Skip to main content

Probabilistic Automata for Safety LTL Specifications

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8318))

Abstract

Automata constructions for logical properties play an important role in the formal analysis of the system both statically and dynamically. In this paper, we present constructions of finite-state probabilistic monitors (FPM) for safety properties expressed in LTL. FPMs are probabilistic automata on infinite words that have a special, absorbing reject state, and given a cut-point λ ∈ [0,1], accept all words whose probability of reaching the reject state is at most 1 − λ. We consider Safe-LTL, the collection of LTL formulas built using conjunction, disjunction, next, and release operators, and show that (a) for any formula ϕ, there is an FPM with cut-point 1 of exponential size that recognizes the models of ϕ, and (b) there is a family of Safe-LTL formulas, such that the smallest FPM with cut-point 0 for this family is of doubly exponential size. Next, we consider the fragment LTL(G) of Safe-LTL wherein always operator is used instead of release operator and show that for any formula ϕ ∈ LTL(G) (c) there is an FPM with cut-point 0 of exponential size for ϕ, and (d) there is a robust FPM of exponential size for ϕ, where a robust FPM is one in which the acceptance probability of any word is bounded away from the cut-point. We also show that these constructions are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity of randomization in finite state monitors. J. ACM 56(5), 26:1–26:44 (2009)

    Google Scholar 

  2. Baier, C., Gröβer, M.: Recognizing ω-regular languages with probabilistic automata. In: Proceedings of the IEEE Symposium on Logic in Computer Science, pp. 137–146 (2005)

    Google Scholar 

  3. Rabin, M.: Probabilitic automata. Information and Control 6(3), 230–245 (1963)

    Article  MATH  Google Scholar 

  4. Paz, A.: Introduction to Probabilistic Automata. Academic Press (1971)

    Google Scholar 

  5. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspect of Computing, 495–511 (1999)

    Google Scholar 

  7. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Manna, Z., Pnueli, A.: Temporal verification of reactive and concurrent systems: Specification. Springer (1992)

    Google Scholar 

  9. Alur, R., La Torre, S.: Deterministic generators and games for ltl fragments. ACM Trans. Comput. Logic 5(1), 1–25 (2004)

    Article  Google Scholar 

  10. Yao, A.: Some complexity questions related to distributed computing. In: Proceedings of the ACM Symposium on Theory of Computation, pp. 209–213 (1979)

    Google Scholar 

  11. Kushilevtiz, E., Nisan, N.: Communication Complexity. Cambridge University Press (1996)

    Google Scholar 

  12. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication complexity. In: Symposium on Theory of Computing (June 1995)

    Google Scholar 

  13. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  14. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  15. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & Its Applications 16(2), 264–280 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kupferman, O., Rosenberg, A.: The blow-up in translating LTL to deterministic automata. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS, vol. 6572, pp. 85–94. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kini, D., Viswanathan, M. (2014). Probabilistic Automata for Safety LTL Specifications. In: McMillan, K.L., Rival, X. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2014. Lecture Notes in Computer Science, vol 8318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54013-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54013-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54012-7

  • Online ISBN: 978-3-642-54013-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics