £, similarly for ~.,,, whereL\x denotes the sub-

logic of £ without theX” operator. In this papex; will denote either CSL or CSL,
which we shall introduce in Section 4.

3 Bisimilarity and CSL Equivalence

In this section, we first introduce the concept of strongbigation for CTMDPs, which
can be seen as a variant of strong bisimulation for MDPs. Tiedefine a sub-class
of CTMDPs, called non 2-step recurrent CTMDPs, and showstrahg bisimulation
can be fully characterized by CSL for non 2-step recurrentlOPs. We extend the
work to the weak setting and show similar results for weakthi¢ation. Finally, we
propose an efficient scheme to determine non 2-step re¢@mevMDPs and we show
that almost all CTMDP models in practice fall into this class

3.1 Strong Bisimulation

The definition of strong bisimulation we shall introduce liistsection slightly gener-
alizes the one introduced in [27]. The reason is that we atii@photion of combined
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transitions, used in [32] to defirgtrong probabilistic bisimulatiofior PAs. Combined
transitions allow transitions induced by convex combiagi of several transitions.

We shall lift its definition to the setting of CTMDPs. Lst i>p w iff there exists
{s 2 1} es and{p;}jes suchthal, e, p; = 1,andy, ¢, p; - j; = 1. The com-
bined transitions of a CTMDP are almost the same as thoseAfeRcept we need to
take care of the rate of each transition. Here we only alloeotmbine transitions with
the same rate, otherwise we may change non-trivial praggeofia CTMDP, which we
will explain soon. Below follows the definition of strong birulation:

Definition 4 (Strong Bisimulation). LetR C S x S be an equivalence relatiofR is
a strong bisimulation ifis R r implies thatL(s) = L(r) and for eachs LN 1, there

existsr 2p w1’ such thatu R 1.

We writes ~ r whenever there exists a strong bisimulatiB@nsuch thats R r.
Let strong bisimilarity~ denote the largest strong bisimulation, which is equal ® th
union of all strong bisimulation relations.

For s andr to be strong bisimilar, the same set of atomic proposititwesikl hold
at s andr. Furthermores should be able to mimie stepwise and vice versa, that is,
wheneveg has a transition with labél leading to a distributiom, » should also be able
to perform a (combined) transition with the same label tesrithiution such thaj, and
v match with each other, i.ey, andv assign the same probability to each equivalence
classC € S/R. Strong bisimulation defined in Definition 4 is a consenagxtension
of strong probabilistic bisimulation for PAs defined in [3R] the sense that it coincides
with strong probabilistic bisimulation if we replagewith actions.

The relation defined above is slightly coarser than the onsidered in [27], where

the combined transition i>p 1 is replaced by the normal transition’s u . In[27], it
was also shown that strong bisimulation is only sound butbaotplete with respect to
CSL equivalence. Even though our definition of strong bidation is slightly coarser,
it is still too fine for CSL equivalence as shown in the follogitheorem:

Theorem 1 ([27]).~ C ~csL

=

The proof in [27] can be directly adapted to prove the sousslioé our slightly more
general strong bisimulation. The inclusion in Theorem Iristswhich is illustrated by
the following example:

Example 1.Suppose we are given two statgsandry of a CTMDP depicted in Fig. 1 (a)
and (b) respectively, where all states have different atgropositions exceft(sg) =
L(ro). Assumeu; are silent fori = 1, 2, 3, our aim is to show that, andr satisfy the
same set of CSL formulas, while they are not strong bisinfijaDefinition 4.

We first show thaty, ~csL 70, i.€.,50 |E ¢ impliesry = ¢ for any ¢ and vice
versa. The only non-trivial cases are the time-boundecdhedalities froms, andrg
to states inC' C {u1, u2, us}. For instance the maximal probability frogp andr, to
{ug,uz} in time interval[a, b] is equal t00.7 - (e~ — e~?), irrelevant of the middle
transition ofry. Similarly, we can check that for othér, the maximal (or minimal)
probabilities fromsy andrq to C' in time intervall are all independent from the middle
transition ofry. Therefore we conclude thag ~cs. 79.
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Fig. 1. Counterexample of the completeness of strong bisimulation

Secondly, we show that it does not hold tkat ~ ry according to Definition 4.
We prove by contradiction. Assume that there exists a stbisigiulationR such that
so R ro. By Definition 4, for the middle transition of), i.e., L ' wherey/(uy) =
0.4, 1/ (ug) = 0.3, andy’(u3) = 0.3, we need to find a transitias L u of sg such
thaty R /. Sinceus, uq, andus have different atomic proposition&y,, u;) ¢ R for
anyl < ¢ # j < 3. Therefore the only possibility is thatu,) = 0.4, u(u2) = 0.3, and
w(us) = 0.3. However that is impossible, sughcannot be the resulting distribution
of any (combined) transition ofy. Otherwise there would exist;, ws > 0 such that
w1 +ws =1,03 - w; + 0.5 w2 = 0.4, and0.3 - wy + 0.4 - wy = 0.3 according to
the definition of combined transition, which is clearly nosgible. Hence we conclude
thatsg ¢ rg, and~ is finer than~cs,. O

In [31] randomized schedulers allow to combine transitieitk different rates, i.e.,

the combined transition is defined as:im w iff there exist{s 2y witicr and{p;}icr
suchthaty, ; p; - \i = Aand}_, ., pi - u;s = p, Wherep; € [0, 1] for eachi € I and
> icrPi = 1. By adopting this definition of combined transition in Defion 4, we
will obtain a coarser strong bisimulation. However it tuma that this new definition
of strong bisimulation is too coarse for CSL equivalencecaithere exist two states
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which are strong bisimilar according to the new definitiont they satisfy different
CSL formulas. Refer to the following example:

Example 2.Suppose that we have two statesandr; such thats; has two non-
deterministic transitions which can evolve inig with rates 1 or 4 respectively. The
stater; is the same as; except that it can evolve into; with an extra transition of rate
2. Also we assume that(s;) = L(r1) andu; is a silent state withl(u1) € L(s1).
Suppose that we adopt the new definition of combined tramsiti Definition 4 by
allowing to combine transitions with different rates, wallshow thats; andr, are
strong bisimilar, but they are not CSL-equivalent.

We first show that; andr; are strong bisimilar. LeéR be an equivalence relation
only equatings; andry, it suffices to prove thaR is a strong bisimulation. The only
non-trivial case is when; 2, D.,, we need to find a matching transition @f. Since
we allow to combine transitions of different rates, a conelitransitions; 3>p Do,
can be obtained by assigning Weiglgtand% to transitionss; N D., ands; 4 Do,
respectively. Therefore we conclude thatandr; are strong bisimilar.

Secondly, we show that, andr, are not CSL equivalent. It suffices to find a for-
mulap suchthak; | ¢ butry = . Lety = xla-t] L(u1) where0 < a < b. The prob-
abilities for paths starting fromy, and satisfying) by choosing the transitions with rates
1,2,and 4 are equal t0 @ —e~?, e72% — =2 ande—** — e~*" respectively. We need
only to finda andb such that =2¢ —e=20 > max{e % —e~? e ¢ —e~%}. Leta = 0.2
andb = 1, thene=® — e~ ? ~ 0.45, e 2% — ¢=20 2 0.53, ande** — ¢~%® ~~ 0.43. Let
¢ = P<o.as(X?Y L(uy)), obviouslys; = ¢, butry = ¢, which means that;, and
r1 are not CSL-equivalent. O

Example 2 also shows that in order for two states satisfyirggame CSL formulas,
it is necessary for them to have transitions with the sameratés, otherwise we can
always find CSL formulas distinguishing them, which alsdifies that we only allow
to combine transitions with the same rate in Definition 4.

We have shown in Example 1 thatis not complete with respect tocs . However
in the sequel we shall identify a special class of CTMDPs, liiclv the completeness
holds. We first give two examples for inspiration:

Example 3.In this example, we show that, it is impossible to constrimtlar states as
so andry in Example 1 such that they are not strong bisimilar but omalyeh2 distinct
SuUCCessors.

Let s, andr, denote the two states depicted in Fig. 2, where [0, 1] denotes
an arbitrary or unknown probability and all states haveedéht atomic propositions
except thatl.(s2) = L(r2). Our aim is to show that states in form of andr, must
be strong bisimilar, provided that ~cs. 72. First we show that € [%, %] in order

thatsy, ~csL r2. This is done by contradiction. Assume that> % and lety =
X[O’OO)(L(ul)). Then the maximal probability of paths starting fremand satisfying
¥ is equal to%, while the maximal probability of paths starting fremand satisfying)
is equal tar. Sincex > % s2 = PS%(w), whilery PS%(w), thereforesy esL 7o.

Similarly, we can show that it is not possible for< 1, hence it holds that € [, 1].
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Secondly, we show that, ~ 7o given thatx € [4, 2] Let R be an equivalence
relation only equating, andr,, it suffices to show thaR is a strong bisimulation
according to Definition 4. Let, uo, and ug be distributions defined in Fig. 2. The

only non-trivial case is when, N 12, we need to show that there exists andw,
such thatv, + we = 1, (w1 - p1 + we - p3) R pe. Letw; =2 — 4z andwy = 4 — 1,
it is easy to verify thatv;, wo € [O 1] andw; + we = 1, smcea: € [4, 2] Moreover,
Wy -+ wa g3 = po, SiNCEw: - 1 +wy -4 =z andw; - 3 +wy- 3 = 1— . Therefore

S l>p e as desired, an® is indeed a strong bisimulation. O

In order for Example 1 being a valid counterexampledgis,. < ~, we have
made another assumption that(: = 1,2, 3) are silent, i.e., they cannot evolve into
other states not equivalent to themselves with positivégindity. This assumption is
also crucial which can be seen by the following example:

Example 4.Consider again the two stateg andr, introduced in Example 1, where
we prove thats; andry are CSL equivalent. Now suppose that is not silent, but
can evolve into some statg, with rate 1, whereu is a state with different atomic
propositions from all the others. We are going to show thaandr, are not CSL
equivalent anymore with this slight change. Consider thth famula:y) = (L(so) V
L(us)) U (L(ug) v L(u})), we can show that the probabilities of paths starting from
ro and satisfyingy by choosing the left, middle, and right transitions are ¢d¢oa
L = O3w1—|—04w2,M = O3w1—|—03w2, andR = 04w +0.1-ws
respectively, wheren; = 1 — e ?andw, = 1 —e~® — b - e7?. It suffices to find a
b such thatV < min{L, R}, which means that the middle transition:gfdominates
the minimal probability of satisfying). Suchb exists, for instance, by letting = 1
we obtain:L ~ 0.295, M ~ 0.269, andR =~ 0.279, apparentlyM < min{L, R}.
In other words, leb = 1 in ¢, we havesy = P>r(¥), butrg = P>gr(¢), since
there exists a schedulerqf, i.e., the one choosing the middle transition@such that
the probability of satisfying) is equal toM, which is strictly less thaR. Therefore

50 7“csL To- 0

In Example 1, we have shown thaf andr, satisfy the same CSL formulas, but
they are not strong bisimilar. However in Examples 3 and 4slkav that without the
two assumptions:
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— sp andrq should have more than 2 states among their successors;
— there exists no successor which can evolve into a state noeG@valent to other
states with positive probability,

we can guarantee that eithgrandry are strong bisimilar, or they are not CSL equiva-
lent. These intuitions lead us to the special class of CTMBéch we callnon 2-step
recurrentCTMDPs in the sequel.

Definition 5 (2-step Recurrent).Let R be an equivalence relation of\. A states is
said to be2-step recurrenwith respect tar iff s is not silent,| Suc(s)| > 2, and

3(s 2 p).(vs € (Supp(p) \ [s]r)¥(s' 2 v).0(C) = 1), (r1)

whereC = ([s]g U [s']r)-

We sayC is 2-step recurrentith respect tar, iff there existss € S such thats is
2-step recurrent with respect 8, otherwise it is non 2-step recurrent with respect to
R. Moreover, we say that(or C) is (non) 2-step recurrent iff it is (non) 2-step recurrent
with respect tovcsy.

In other words, for a stateto be 2-step recurrent, it must be not silent and have more
than 2 successors. Remind that each silent state can beedfig a single state with-
out changing properties of a CTMDP. After doing so, eachnsittate will only have
one successor which is itself, so the requirement of nonaean be subsumed by
|Suc(s)| > 2inthis case. Let us explain the more involved condition giveEq. (r1).

Eq. (rl) says that a 2-step recurrent stataust also satisfy: There existss 1 such
that for all states inSupp(u) except those irffs]z, they can only evolve into states
equivalent tos or themselves.

Example 5.We show some examples of (non) 2-step recurrent statesofFal, states
sg andry in Example 1 are 2-step recurrent, since they are not silethth@ve more
than 2 successors. Moreover all successgré = 1,2, 3) are silent, i.e., can only
evolve into states which are CSL equivalent to themselvesidder if we add an extra
transition tous as in Example 4so will be non 2-step recurrent, sinag can reach
the stateu; with probability 1, whereu} is not CSL equivalent to either; or so. For
similar reasons; is also non 2-step recurrent.

Secondly, States; andr; in Example 2 and; andr, in Example 3 are trivially
non 2-step recurrent, since the number of their successargi O

Definition 5 seems tricky, however, we shall show that thediste an efficient
scheme to check whether a given CTMDP is 2-step recurrerdtoMore importantly,
we shall see later in Remark 1 that the class of non 2-stepresttCTMDPSs contains
an important part of CTMDP models, in particular those foumgractice.

Now we are ready to show the main contribution of this papgrré&stricting to
the set of non 2-step recurrent CTMDPs, we are able to pratetlte classical strong
bisimulation defined in Definition 4 is both sound and conpleith respect to the CSL
equivalence, which is formalized in the following theorem.

Theorem 2. If C is non 2-step recurrenty = ~csL.
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3.2 Weak Bisimulation

In this section we will introduce a novel notionweak bisimulatiodior CTMDPs. Our
definition of weak bisimulation is directly motivated by thell-known fact that uni-
formization does not alter time-bounded reachabilities¥oMDPs [28, 31] when TTP
schedulers are considered. Similar as in Section 3.1, veeshisw that weak bisimu-
lation is both sound and complete for Gglover non 2-step recurrent CTMDPs. We
shall introduce the definition of weak bisimulation first.

Definition 6 (Weak bisimulation). We say that statesandr in C are weak bisimilar,
denoted by ~ r, wheneveg ~ 7 in the uniformizedCTMDPC.

The way we define weak bisimulation here is different fromdkénition of weak
bisimulation for CTMCs in [6], where a conditional measweonsidered, see Defini-
tion 7 for the detailed definition. Moreover we will show incBien 5.2 that for CTMCs
our weak bisimulation coincides with weak bisimulation defi in [6]. Even though the
resulting uniformized CTMDP depends on the chosen kags shown in Definition 2,
it is worth mentioning that weak bisimulation given in Defion 6 is independent of
E. Since if two states are strong bisimilar in a uniformizedWP, they will be strong
bisimilar in any uniformized CTMDP no matter which value weose forE.

The following lemma establishes some properties:

Lemma 1.

1. ~ C =,

2. for uniformizedCTMDPs,~ = =.

As we mentioned above, by uniformizing a CTMDP we will not ea its satisfi-
ability of CSL\x provided that only TTP schedulers are considered. Thezaterhave
the following lemma saying that if two states satisfy the sdormulas in CSlLx, then
they will satisfy the same formulas in CSL after uniformieatand vice versa.

Lemma 2. s ~cshx T inCiff 5 ~cs. Tin C.

The following theorem says that our weak bisimulation isrebéor ~CSL s and
particularly when the given CTMDP is non 2-step recurrerakvbisimulation can be
used to fully characterize CSjk equivalence.

Theorem 3. ~ C ~CSlix- If C is non 2-step recurrenty = ~CSLx-

Theorem 3 works if we restrict to only TTP schedulers. Howetrgs is not a re-
striction. Since it has been proved in [31, 11] that thereagiwexists an optimal sched-
uler in TTP for any path property in CSk.

3.3 Determining 2-step Recurrent CTMDPs

In Theorem 2 and 3, the completeness holds only for CTMDP<hwhire non 2-
step recurrent. Hence it is important that 2-step recur@rDPs can be checked
efficiently. This section discusses a simple procedure éeminining (non) 2-step re-
current CTMDPs. Before presenting the decision schemehalkistroduce the following
lemma, which holds by applying the definition of 2-step reent CTMDPs directly:
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Lemma 3. Given two equivalence relatio®@ and R’ over S such thatR C R/, if
C is 2-step recurrent with respect #®, then it is 2-step recurrent with respect ®,
or equivalently ifC is non 2-step recurrent with respect ®, then it is non 2-step
recurrent with respect t@&.

Lemma 3 suggests a simple way to check whether a given CTMID#2-step
recurrent. Given an arbitrary equivalence relatiorsuch thate € ~cs. € R,
by Lemma 3, we can first check whetlieis 2-step recurrent with respect® Proper
candidates fofR should be as fine as possible, but also can be determinecteffici
For instance, we can 1&® = {(s,r) | L(s) = L(r)}, or a finer equivalence relation

defined as followss R r iff for eachC € S/R ands 2 u, there exists: 2 w1’ such
thaty'(C) > p(C). SuchR is coarser than-cg, and can be computed efficiently in
polynomial time.

If C is not 2-step recurrent with respect™® we know thatC is non 2-step recur-
rent with respect te-cg, either. Otherwise we continue to check whetligs 2-step
recurrent with respect te, if the answer is yes, thahis 2-step recurrent with respect
to ~csL too. Note thatv can also be computed in polynomial time, see [40] for details
In the remaining cases, namely whérs 2-step recurrent with respect®, but not for
~, we cannot conclude anything, instead the relatig@, shall be computed first for a
definite answer.

As we discussed above, sometimes we need touse to decide whether a given
CTMDP is 2-step recurrent or not. But it turns out thats_ is hard to compute in
general. Actually, we can prove the following lemma showtimaf the decision ofcs.
andw(;SL\X is NP-hard.

Lemma 4. Itis NP-hard to decide whether ~cs. r ands ~CSlix T

Remark 1.We have implemented the above described scheme to chechevtseime
models in practice are 2-step recurrent or not. Even tholhghnplemented classifi-
cation scheme is not complete since we do not compute CSlvagnce, it has been
shown quite useful in practice. Our initial experimentswhibat the non 2-step recur-
rent CTMDPs consist of most models in practice. For instaheemodels of “Erlang
Stages” [41], “Stochastic Job Scheduling” [10], “Faultdm@ant Work Station Clus-
ter” [20, 24], and “European Train Control System” [7] aré mbn 2-step recurrent,
which means that strong bisimulation coincides witks, on these models. To be more
confident, we also checked MDP models from the PRISM [26] berark interpreted
as CTMDP models by interpreting all probabilities as rat#s.found that all of them
are non 2-step recurrent. O

4 Bisimilarity and CSL * Equivalence

In this section we study the relation between bisimilarityg &£SL* equivalence. We
first introduce CSL, then show that strong bisimulation can be fully charazeatiby
CSL* for arbitrary CTMDPs. Then we extend the work to weak bisiatioh.
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4.1 CsL*

As CTL* and PCTL can be seen as extensions of CTL and PCTL respectively; CSL
can also be seen as an extension of CSL, where the path foiswddéined by the Met-
ric Temporal Logic (MTL) [25]. MTL extends linear temporaldic [30] by associating
each temporal operator with a time interval. It is a popugid used to specify prop-
erties of real-time systems and has been extensively studlithe literature [1, 29, 8,
22]. The logic MTL was also extended to CTMCs in [13], where dluthors studied the
problem of model checking CTMCs against MTL specificatidfrarmally, the syntax

of CSL" is defined by the following BNFs:

pu=al-0|eA@| Pup(®),
Yu=p | = [ YAy | Xy Ul

The semantics of state formulas is the same as CSL, whilesthargtics of path for-
mulas is more involved, since we may have different and emibadime bounds. As
for MTL, there are two different semantics for the path fotasucontinuous semantics
and pointwise semantics. These two semantics make ndaltifferences in real-time
systems, see [29] for details. We shall focus on the poimtwéesnantics as for CSL in
this paper. Given a path and a path formula of CSL*, the satisfiabilityw = « is de-
fined inductively as followsw = a iff a € L(w[0]), w |~ iff w & ¥, w = ¢1 At

iff w = 1 Aw b= g, w = X Qiff w|y =1 A time(w, 0) € I, and

w = Uy iff Fi(wls o A Y time(w, 5) € TA (V0 < j <iwl; = 1))

0<j<i

4.2 Strong Bisimulation

In this section we prove the soundness and completenessfdiisimulation with re-
spect to CSL equivalence. Different from CTL and its extension CTlwhose equiv-
alences coincide on labelled transition systems [9], thereston from CSL to CSL
is non-trivial, as we shall show in this section that CSian fully characterize strong
bisimulation for arbitrary CTMDPs. We reconsider Examplerlinspiration:

Example 6.Let sg andrg be the states introduced in Example 1, where we have shown
thatsg andrq are not bisimilar, but satisfy the same CSL formula. Howéfwae con-
sider CSLt, sg andrg are not CSE equivalent. It suffices to find a formulain CSL*
suchthak, = o, butrg = . Lettp := (L(s0) U'%%%) L(u1))V(L(s0) U L(us)),

then the maximal probability of paths starting from and satisfyingy is equal to
max{0.3-e7%64+0.4-e71,0.5-e7%¢+0.1-e71} < 0.312, while the probability for is
equaltomax{0.3-e7%6+0.4-¢71,0.4.¢7964+0.3-e71,0.5-e 706 4+0.1-e71} > 0.312,
thussg ': 'Pgo,312(¢), while rg l?é 'Pgo,glz(lﬂ), which indicatesy %csi+ 9. Notey

is not a valid formula in CSL, since it is the disjunction ofotwntil operators. a

In the remainder of this section, we shall focus on the préef o= ~cg-. First,
we introduce the following lemma in [33]:
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Lemma5 (Theorem 5 [33]).Given a path formula) of CSL* and a states, there
exists a set of cylinder se@yls such thatSat(¢) = Uce cyisC.

As a direct result of Lemma Sat(¢)) is measurable for any path formulaeof CSL",
asSat(vy) can be represented by a countable set of measurable cyinder

Now we are ready to present the main result of this sectien strong bisimulation
coincides with CSL equivalence for arbitrary CTMDPs:

Theorem 4. ForanyCTMDP, ~ = ~cgi*.

4.3 Weak Bisimulation

In this section we shall discuss the relation between wesikbilation and the equivalence
induced by CS[;X. Similar as in Section 4.2 for strong bisimulation, weakrbidation
can be fully characterized by C

Since our weak bisimulation is defined as strong bisimufatio the uniformized
CTMDPs, foremost we shall make sure that Q)slls preserved by uniformization
under TTP schedulers, that is, we shall prove the followamgrha:

Lemma 6. s ~est, rinCiff 5 ~cgx Tin C.

As a side contribution, we extend the result in [28, 31] arahstihat uniformization also
does not change properties specified by (;glprovided TTP schedulers are consid-
ered. Given Lemma 6, the soundness and completenessvith respect tOvCSL(X are
then straightforward from Definition 6 and the fact thats both sound and complete
with respect to CSL

Theorem 5. For anyCTMDP, ~ = ~ests, -

Currently, we only prove Theorem 5 with respect to TTP schadu However,
the optimal scheduler for a CSlformula may be not a TTP scheduler. Refer to the
following example:

Example 7.Let C be a CTMDP as in Fig. 3, where the letter on above of each state
denotes its label. Moreover statesand sq only have self-loop transitions which are
omitted. Lety) = ((a V b) U’ d) v ((a V ¢) U’ ¢) be a path formula of CSL We show

that there exists a non-TTP schedutesuch that

Pras,({w € Paths™(C) |w = ¢}) > Prp s,({w € Paths™(C) | w = ¢})

for any TTP scheduler’. Let I = [0,00]. Sincen’ is a TTP scheduler, it can only
make decision based on the elapsed time and the current Wthen ats;, ©' will
choose either the transition tg or the transition tag at each time point. Therefore the
maximal probability of satisfying) is 0.5. However for a general scheduterit can
make decision based on the full history. For instance when,atie can letr choose
the transition tosg, if the previous state is;, otherwisesg. Under this scheduler, the
maximal probability of satisfying) is equal to 1, which cannot be obtained by any TTP
scheduler. From this example, we can see that an optimadlstdrdor a CSL formula
may make it decision based on the elapsed time as well asates stisited.
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Fig. 3. TTP schedulers are not enough to obtain optimal values far*@8operties.

Example 7 shows that it is not enough to consider TTP scheslidethe set-
ting of CSL". In [28] another class of schedulers callBstal Time History dependent
schedulergTTH) is introduced. We conjecture that for TTH schedul@riey preserve
CSL’{X properties after uniformization, and ii) they are powegnbugh to obtain opti-
mal values for CSLy properties. Condition i) guarantees that Theorem 5 is vadidle
condition ii) makes Theorem 5 general enough. We leave thefpf the conjecture as
our future work.

Remark 2.The expressiveness of CSlmay be considered too powerful in certain
cases. For instance, path formulas likéaz U9 b) 5 will be satisfied with proba-
bility 0 for any CTMDP. In general, ifp can only be satisfied with probability strictly
less than 1, the probability of satisfyingforever will be 0 for any CTMDP.

In the other hand, a small fragment of CSk enough to characterize strong bisim-
ulation. Let CSLY denote the fragment of CSlwhose path formulas are defined by
the following syntaxzy ::= X! ¢ | ¥ V1. We have shown in [35] that = ~cgv
for any CTMDP. Therefore any subset of CSivhich subsumes CSLwill be strong
enough to fully characterize strong bisimulation.

5 Relation to MDPs and CTMCs

In this section, we compare related work on other stochastiitels: MDPs and CTMCs.

5.1 Relation to (Weak) Bisimulation for MDPs

For MDPs, it is known that strong (probabilistic) bisimudet is only sound but not
complete with respect to PCTL [32]-the counterpart of CSHigtrete setting. Differ-

ently, the completeness does not hold either even if weicettrnon 2-step recurrent
MDPs, which can be defined in a straightforward way given Difim5. Refer to the

following example:

Oy = —((a A —a) UI%>) ) for somea, i.€., 1 holds forever.
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Example 8.Let sy andrg be two states as in Example 4, which will be viewed as two
states in an MDP. Moreover we assume thatonly has a self loop. Since} has
atomic propositions different fromy (r9) andus, therefores, andry are not 2-step
recurrent. Howeves, andr, satisfy the same PCTL formulas, since the maximal and
minimal probabilities fromsy andr, to any subset ofu;, us, us, uy} are the same.
As mentioned before, the middle transitionrgfcannot be simulated by any combined
transition ofsg, hence they are not strong probabilistic bisimilar. Thididates that
strong (probabilistic) bisimulation is not complete witspect to PCTL equivalence
even that the given MDP is non 2-step recurrent. a

The counterpart of CSLin discrete setting is PCTL[3]. Similar as in the continu-
ous case, the equivalence induced by PCiELstrictly finer than~pct. [34]. However,
different from the continuous casepcti+ is still coarser than strong (probabilistic)
bisimulation for MDPs, that is, strong (probabilistic) iniailation is not complete with
respect to PCTL:

Example 9.Let sy andr be two states as in Example 1, where we have showrsghat
andr are neither strong bisimilar nor CSlequivalent. However in [344, andr are
shown to be PCTL equivalent by viewing them as two states in an MDP. Therefore
CSL* gains more expressiveness by adding time bounds to the logic a

The case for weak bisimulation is similar and omitted here.

5.2 Relation to (Weak) Bisimulation for CTMCs

In this section we show that our bisimulations are downwanthgatible to those for
CTMC:s. Different from CTMDPSs, there is no non-determimistansitions in CTMCs,

i.e., each state has only one transition, which will be deddty s EIN its- The notion
of weak bisimulation can be found in [6] for CTMCs, which ipeated as follows:

Definition 7 (Weak Bisimulation of CTMCs). For CTMCs, an equivalence relation
R is a weak bisimulation iff for alb R r it holds: i) L(s) = L(r), and i) As - us(C) =
Ar - - (C) for all equivalence classes # [s|z.

Statess, r are weak bisimilar, denoted by =ctuc r, iff there exists a weak
bisimulationR such thats R r.

Strong bisimulation for CTMCs is defined if in addition - us(C) = A - p(C)
holds forC' = [s]g = [r]r as well. States;,r are strong bisimilar, denoted by
s ~cTtmc T, iff there exists a strong bisimulatidR such thats R 7.

Below we prove that, restricted to CTMCs, our strong and wasiknulations agree
with strong and weak bisimulations for CTMCs, respectively

Lemma 7. For CTMCs, it holdsthat = ~ctucand~ = =ctmc.

The lemma above shows thatand= are conservative extensions of strong and
weak bisimulations for CTMCs in [6], and so are their logichbracterization results
except that they only work on a subset of CTMDPs free of 2-steprrent states.

Since CTMCs are sub-models of CTMDPs, Theorem 4 and 5 alsbfboCTMCs.
Together with Lemma 7, we have the following result:
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Corollary1. 1. ~csr = ~ = ~cTMC = ~CSL
2. ~esk, = R = RCIMC = ~CSly

Corollary 1 shows that CSlgains no more distinguishing power than CSL on CTMCs
without non-determinism, similarly for their sub-logic#kout the next operator.

6 Conclusion and Future Work

In this paper, we have proposed both strong and weak bisiiongafor CTMDPS,
which are shown to be able to fully characterize CSL and GSiquivalences respec-
tively, but over non 2-step recurrent CTMDPs. For a standatension of CSL — CSL,
we show that strong and weak bisimulations are both sound@amglete with respect
to CSL* and CSL’;>< respectively for arbitrary CTMDPs. Moreover, we give a sienp
scheme to determine non 2-step recurrent CTMDPs, and shoasalall CTMDPs
found in practice are non 2-step recurrent CTMDPs. We naitthte work in this paper
can be extended to the simulation setting in a straightfoowaay.

For future work we would like to consider the approximatidbisimulations and
simulations on CTMDPs as well as their logic characterirgtalong [16]. Moreover,
the model checking of CSLagainst CTMCs and CTMDPs will be also worthwhile to
exploit. Another interesting direction is to consider tlmtinuous semantics of CSL
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A Proofs of Section 3

A.1 Proof of Theorem 2

Proof. Theorem 1, states the directieon C  ~csi, SO here we only prove that
~csL © o~

LetR =~csL ands R r, whereR is obviously an equivalence relation. We need to
prove thatL(s) = L(r) and for eachs 2 i, there exists: K u' such thatu R p/'.
The proof is along the same line as the proof of Theorem 4: vigreeed to consider
the|Suc(s)| > 2, as the formula constructed there contains disjunctions.

Recall that in this theorer@ is non 2-step recurrent. Let, € Supp(u) be a state
such that there exists ¢ [s] U [sk], sk 22, 4 and v(t) > 0 for someX; andwv.
SinceC is non 2-step recurrent, sueh always exists. Then the formula for case when
ai € (bg,cx) anda; € (cj,b;) is given by:

¥ =(sVsp) U (s v 1)
We also distinguish the following three sub-cases:
A1 = Ao Let
pL=p- (e*)‘la —e ™Mb 4 ghe M — b)\lefhb)
P2 = (efha - ef)‘lb)
then
— the probability of paths starting from satisfying« by choosing transitions
s 2L w andsy, 22 s equal top(s, 1) := a; - p2 + ai - p1, and
— the probabilities of paths starting fromsatisfyingy by choosing transitions
P2 w) andr LN uh and thensy, 22, L are equalte(r,v1) := b pa+bi-p1
andp(r,v) = ¢; - p2 + cx, - p1 respectively.
As in Theorem 4, it is sufficient to prove thgg € (0,00), which can be seen as
follows:
— Letb = oo, theng—; = p-(aA1 + 1) and it is easy to see that there exist$
such that’> € [p, 00).
— On the other hand let = 0, thenp; = p(1 — e M —bAe b)) andpy, =
1—e M 508 =p-(1— bhie 1 note here thatie 1 ¢ (0,1) since
—A1b . . . —A1b .
bhic 7 can be arbitrary close to 1 whenis close to 0, while?*e—1 is
arbitrary close to 0 asincreases. As a reSL%t € (0, p).
A1 > Aa: Thenp, will be the same as in the case when= )\, and
At
A1 — Ao

e*)\ga _ e)\gb) _ )\2 (ef)\la _ e}\lb)).

p1 = p( Ny

Therefore
ﬂ )\1 e—)\ga _ e—)\gb )\2

p2 p()\l — A2 (6_’\1“ - 6_’\1b) S - )\2).

—Xga_,—Agb

WhenX; > Ao, =57 € (i—f,oo), thus% € (0,00). The remaining argu-
ments are the same as in the case whea- \,.
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A1 < X2: This case is similar as the above case and is omitted.

Thus there always exists < a < b such that paths starting fromwill satisfy
with higher probability thar for somea, b, therefores %cs. r, which contradict the
assumption. a

A.2 Proofof Lemmal

Proof. 1. LetR =~ ands R r. To show that- implies=, it is enough to prove that
R is a weak bisimulation. Let =+ 1, according to Definition 6 we need to prove
that there exists = v such thatu R v. By Definition 2,5 EEN w iff there exists
s 1’ such thajy = % 4 ET” -D,. Sinces ~ r, there exists 2»p v/ such
thaty’ R /. Note that R impliesr Lov= % v+ ET” - D,., apparently
# R v as required.

2. The proof of Clause 2 is straightforward from Definition 6.

A.3 Proof of Lemma 2

Proof. We first prove that iC is a CTMC, thens ~cstly T inCiff § ~cg. 7inC.
Since uniformization preserves the satisfiability of Gglwe haves ~csLy T

LetR =~csL , ands R 7. According to [6], CSL equivalence coincides with strong
bisimulation on CTMCs, therefore it suffices to prove tiRats a strong bisimulation.
Let X\ denote the exit rate af and#, and\; denote the rate frorfito states ir[s]x i.e.
As = X - u([3]gr) wheres 2, 4. We need to prove that there exists™ » such that
uwRuv.

The case when; = M is trivial, we assume that > As.

In the following proof, we leto be a formula such thafat(¢c) = C whereC
is aR closed set. Now we are going to prove thgt= A i.e. the rates fokx andr
leaving to states in equivalence classes different figg are equal. Le€ = S\ [5]r,
thens = Ps, (¢, U gc) wherep = eV — e=Vb and X' = X — \,. Since
§ ~csLy T, We haver = Psp(¢s). yletl pc) forany0 < a < b. Therefore
A — As = A — Az which impliesA; = Ar.

Let C € S/R be an equivalence relation such that C, we know thats = ¢ :=
P>p(@lsr ule?! ¢c) where

A-p(0)
X — A5

p — . (e*)\C'a _ e*)\C'b)'

Sinces ~csi, 7, We haver = ¢. We show that it must be the case tha€’) = v(C).
We prove by contradiction and distinguish the followingess

1. u(C) < v(C). Leta = 0 andb = oo, thenp = ’\AQ—(AC) The probability of
the paths starting from satisfying (s, U*" oc) is 54 which is appar-

ently greater tham, given that we have proved that = \;. Thereforer =
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Py (@151 U 00), buts 12 Poy (o, U o) wherep = 54E), this
contradicts with our assumption.

2. u(C) > v(C). This case is similar as the first case by letting- 0 andb = oo,
thus is omitted here.

Consequently, we have thatC') = v(C) for eachC € S/R except fors], moreover
As = Ar, henceu R v andR is a strong bisimulation. According to [6] where it is was
shown thatv is both sound and complete fercs. on CTMC, thuss ~cg 7.

We now generalize the result to CTMDPSS”NCSL\X r, thens ~csLx T Since
in a uniformized CTMDP, every execution©@fguided by a given scheduler can be seen
as a CTMC, thus ~cs_ 7 based on the above result. O

A.4 Proof of Theorem 3

Proof. Since in Theorem 2, we have shown that = ~cg_ provided thatC is non
2-step recurrent. The proof is straightforward since:
Def. 6 ,_ N Thm, 2 ,_ _\ Lem. 2
(s mr) & (5 ~7) 7 (5 ~esL T) 27 (s ~esLy 1) g

A.5 Proof of Lemma 3

Proof. Straightforward from Definition 5. The first two cases aremersince they do
not depend on the given relation. We only need to check thd ttondition. Since

R C R'implies[s]g C [s]r’ for anys. Therefore if there exists 2 w1 such that

forall s" € Supp(p) ands’ LN v, we always have(C) = 1 whereC = [s]g U [s']r,
it must be the case tha{C’) = 1 whereC’ = [s]g: U [§']r/, sinceC C C’. O

A.6 Proof of Lemma 4

Proof. Our proofis inspired by the reduction used in the long versitf36]. We sketch
the proof here.

Consider the subset sum problem which is known to be NP-H&tfl [Given a
set ofn integers{ky, ..., k,}, is there a non-empty subset whose sum is equal to 0.
Note any subset sum problem can be reduced to the followiaglgm by dividing
eachk; by ﬁ -max{|k;| } wherel < i < n: Givenn decimal numbers, ..., w,
such thatw; € [—4, L] for eachi € [1,n], can we find a sef C [1,n] such that
> icrwi = 0. We show that this problem can also be transformed to a proble
deciding the negation efcs| by constructing a CTMDP as follows: Suppose we have
statessy, sg, 7, and{s;}1<i<x, all of which have distinct atomic propositions except
L(sp) = L(s;), and moreover they only have a self loop transition with faéxcept:

1 1 1 .
S0 = W, 8 = v1, andsj — vo, where foreach <i<n

— p(si) = |w;| + e with e = 10727,
= v1(si) = w; + |w;l,
- I/Q(Si) = —w; + |’LUZ|
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Moreover letu(r) =1 — >, (Jwi| +€), v1(r) = 1 = >, .o, (wi + |w;l), and
vo(r) = 1= c;«n(—wi+ |ws|). Clearlyu, vi, andv, are full distributions. In order
to check whetheg, ~cs. s{, the only non-trivial cases are formulas ik, (),
wherey = T ylet! (Vsecs) forsomeC C {s;}1<i<n U{r}. Since the probabilities of
paths starting froms, ands;, satisfyingy by choosing transitions tg, v4, andv, are
equaltoyu(E) (e @ —e™?), 11 (E)-(e7*—e™?), andvy (E) - (e~ —e~?) respectively,
so csL sp iff they exists E such thatu(E) > vi(F) and u(E) > va(FE). We
distinguish the following two cases:

1. r € Ei.e. there existd C [1,n]| suchthatF = {s; | i € I'}.
In this case we will have

D ulsi) > > vilsi), > ulsi) > > valsi),
el iel el el
which implies

D (e lwil) > Y (wi + fwil), Y (e fwil) > Y (—wi + Jwil),

i€l icl icl icl

Zwi <€- |E|7 —Zwi < €- |E|
icl iel
Sincee - |[E| < 1072"-n < 4, the only possibility for botf}", _; w; < e-|E|and
—> serwi <e-|Elholdisthat), ; w; = 0.
2. r € Ei.e.thereexist§ C [1,n] such thatt = {s; | i € [} U {r}.
In this case we will have

wu(r) + Zu(sz) > v (r) + Z v1(s;),

which implies

i€l i€l
wu(r) + Z”(SZ) > va(r) + Z va(s;),
il il

which implies

L= > (etlwi)+ D (e+wil) > 1= > (wi+fwi]) + > (wi + [wi]),

1<i<n iel 1<i<n iel
1= > (et lwil) + ) (et wil) > 1= > (—wi+wi) + > (—wi +[wil),
1<i<n iel 1<i<n iel
which implies
—€- |j| > Zwi,
iel
—e-|I| > —Zwi,
i€l

wherel = [1,n] \ I, which holds iff I = {), but this contradicts that(F) =
Vl(E) = VQ(E) =1.
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In conclusionsg *#csL s iff there exist/ C [1,n] suchthab ;. ; w; = 0. Since the
reduction is polynomial, we can say that it is NP-hard to degicsi, which implies
that the decision of-cg is also NP-hard.
The above proof can also be applied to prove that decigh@SL, x is NP-hard.
O

B Proofs of Section 4

B.1 Proof of Theorem 4
The proof of Theorem 4 is divided into the following lemmas:

Lemma 8. s ~ rimpliess ~cgix rforanysandrie.~ C ~cgp-.

Proof. We shall show that ~ rimpliess ~cg» r for anys andr, thatis,s ~ r
ands E ¢ implies thatr = ¢ for any . Given two cylinders”; andCs, we say that
C; andC, are strong bisimilar, written a8, ~ Cy, iff |Cy| = |Cs|, C1[i] ~ Cali] for
each0 < i < |Cy|, andtime(Ch,i) = time(C2,1%) for each0 < i < |C1|. Similarly,
we can define strong bisimulation of paths.

As usual we prove the following two things simultaneously:

1. s E piff r = ¢ foranyy, provided thats ~ r;
2. w1 E ¢ iff wy = 9 for any, provided thaty; ~ wo.

We only show the proof for case when = P, (y) andy = i, U’ 1, since all
the other cases are either trivial or similar. Suppose 4¢hat ¢ i.e. for all schedulers
7, Pry s(Sat(¢)) > g, we shall prove thaPr, . (Sat(¢)) > ¢ for any scheduler
of . According to Lemma 5, the set of paths starting fremnd satisfying) can be
represented by a set of cylindefgis. By induction hypothesis§at(v) is ~ closed,
thus for anyC € Cyis, [C]. C Sat(v). Since for anyCy,C> € Cyls such that
C1 N Cy # 0, there exists a set of disjoint cylindef€’/} such thatu{C}} = C; U Cy,
so anyCyls can be transformed to an equivalent set of disjoint cylindierthe sequel
we assume thaf'yls contains only disjoint cylinders, therefore

Prqs({w € Paths™ |w = ¢}) = Z Pr.s(C),

CeCyls

for any scheduler. As aresult, it suffices to prove that for each schedujesf s, there
exists a scheduler, of r such thatPr,, s([C]~) = Prx, »([C]~) for eachC € Cyls.
Let C = C(so,Ip,...,In-1,8,) Wheresy = s, we prove by induction om. The
base case when = 0 is trivial. Assume that» > 0, then according to Eqg. (1c),
Pra s([C]~) = Pra, s([C]~,0) =

Z 7(s,0)(\, ) - Z w(s') - Ae - Pro o ([C')~, t)dt,
ter, (Ap€tr s'€ls1]~

wheretr = Steps(s) andC’ = C(s1, 11, ..., s,). Sinces ~ r, for each(\, u) € tr
there exists i)p v such thaty ~ v. Let 1, mimic exactly whatr; does when at
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stater. MoreoverPr , o ([C']~,t) = Prq, ~([C']~,t) for eachC’ € Cyls such that
|C'| < n, provideds’ ~ . By induction hypothesis, such, always exists, and
Pra, s([C]~) = Prg, »([C]~) for eachC. Consequently, we havel= ¢. O

Lemma9. s ~cgi+ rimpliess ~ rforanysandri.e.~csx C ~.

Proof. First we define a sub-logic of CSLcalled CSLY, whose state formulas are the
same as CS1, while its path formulas are defined by the following BNFs:

1/1:::X1<p|¢\/1/1,

that is, the only path formula of CSLis the disjunction of several next operators.
Secondly, we prove thatcg,v C ~.LetR ={(s,7) | s ~csv 7} ands R r,
whereR is obviously an equivalence relation. The proofldfs) = L(r) is trivial and

omitted here. It suffices now to prove that for eachs 1, there exists: i>p w1’ such
thaty R p'.

Claim.Fix as 2 i, there exists: 2 w' such thatu(C) = p/(C) = 1 for some
R-closed set.

To prove the claim we lef); | ELN wi A pi(C) = 1hi<i<n. We proceed by
contradiction and assume that there does not eéx@sth that\; = \. Without loss of
generality, we assume that= 2. There are three cases we should consider here:

1. A\ < A2 < A Letye be a formula such thalat(pc) = C, sinceC' is R closed,
pc always exists. Let) = X[0:0] ¢, then the maximal probability of paths starting
from s satisfyingy is equal tol — e~*2, while the probability for-is 1 — e~**
which is obviously less thah — e~*2'*. Therefore there exists = 1 — e~ 20,
such thats = P<,(v), butr = P<,(¢), which contradicts the assumption that
S ~csLy T.

2. XA < A1 < Xo. This case is similar with the above case and omitted here.

3.0 < A< M. Letf(z) = e 9 — et thendf /dx = b- e —a-e79%. We
solve the inequatiodf /dx > 0, and getr < In(b/a)/(b — a), which means that if
x1 < x2 <In(b/a)/(b—a)orzy > xz >1In(b/a)/(b — a), we have

efamg _ efbmg > efazl _ eszl.

Let a, b be two real numbers such that= % thus it holds that

ef}\'ll _ ef}\'b > ma,X{eiAl.a _ e*)\l-b’ef)Q'a _ 67)\2.b}.

Therefore there also exisissuch thats = P<,(¢), butr = P<,(¢), which
contradicts the assumption. Thus, we have the claim.

To proceed with the proof of the main theorem, we show thatémhs KR 1, there

existsr )\—]>p 1’ such thaje R /. Due to the above proven claim, it is enough to focus
on transitions with same rates. We proceed by contradictiod assume there exists a
set of transitiong y, | r A, wi} with 1 < ¢ < n, but there does not exi$tv; € [0, 1]}
suchthap R 1/ wherep’ = >, -, ., w;- ;. In order to get a contradiction, we need to
find a formulay which is satisfied by but notr, or the other way around. We consider
the following cases:
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1. s, i.e.sis a silent state. This case is impossible since all the dions ofs will

stay in the same equivalence class as well as-, thus there exists A—1>p v such

thaty([s]) = v([s]) = 1.

2. Suc(s) < 2 i.e. there exists at most two equivalence classes’> C C such
thatu(Cy U C2) = 1, in other wordsu(Cy) = 1 — u(Cs). In case ofSuc(s) is a
singleton set, we simply sét, = (). We consider the following cases:

@) 1, (Ch) < ph(Ch) < p(Ch). Letyy = X% o | the maximal probability
of paths starting fromr satisfyingy is p(C4 ), while the maximal probability
for s is u5(Ch) less thanu(Cy), thus there existg such thats = P<, (), but
r = P<p(1), which contradict the assumption.

(b) wh(Cy) > pi(C1) > w(Ch). This case is similar with the case above, and is
omitted here.

(c) ph(Cr) < p(Cr) < phH(Ch). In this case we can make sure that there exists
w1, ws such thatw; + wy = 1 andw; -/Lll(Cl) + wo 'MIQ(Cl) = u(Cy),
therefore

wy - 17 (C2) +wa - 1y (Ca) = wy - (1 — py(C1)) +wa - (1 — py(Ch))
=w; 4wy — (w1 - 1 (C1) + wa - pp(C1))
=1—p/'(Cr) = p(C)

thus(wy - pf + we - ph) = p’ such thafw R 1’ as we expect. Note this cannot
be generalized to the case wh&uc(s) > 2.
3. We consider the — most involved — remaining ca%e:(s) > 2. Note that every
combined transition of can be seen as a combined transition of two other (com-

bined) transitions of. We fix two arbitrary (combined) transitions &fr A—1>p h
andr A—1>p h, thus

VO <wi,we <1. wi4wy=1 (2)
Ap R (wr - ph +ws - ).

Let Supp(u) = {s1, $2,. .., sn}. For simplicity we assume that, . .., s, belong

to different equivalence classes. For< i < n, define:u(s;) = a;, ui(s;) =

b;, andub(s;) = ¢;. According to Eqg. (2), for eack there must exist < j #

k < n such that there does not exisK w1y, ws < 1 with wy; + we = 1 such that

wy - by +ws - ¢ = ap andwy - b; + wa - ¢; = a;, otherwiseu R (w1 ) + waph)
which contradicts Eq. (2). The idea now is then to construftiremula ¢ which

is satisfied bys but notr. There are several cases to be considered depending on
whethera;, € [bi, ;] andlora; € [b;,c;]. Most of the cases are trivial except
whenay, € (bg,cx) anda; € (cj,b;) with ¢, > by andb; > ¢;. For instance if

ar > by, cr, s Will evolve into s; with higher probability than, soy is easy to
give.

Lety = (XY s5)V (X[“/’b/] sk), where the names of states are used as abbrevi-
ations of the state formulas characterizing the equiva@efesses where they are
located. Then the probability of paths starting fresatisfyingy by choosing tran-

sitions 2% 1 is equal top(s, 1) = aj- p2+ay - p1, wherep; = (e=21¢ —e=Mb)
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andp, = (e~ — =M Similarly, the probabilities of paths starting from

satisfyingy by choosing transitions 2L wh andr KR wh are equal te(r, i) =

bj - p2 + by - p1 andp(r, uh) = ¢; - p2 + i - p1 respectively.

Now it is sufficient to prove that we can always fiidk ¢ < band0 < o’ < ¥/

such thap(s, ) > max{p(r, u1), p(r, 3)}.

(@) o= < L% let 2 e (1=g, g;f;;), then we havey, - p1 + a; - pa >
max{by - p1+bj-p2, e prtcj-pa} 1Le.p(s, p) > max{p(r, py), p(r, p3) } as

Aa__ A1 .

we shall prove. Note tha% ,Alla e,m, ranges ovef0, o) by choosing

different values fow, b, a’, andb’, therefore the discriminating formula always

exists, we get contradiction. The case WH?é;Ha—’ > 2= can be proved in

a similar way, and is omitted here.

(b) =% — %% : Thjs case is impossible, otherwise there exiists wy, wy <

ap—bg c

1'such thaml kbk +H}2 cL = ay andwl bj +wsy-c; = a; Withw; +we =1,
simply letw; = 57 andw, = wherek = Sa—hh sz
Since CSlY isa sub-logic of CSL, triviaIIy ~csr € ~csLv, thereforevcgs € ~,
which completes the proof. a

B.2 Proof of Lemma 6

Proof. Since in Lemma 5 we have shown that for asnyand «, the paths starting
from s and satisfyingy can be represented by a set of disjoint cylinders. It suffices
to prove that for eachr of s, Pr, ,(C) = Prz ;(C) for each cylinderC, whereC
is a cylinder same a€' except thatC[i] = C1]i] for each0 < i < |C|, and T is
the scheduler mimicking stepwise. LetC' = sg, lo, s1,- .., Sn, We shall prove by
induction onn. The case when = 0 is trivial, since Pr. s(C) is either 1 or O de-
pending on whethes, = s. Suppose that > 0, s = s, andI = [a,b], Since
it has been proved in [31, Sec. 6] that uniformization doaschange time-bounded
reachability, that is, the probability from, to s; in time interval I is equal to the
probability from sy to 7 in time intervall for any I. Let F'(¢) denote the probabil-
ity from so to sy in time interval|0, ¢] given scheduler, and f(t) = dtt), that is,
f(t) is the corresponding probability density function, simifave can defineF (t)
andf(t). According to Eq (1c)Pr7T S( ) Pr. +(C,0) ftel ft) Pr,,,S(C, t)dt
andPrz 5(C) = Prxz s( = Jies, F(t) - Prz5(C,t)dt. SinceF (t) = F(t) for any
t, we havef(t) = f(t) for anyt By mductlon hypothesisPr, ;(C,t) = Prz s(C,t)
for anyt, thus

() Preps(C,t) = f(t)- Przs(C,t)
for anyt, which indicates thaPr, ;(C) = Prz s(C). |

B.3 Proof of Section 5
Proof. The proof can be presented as the following chain:

Def. 6 _ _Thm 4 _ _ Lem. 6
S’&‘T‘<:>SNT@SNCSL*T@SNCSL&T.
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C Proofs of Section 5.2

C.1 Proofof Lemma?7

Proof. The proof of~ = ~cruc is trivial, since in a CTMC there is only one
transition for each state, thus we can simply replagewith —. The condition), -
ws(C) = A - 1 (C) for eachC coincides with the condition: i\, = A,, and ii)
pos R i

We first prove thate implies=ctvc. Let R =~ ands R r. We shall prove thak is
a weak bisimulation as defined in Definition 7. Suppose&h%ﬁ» 145, We need to prove
thatr 22 i, such that, -1, (C) = A~ (C) forall C € S/R with C # [s]z = [r]x.
According to Definition 6s ~ rif 5 ~ 7. By Definition 2, if s 2ey ls, thens RN I
such thaty = % -Ds + % - its Wherei, is defined as expected. Therefore there
existsi s v suchthapy ~ vwherev = Z=2=.D, 4 2. 7. Obviously if there exists
C € S/Rwith C # [s|gr = [r]r suchthal,-is(C) # A~ 1, (C), thenu(C) # v(C)
sinceu(C) = % - us(C) andv(C) = 3z - 1, (C), thus it is impossible fop ~ v.

To show that~ctmc implies =, it is enough to show thaR ==ctyc IS a weak
bisimulation according to Definition 6, that is, we need shthvat R = {(5,7) |
s =ctmc T} is a strong bisimulation by Definition 4. Suppose thats 1, then
there existss % 1, such thaty = £« Dy + 22 ji,. Sinces actmc T, there
existsr 2oy iy such thath; - us(C) = A - p(C) for all equivalence clas§' #
[s]~eme = [F]~eme- Therefore there exists = v such thay = £=2= . Dy 4 A 7,
andy(C) = v(C) for all equivalence clas§ # [s]r = [F]r, sinceu(C) = 3 - j15(C)
andv(C) = )‘—ET pr(C)ie.p Rv. O



