

Impact-Driven Regression Test Selection for Mainframe Business Systems

THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in

the Graduate School of The Ohio State University

By

Abhishek Dharmapurikar

Graduate Program in Computer Science and Engineering

The Ohio State University

2013

Master's Examination Committee:

Professor Jayashree Ramanathan, Advisor

Professor Rajiv Ramnath

Copyright by

Abhishek Dharmapurikar

2013

ii

Abstract

Software testing is particularly expensive in the case of legacy business systems such

as mainframes. These systems are critical to many large enterprises, yet they are

perpetually in maintenance where even small changes to the system usually lead to an

end-to-end regression test. Due to the age of legacy systems there is a lack of knowledge

of component inter-dependence resulting in comprehensive system tests that have to be

conducted in production environments. This is called the “retest all” approach which is

done to ensure confidence in the functioning of the system. But this approach is

impractical primarily due to a) resource needs (including man-hours, test cycle time and

production infrastructure contention), and b) user stories generated within the agile

system that require changes to the system at an ever-faster pace.

This research is aimed at reducing the required regression testing and the costs

associated with the system and its assets (such as the database schemas, files (datasets),

transactions, screens, source programs and copybooks). The improvements are achieved

by identifying only those tests needed by assets changes and others that are ‘impacted’.

The impact analysis leverages the availability of modern static code analysis tools like

Rational Asset Analyzer and dedicated test environments for mainframes. We show that

by using impact analysis on a real-world mainframe application the test savings maybe

much greater than 34%.

iii

Dedication

This document is dedicated to my family and friends.

iv

Acknowledgments

I owe my deepest gratitude to my advisor Prof. Jayashree Ramanathan for her vision

and constant support throughout my Master’s program. Her enthusiasm for enterprise

research ideas has been great source of inspiration for me. I would also like to thank Prof.

Rajiv Ramnath for the constant supervision right from the beginning of my Master’s

program and also for agreeing to serve on my Masters Examination committee. I would

especially like to thank Nationwide for giving me opportunity to work with them for my

research, especially my team members in Build Capability, Vishnu Dendukuri, Carmen

DeArdo and Praveen Kumar for the mainframe training which my thesis is based on. Ben

Wierville has been of great help for giving valuable feedback and for supervising the

research as it progressed. I would also like to thank all my friends here at Ohio State

University for making this journey pleasant one. My sincerest gratitude to the Furnos,

who have always given me moral support and care whenever needed. Finally, this

endeavor would not have been possible without the support of my family members, who

have encouraged and motivated me to no end. It is to the Dharmapurikars that I would

like to dedicate my work to.

v

Vita

June 2005 ..S.B.E.S. College of Science, Aurangabad,

India

May 2009 ..B.Tech. Computers, College of Engineering

Pune

August 2011 to present Graduate Research Associate, Department

of Computer Science and Engineering, The

Ohio State University

Fields of Study

Major Field: Computer Science and Engineering

vi

Table of Contents

Abstract ... ii

Dedication .. iii

Acknowledgments.. iv

Vita .. v

Fields of Study .. v

Table of Contents ... vi

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ... 1

Related Work ... 2

Motivation .. 8

Contributions .. 9

Chapter 2: Mainframe Assets, Structures and Dependencies .. 12

Source Program - Copybook Dependencies .. 14

Source – Source Dependencies .. 15

Source – File (Dataset) Dependencies ... 15

vii

Source - Database Dependencies ... 16

JCL – Source Dependencies .. 17

Screen – Source Dependencies .. 17

Copybook - Copybook Dependencies.. 17

Chapter 3: Filtering Interfaces and Tests .. 22

Chapter 4: Analysis ... 24

Inclusiveness .. 24

Precision ... 26

Efficiency ... 27

Generality ... 28

Chapter 5: Experimental Setup ... 30

Chapter 6: Results ... 32

Chapter 7: Limitations .. 41

Chapter 8: Conclusion and Future Work .. 43

References ... 45

viii

List of Tables

Table 1 Mean Impact by type (last 2 changes of each) ... 32

Table 2. Three asset change mixes and their impacts .. 34

Table 3. Assets changed over a period of one year ... 39

Table 4. Tested Interfaces by ID-RTS vs. retest all over a period of one year 39

ix

List of Figures

Figure 1. The phases of system evolution ... 1

Figure 2. The ID-RTS process ... 7

Figure 3. Dependencies from run unit diagram in IBM RAA. 19

Figure 4. A typical mainframe system with all dependencies 20

Figure 5. The impact of change ... 21

Figure 6. Modification-revealing and modification-traversing tests relation 25

Figure 7. The analysis of complexity of impact analysis .. 28

Figure 8. Mean Impact by Type as % of interfaces impacted 32

Figure 9. Three asset change combinations and their impacts 35

Figure 10. Assets changed over a period of one year .. 37

Figure 11. Assets changed by type over a period of one year 38

Figure 12. Interfaces tested by ID-RTS vs. retest-all over a period of one year 40

1

Chapter 1: Introduction

The legacy systems such as mainframes are still being used by many enterprises, but

constantly changing to meet the evolving modern enterprise models. Typically any

system goes through a certain evolution activities which can be divided into three

categories [3] maintenance, modernization, and replacement (see Figure 1). After being

built the system goes through maintenance activities to keep up with the changing

business needs. A modernization effort is then required that represents a greater effort,

both in time and functionality, than the maintenance activity. Finally, when the old

system can no longer be evolved, it must be replaced. As for the mainframe systems that

have been modernizing to keep up, reducing the testing costs would immediately benefit.

Figure 1. The phases of system evolution

2

Software testing is the most critical and expensive phase of any software

development life cycle. According to Rothermel et al. [5], a product of about 20,000 lines

of code requires seven weeks to run all its test cases and costs several hundred thousands

of dollars to execute them. Software maintenance activities, on an average, account for as

much as two-thirds of the overall software life cycle costs [1]. Among activities

performed as part of maintenance, regression testing takes large amounts of time as well

as effort, and often accounts for almost half of the software maintenance costs [2].

Regression testing by definition (also referred to as program revalidation) is carried out to

ensure that no new errors (called regression errors) have been introduced into previously

validated code (i.e., the unmodified parts of the program) [2]. With mainframe systems

containing several thousands of programs, usually an end to end regression test is carried

out using test cases from system tests. This black box testing technique is the only

practical way of assuring compliance and owing to the lack of knowledge of dependence

among components; it is not possible for the system testers to test only the affected

components of the system resulting from a change.

Related Work

There have been many studies to reduce the cost associated with regression testing.

Test case reduction techniques are aimed to compute a small representative set of test

cases by removing the redundant and obsolete test cases from test suites [6], [7], [8], [9],

[10], [11]. These techniques are useful when there are constraints on the resources

available for running an end to end regression. Test case prioritization techniques aim at

3

ranking the test cases execution order so as to defect faults early in the system [5]. It

provides a way to find more bugs under a given time constraint, and because faults are

detected earlier, developers have more time to fix these bugs and adjust the project

schedule. Khan et al. in [12] have given comparison of both the techniques and the effect

on software testing. Test case prioritization techniques only prioritize the test cases but do

not give a subset of cases which would reveal all the faults in the changed system. Test

case reduction techniques do give a reduced number of test cases but the coverage of the

reduced test cases spans across the entire system including the parts which were not

changed.

Regression test selection (RTS) techniques select a subset of valid test cases from an

initial test suite (T) to test that the affected but unmodified parts of a program continue to

work correctly. Use of an effective RTS technique can help reduce the testing costs in

environments in which a program undergoes frequent modifications. Rothermel and

Harrold [13] have formally defined the regression test selection problem as follows: Let P

be an application program and P´ be a modified version of P. Let T be the test suite

developed initially for testing P. An RTS technique aims to select a subset of test cases T´

⊆ T to be executed on P´, such that every error detected when P´ is executed with T is

also detected when P´ is executed with T´. Impact-Driven Regression Test Selection (ID-

RTS) builds on this idea and aims at reducing test costs for mainframe systems. As this

idea is proposed as a replacement for the retest-all regression tests, it is expected that the

idea should be safe – it should be able to identify all the test cases that could reveal

modifications to the system.

4

There have been many techniques presented for regression test selection. Code based

techniques (also called program based techniques) look at the code of programs and

select relevant regression test cases using control flow, data or control dependence

analysis, or by textual analysis of the original and the modified programs.

Dataflow analysis-based RTS techniques explicitly detect definition-use pairs for

variables that are affected by program modifications, and select test cases that exercise

the paths from the definition of modified variables to their uses [17][18]. However, these

techniques are not safe due to their inability to detect the effect of program modifications

that do not cause changes to the dataflow information. The techniques also do not

consider control dependencies among program elements for selecting regression test

cases. As a result, these techniques are unsafe [16][4].

Control flow techniques [21][22] model control flow of input programs into control

flow graphs and analyze a change on them for selecting regression test cases. These

techniques have been proven safe and the graph walk approach suggested in [22] is the

most precise work for procedural languages [16]. However they do not include non-code

based components of the system such as DB and files.

Dependence based RTS techniques look at the data and control dependencies among

or within the programs to filter out the modified test cases. Program dependence graph

based technique suggested in [19] could work on a single program, which was later

improved to system wide scope in [20] by using System dependence graph, but both the

techniques were proved to be unsafe as they omit tests that reveal deletions of

components or code [4].

5

Differencing technique [19] is an RTS technique based on textual differencing of the

canonical form of the original and the modified programs. Though this technique is safe,

it requires conversion of programs into a canonical form and is highly language

dependent. Also the complexity of this approach is too high to be feasible for a

mainframe system with several thousand programs [16].

Slicing based techniques [23] select those test cases which can produce different

outputs when executed with the modified program version P. Agarwal et al.[23] have

defined 4 different slicing techniques. The basic slicing technique forms an execution

slice which is the set of program statements in program P that are executed for a test case

t. Other three techniques build on the basic technique picking statements that influence an

output, or predicate statements that affect the output. The overall technique would select

a test case t only if the slice of t computed using any one of the four approaches contains

a statement modified in P. These techniques are precise, however they have been shown

to omit modification-revealing tests, hence are not safe [16].

The most relevant research to ID-RTS is the firewall based approach in [24]. A

firewall is defined as a set of all modified modules in a program along with those

modules which interact with the modified modules. This technique uses a call graph to

establish control flow dependencies among the modules. Within the firewall, unit tests

are selected for the modified modules and integration tests for the interacting modules.

This technique is safe as long as the test suite is reliable [4].

Research has also been done on specification based regression test selection. Such

techniques look at the specification of a program by modeling the behavior [14] and/or

6

requirements of a system [15]. These techniques do not employ the dependency extracted

from static code analysis of programs and hence are not precise or safe [16].

Impact-Driven Regression Test Selection (ID-RTS) is a control flow and data

dependence based, intra-procedural regression test selection technique designed for

mainframes. It filters out test cases based on the following steps (see Figure 2)

1. Comprehensively representing the inter-asset dependencies using a dependence

graph.

2. Analyzing the types of changes to the system. This involves accounting for

insertion, modification or deletion of an asset.

3. Filtering out the affected interfaces and associated test cases for a system

through impact analysis for a particular change.

7

Analyze

Impact

Dependency

Graph by Static

Code Analysis

7

1

ReportReport

2
Data/Interfaces

Ready Test

Environment

Test Runs

5

Batch

Programs/

Programs

Interactive

screens System test

cases

Interface

specific tests 3 4

6

Analysis

Tools

Copybook

JCL batch

jobs/Screens

DB

Source

Programs

Datasets

Asset Changes

Filter Interfaces

Figure 2. The ID-RTS process

 7

8

Motivation

With the growing volatility of the requirements even for the legacy systems such as

mainframes, Agile methods are being adopted as according to the agile manifesto [27],

they enable projects to provide fast, frequent, consistent, and continuous delivery of

working software; and to respond to changing requirements. D. Talby et al. in [28], have

pointed out the importance of integrating the testing and development activities in an

agile environment. As with mainframes combined with the retest-all approach, a) the

dedicated resources required for the system tests reduce the availability of the mainframe

systems, and b) the time required for these tests inhibits making changes and testing the

system in the same agile iteration. Even though the development of the change

requirements is carried out in an agile fashion, the testing has to be completed as part

separate story in a different iteration. The developers have to wait for a complete iteration

to gather the test results of the changes that were made.

This research is primarily aimed at replacing the system tests with a safe regression

test selection technique (ID-RTS) based on impact analysis of changes. This technique

reduces the test cycles required for each change facilitating testing in the development

iteration itself. This enables the developers to get the feedback on the changes sooner,

and improves the speed of bug fixes (if any encountered) as the knowledge of the

changes done would still be current. To replace a system test, the regression testing

technique has to be safe, i.e. if there are any faults that are created by the change of code;

they have to be exposed by the technique. ID-RTS is safe as we prove it in the Chapter 4.

9

Modernization of mainframe development has been planned in order to enhance the

productivity of the development teams and quality of the software produced. It involves

the use of IDEs, analysis tools and dedicated unit testing environments for the

development of COBOL code. Analysis tools provide an insight on the dependencies and

complexities of the assets and also gauge the feasibility of a change using impact

analysis. ID-RTS leverages the availability of these tools and environments to further

enhance the speed of testing and bug fixes.

In the as-is retest-all process, the testing is carried out at application granularity. If

changes are made to an application, that particular application and the dependent

applications are tested. The dependencies are established using the specifications of the

applications. ID-RTS on the other hand, filters out tests at interface granularity. The

dependencies amongst the assets are drawn out on the system level, to which the

applications boundaries are transparent. The impact of a change transparently scales to

the interfaces of other applications and only these impacted interfaces inside the system

need to be tested. This provides even greater savings on a system wide scope, as only the

interfaces of the applications that are affected by the change of the asset are filtered and

tested.

Contributions

 The contributions made as part of the research were

1) Identification of all dependencies amongst the assets in mainframe systems, as

listed in Chapter 2.

10

2) Representation of the dependencies amongst the assets using a system

dependence graph by static analysis of the programs, copybooks, JCLs and

PROCs.

3) Identifying the types of asset changes in the system and identifying impact by

running graph traversal on the assets that were modified, added or deleted, as

discussed in Chapter 3.

4) Proposal of Impact analysis to find a set of affected interfaces and testing only

these impacted assets to achieve savings over system tests.

5) As an RTS technique, analysis of ID-RTS against Inclusiveness, Precision,

Efficiency and Generality, as discussed in Chapter 5.

6) Methodology of using analysis tools and data ready testing environments which

are being implemented as part of modernization projects to aid impact analysis

and overall maintenance testing process and proposal of testing process steps to

be carried as part ID-RTS using these tools, as depicted in Figure 2.

7) Validation of savings achieved in ID-RTS over the retest-all system test technique

in an experiment conducted in Chapter 5 and 6.

8) Limitations of using ID-RTS as a testing technique to replace system tests and the

possible methods to overcome these, as discussed in Chapter 7.

The rest of the research thesis discusses ID-RTS. Chapter 2 of this research thesis

analyzes the structures of the assets and the dependencies among them. Chapter 3

describes test case selection through impact analysis. Chapter 4 analyzes the efficiency of

the RTS technique using standardized metrics. Chapter 5 describes an experiment carried

11

out to gauge the savings from using this technique. Chapter 6 analyzes the results from

the experiment and extrapolates savings for a year for an actual enterprise using real data

for changes in that period.

12

Chapter 2: Mainframe Assets, Structures and Dependencies

In order to make a safe dependence based RTS, all dependencies within the

mainframe system must be represented. The main language that runs on mainframes is

COBOL (COmmon Business-Oriented Language), originally consisted of source

programs, copybooks, JCLs, PROC files and record oriented files.

The COBOL source programs consist of four divisions a) identification division

containing the information about the source programs ids, b) environment division

containing information about the environment the program runs in, c) data division

containing the local variable information and d) procedure division containing the actual

code of execution. A peculiar characteristic of COBOL programs is that they have single

entry and exit points into the program. There could exist PERFORMS inside, but their

scope lies only within the program. Thus, the program has to be executed in its entirety

from the entry to exit point and no particular section of code within the source program

can be executed standalone.

A COBOL copybook is a section of code that defines the variables/data structures,

which can be included in source programs to reuse structures among them. They could be

elementary data types or some group of such data items called the group data item. It also

contains the record structure for various files inside the system.

JCL or Job Control Language is a scripting language used in mainframes to instruct

the system on how to run a batch job or start a subsystem. A job consists of one or several

13

steps, each of which is a request to run one specific program and provides input for the

program to execute on. Input could be passed from the JCLs itself or from files linked

through the DD statements. PROCs are pre-written JCL for steps or groups of steps,

inserted into a job allowing reusability of commonly used steps among JCLs.

Files, usually record oriented, are used for interfacing between programs or as input

or output from a program. The structure of a record is usually defined in a copybook

which the programs manipulating the file would include.

Mainframe systems have evolved overtime to support many modern features such as

relational databases, multiple file systems and layouts, transaction and information

management systems etc. The source for all components would form assets of the

system, which consist of files, source programs, database tables and batch jobs. This

section would highlight the dependencies that would exist among the various assets.

N. Wilde in [26], has listed out all the possible dependencies that can exist among

and within programs. The concepts mentioned can be extended to represent the

dependencies amongst the assets in mainframes.

The following topics would describe the data and control dependencies that would

exist among the assets to form the dependence graph. This graph would then be used to

analyze the impact of a change on any assets. In general, assets would be represented by

the nodes in the graph and the dependencies by the edges between them.

14

Source Program - Copybook Dependencies

As mentioned before, copybooks contain data structure variables that would be used

in the source programs. COPY statements are used inside the programs to include and use

these data structures inside COBOL programs. The compiler expands the copybooks

inline inside the programs, so that the references are resolved.

To establish dependencies among the copybooks and programs the definition-usage

model proposed by the dataflow methods is used. If a variable is defined inside the

copybook and is used inside a program a dependency exists and an edge between the

program and the copybook exists in the dependence graph.

As a good programming practice, due to the inline expansion of the copybooks

inside the code, it is advisable to design copybooks such that they contain minimum

number of structures that several programs would use. For e.g. Copybook A contains

definition of variables, vara and varb and program prga includes this copybook but uses

only vara and similarly program prgb uses only varb. The copybook would expand inline

and the programs will end up having unused variables inside. Ideally there should be two

copybooks defined each for vara and varb and only the required copybook should be

included by the programs. With such a practice, only those programs impacted by a

change in the copybook file can be extracted. However these practices cannot be imposed

upon programs that have already been written and are running in production.

The dependencies are hence established at the data structure level, i.e. instead of the

entire copybook, the data structures inside it would now form nodes in the graph. An

15

edge is drawn from the source program to a node if that data structure is used by the

program (E.g. PGM1 – VAR2 dependency in Figure 4).

Source – Source Dependencies

 COBOL programs can call other programs through the CALL statement. The

programs can be called by directly using the program name as a literal or using an

identifier contained in a constant or variable. If a program A calls another program B it

creates a dependency on B which is represented by an edge in the graph (E.g. PGM3 –

PGM4 dependency in Figure 4).

If a program is called using its name stored in a variable whose value is dynamically

populated during the execution of the calling program, the dependencies amongst the

programs cannot be determined through static analysis. For the scope of this research,

coding best practices should be established to avoid dynamic calls. We have verified that

the system under test does not have any such dynamic calls.

Source – File (Dataset) Dependencies

 COBOL programs use a file as intermediate output between two programs or as

terminal output. Files are opened in INPUT, OUTPUT or EXTEND mode which

corresponds to file read, write or append respectively. If the program opens the file in

read mode then the program is dependent on the file (E.g. PGM2 – FILE1 dependency in

Figure 4) and if it opens in write mode, the file depends on the program file (E.g. FILE1-

PGM1 dependency in Figure 4). This helps to establish a transitive dependency between

programs that write to a file and those that read it (PGM2 is transitively dependent on

PGM1). Both control files and data files can be represented using the same model.

16

JCL 'DD' statements are used to identify files that the program will reference. The

function of a DD Statement is to form a logical connection between an actual file and an

identifier a COBOL program will use to refer to that file. The file based dependency can

also be associated with the JCLs instead of the source without any change in the impact

analysis. However for the scope of this paper the former approach is taken.

Source - Database Dependencies

 As with source programs and files, dependencies also exist between the programs

and databases. COBOL uses EXEC SQL statement to embed SQL queries into the source

programs. Similar to files, tables can be read from or written to. From the way tables are

accessed in a program a dependency can be established. Update, insert or delete queries

are written to the database making the table dependent on the program. Select queries

make the program dependent on the database.

However, a program might not use all the attributes from the table. The dependency

has to be classified into two types. One dependency when the program accesses all

attributes from the table using a ‘*’ in the SQL statement, in which case the program is

dependent on the entire table (E.g. TABLE2-PGM4 dependency in Figure 4). Any

change in the structure of the table would affect these programs. Other dependency arises

when the program accesses limited attributes from the table. Such dependency relations

have to be maintained at the attribute level (E.g. the dependency between ATTR1 and

PGM2 in Figure 4).

Stored procedures can be treated as programs that have SQL statements to

manipulate the DB, and hence this creates a source to DB dependency. Source to Source

17

dependencies would exist between the calling program and the stored procedures. DDL

queries do not create any dependencies as they are not executed along with the

transactions in the system. Hence, execution of DDLs is treated as changes to the

database and impact analysis is carried out on the affected tables and attributes as

discussed later in Chapter 3.

JCL – Source Dependencies

JCLs are used to run COBOL programs in batch mode. They contain steps that

execute PROCs or programs and report the return code of the execution indicating if the

job has failed or passed. JCLs are dependent on a program if in any step they are

executing that program (E.g. BATCH1 – PGM2 dependency in Figure 4). If a PROC is

executed in any step the JCL is then dependent on the PROC, and in turn the PROCs are

dependent on the programs they execute.

Screen – Source Dependencies

Screens are like programs, but can be executed online as a transaction. They can be

treated as a program and have same dependencies as a program would have (E.g.

SCREEN1 - PGM1 dependency in Figure 4).

Copybook - Copybook Dependencies

COPY statements can exist within copybooks too. If a copybook A is copied by

another copybook B, all variables in B using variables in A are dependent on the used

variables. To preserve the variable level granularity in copybooks, the dependency is

mapped between the variable’s definition and declaration.

18

There are several other types of assets that can exist in the mainframe system, for

e.g. report writer programs, assembler programs etc. These assets can be categorized into

types that were discussed and dependency rules of that type can be applied to them. In

general, i) if an asset A uses code from or transfers control to an asset B, then A is said to

be dependent on B, ii) If an asset A writes data into an asset B, then B is dependent on A.

On the other hand, if an asset A reads data from an asset B, then A is said to be dependent

on B. Figure 3 depicts dependencies for an interface (called run unit) from run unit

diagram in RAA.

To any mainframe system, batch jobs and online transactions act as interfaces. These

batch jobs and transactions give a certain output based on the input provided. The output

can be written to the screen of the transaction or to a file or database changing the state of

the system. System test cases are run against all these interfaces to poll for the outputs

corresponding to the inputs to be tested (see Figure 4).

19

Figure 3. Dependencies from run unit diagram in IBM RAA.

20

CPY1CPY1

PGM 1PGM 1

FILE 1FILE 1

TABLE1

TABLE2

SCREEN 1SCREEN 1

BATCH 1BATCH 1

JCL/PROG

PROG/DS RD

DB/PROG

SCREEN/PROG

CPY2CPY2 CPY3CPY3

PGM 2PGM 2

PGM 3PGM 3
PGM 4PGM 4

BATCH 2BATCH 2

JCL/PROG
PROG/PROG

DB/PROG RD

DS/PROG

PROG/CPY

PROG/CPY

PROG/CPY

Interfaces to the system. Tests

are written on these.
VAR

1

VAR

2

VAR

3

VAR

4

VAR

5

VAR

6

VAR

7

PROG/CPY

ATTR

1

ATTR

2

ATTR

1

ATTR

2

Figure 4. A typical mainframe system with all dependencies

2
0

21

CPY1CPY1

PGM 1PGM 1

FILE 1FILE 1

TABLE1

TABLE2

SCREEN 1SCREEN 1

BATCH 1BATCH 1

CPY2CPY2 CPY3CPY3

PGM 2PGM 2

PGM 3PGM 3
PGM 4PGM 4

BATCH 2BATCH 2

VAR

1

VAR

2
VAR

3

VAR

4

VAR

5

VAR

6

VAR

7

ATTR

1

ATTR

2

ATTR

1

ATTR

2

System tests

written against

these interfaces is

tested

Figure 5. The impact of change in VAR3. Starting from the asset changed graph walk is done on the inverse of the graphs

and the affected interfaces are filtered

2
1

22

Chapter 3: Filtering Interfaces and Tests

With the static analysis of all the assets in the system a system dependence graph G

is created. Changes to the system are then analyzed to filter any impacts on the interfaces.

This is done by graph traversal starting from the seed/s of change/s to the interfaces on

the inverse (G
-1

) of the graph G. The interfaces touched by the graph traversal will form

the set of affected interfaces. The system tests associated with the interfaces are filtered

as part of test selection (see Figure 5). These tests are run on the updated system to check

for compliance in a test environment. Prior to the filtering, the test cases must be updated

to reflect the change. Once all the tests pass, the graph G is updated according to the

changes made to the assets.

Addition of code to existing programs can be dealt as modification of that asset, and

the graph traversals can be started from the changed asset as a seed. However, new assets

created (or new attributes for tables or new variables for copybooks), does not affect the

system unless they are used. E.g. If a new program A is added, it will not affect the

system unless it is called by some other programs, JCLs or PROCs. The assets where the

new additions are used form the seeds of change for graph traversal and the affected

interfaces are then filtered.

Like the firewall technique in [24], ID-RTS filters out test cases based on the

modules that interact with the change. However, instead of filtering out integration tests

23

on the first level modules that interact with the change, ID-RTS filters the system test

cases at the entry points to the system that directly or transitively interact with the

change. With mainframes, at least with the system in test, the unit or integration test cases

are not properly defined as these test techniques were not widespread at the beginning of

mainframe development. Moreover, programs cannot be tested standalone without a

batch job submitting them. Today, mainframes are being tested against the designed

system tests which mandate the behavior of the system. If tests and techniques enable

fine grained tests (like unit or integration), ID-RTS can be extended to analyze impact on

the assets that have tests available for and select test cases accordingly.

24

Chapter 4: Analysis

Harrold et al. in [5] have given analyzed metrics to gauge the effectiveness of any

RTS techniques. They have defined a test t to be modification revealing if the output of

the case differ in the original (P) and the modified system (P´). The metrics identified

were Inclusiveness, Precision, Efficiency and Generality.

Inclusiveness

Inclusiveness measures the extent to which an RTS technique selects modification-

revealing tests from the initial regression test suite T. Let us consider an initial test suite

T containing n modification-revealing test cases. If an RTS technique M selects m of

these test cases, the inclusiveness of the RTS technique M with respect to P, P´ and T is

expressed as (m/n) ∗ 100.

A safe RTS technique selects all those test cases from the initial test suite that are

modification-revealing. Therefore, an RTS technique is said to be safe, iff it is 100%

inclusive.

Harrold et al. in [5] have also defined a test to be modification-traversing. A test t is

modification-traversing if it executes all the modified and deleted code, irrespective of

the output given. A set of modification-traversing tests is the superset of modification-

revealing tests (see Figure 6). The ID-RTS approach filters out test cases that traverse

more than the modified assets, giving 100% inclusiveness and safety.

25

Figure 6. Modification-revealing and modification-traversing tests relation

The primary aim of ID-RTS is to be safe, as the approach plans to replace the

existing retest-all techniques. The rationale behind any retest-all technique is to gain

confidence on the compliance of the system behavior. ID-RTS works on this requirement

and identifies the assets that are impacted by the change and includes all the tests

associated with the impacted assets. Like the firewall technique [24], ID-RTS needs the

system tests to be reliable. However, for mainframes, they are reliable because the same

tests are used to guarantee compliance with the existing retest-all approach.

The nature of the retest all system tests however, is not designed to unit test any

particular asset within the system. There are interfaces to a system in the form of online

transactions and batch jobs that call other programs inside the system and use other

assets, the tests that run after any change are run on the interfaces and poll for an output.

ID-RTS is aimed at identifying the interfaces that are ‘infected’ by the change in any

26

asset within the system, and testing all the test cases associated with the affected

interfaces.

Precision

 Precision measures the extent to which an RTS algorithm ignores test cases that are

non-modification-revealing. Suppose T contains n tests that are non-modification-

revealing for P and P´ and suppose M omits m of these tests. The precision of M

relative to P, P´ and T is given by the expression (m/n) ∗ 100 or 100% if n = 0.

As explained earlier, in any system test the test suite contains only the tests that run

at the entry points (interfaces) of the system. In evaluating the precision of ID-RTS, there

would be no unit tests in T. Even with that said, due to the coarse inter-procedural level

filtering that ID-RTS employs, it is not precise. Also, Rothermel in [25], has shown that

the savings acquired from fine grained intra-procedural techniques may not justify the

costs associated. With the system under test, which is a typical mainframe system, the

large number of programs would have even higher costs for using intra-procedural

techniques.

Also, precision varies with the modularity of the system. If the system is designed

such that there exists more number of small programs, copybooks and transactions, inter-

procedural test selection can also be fine grained. As the impact is flooded from the seed,

only programs that would indeed by affected by the change are filtered, eventually

selecting only the modification-revealing interfaces. Coding best practices can be

established to have modularity in the system, but the costs of changing the existing code

base vs. the cost of testing extra test cases is highly debatable.

27

Efficiency

 Efficiency measures the time and space requirements of the RTS algorithm. ID-RTS

finds the impact on the interfaces of the system using graph traversals on the inverse of

the system dependence graph G. For a strongly connected graph such as G, the time

complexity for graph traversal is of the order of the number of edges O (E). As assets

such as copybooks and database tables can have multiple nodes in the graph, graph

traversal on the system dependence graph runs in pseudo-polynomial time O ((NP)
 2

),

where N is the average number of nodes per asset P. However not all types of assets are

interconnected; DB entries, JCLs (excluding PROCs), files and copybooks (assuming

there is no nesting) would not have any dependencies within their asset type and hence no

edges amongst them in the graph exist. Let P denote programs and PROCs, V denote sum

of all data variables in all copybooks (a record structure counts as a single variable), A

denote all database table attributes, F denote files, J denote JCLs and screens, the

complexity can be given as O(P
2
 + VP + AP + JP + FP) (see Figure 7). The space

complexity is also of the same order.

28

PGM 1PGM 1

BATCH 1BATCH 1

PGM 3PGM 3 PGM PPGM P

BATCH 2BATCH 2

Var

1
Var2

Var

3

Attr

1

Attr

2

Attr

A

PGM 1PGM 1

P2

BATCH JBATCH J

Var

V

FILE 1FILE 1 FILE 2FILE 2 FILE FFILE F

PV

JP
2AP

2FP

V Variables

A
 attrib

u
tes

F Files

J B
atch

 jo
b

s an
d

 S
creen

s

P Programs

Figure 7. The analysis of complexity of impact analysis

Generality

 Generality is the ability of the technique to work in various situations. ID-RTS was

designed to work only in the mainframe environment and cannot be generically applied

to other systems as is. However, it provides a basis for designing a framework for other

business-oriented systems. Business-oriented systems similar to COBOL system have an

29

integrated software solution that incorporates the key business functions of the

organization. They consist of the frontend screens/transactions and batch jobs which act

as the frontend, a series of programs to process the request and change the database tables

or files in the backend and populate the result on the screen or return the code of the

execution to the batch job.

30

Chapter 5: Experimental Setup

To calculate the savings from using ID-RTS, a real world mainframe application was

analyzed for dependencies and impacts of changes. IBM’s Rational Asset Analyzer

(RAA), a static analysis tool available for mainframes was used. RAA statically analyzes

all the assets imported into the RAA server and establishes dependencies among them as

described earlier. From the dependencies established, it also analyzes impact of a change

in source programs, data elements in copybooks, other files and DB2 DB.

The test environment for the application is a dedicated test environment with real

world data replicated from the production system. The testing on mainframes has been

expensive also because of the high costs of clock cycles used by testing processes on

mainframes. These costs can be reduced by using virtual System z environments such as

Rational Development and Test (RDnT) for System z. Apart from saving the clock cycles

by running virtually on a desktop or server, it also adds to the system availability for

mainframe application development and testing.

 The system test cases for the application test the interfaces of the system. For batch

jobs the output in DB tables or files is monitored for expected output. For online

transactions the output is monitored on the screen itself, optionally the contents of the file

or DB can be monitored. As only the interfaces are tested in systems tests, for the

experiment, the impacted interfaces were filtered for each change, instead of filtering the

31

actual test cases. This also assumes that tests are evenly distributed across the interfaces.

Also, as CICS screens and transactions were not imported into RAA for the application

under test, only batch jobs were considered. But this does not affect the generality of the

research, for RAA analyzes impact of a change on all assets of the system including

screens and transactions.

The nature of the applications under test is similar to the depiction in Figure 4. App

A has around 6,707 assets in all containing 2,287 source programs, 1,553 JCL batch jobs

and 1,823 copybooks. The rest form the control and data files. This excludes the CICS

transactions and screens that the application might use. As this application does not use

any database, we tested another application, App B, for impact of database changes. App

B has 48,210 assets in all with 109 DB2 database tables and 5,393 JCL batch jobs.

32

Chapter 6: Results

We ran the impact analysis of last two production changes of each asset type, in

order to gauge the efficiency of ID-RTS in real world scenarios. We then filtered out the

affected batch jobs from the impact analysis report and calculated the mean impact by

type as shown in Table 1 and Figure 8.

Asset Type Mean Impact by Type (%)

JCLs 0.06

Database 0.93

Files 43.59

Copybooks 65.54

Source Programs 65.95

Table 1 Mean Impact by type (last 2 changes of each)

Figure 8. Mean Impact by Type as % of interfaces impacted

0.06 0.93

43.59

65.54 65.95

0

10

20

30

40

50

60

70

80

90

100

JCL Database Files Copybooks Source

Programs

%
 I

m
p

a
ct

ed
 I

n
te

rf
a

ce
s

Mean Impact by Type

Mean Impact by Type

33

The order of the impacts amongst the asset types was found to be as expected, with

the exception of copybooks and source programs. Contrary to our expectations, the

impact of the copybook changes was found to be less than that of source programs,

however with a close difference. This could be attributed to the nature of assets that were

changed; the source programs changed were called by more assets than the programs that

used the changed copybooks. This outcome is highly peculiar and moreover, we expected

the difference in impacts of changes in copybooks and source programs to be minimal,

which was exemplified.

Between files and databases, the outcome of the order was in compliance with the

expectations. The order could vary from application to application. For applications

under test, the DB2 database tables were introduced in App B much later than the usage

of files in App A, accounting to files being used significantly more than the databases.

The impact of change is proportional.

The time required for impact analysis varied by asset type, with copybooks and

source programs taking the longest, approximately 2 hours on an average, files took 1

hour and 10 minutes and database tables took 10 minutes. JCL impact analysis is not

supported in RAA as there are no dependencies on them. For the purpose of the

experiment we assumed the impact of a JCL batch job change on interfaces as 1 to

account for the same JCL changed. RAA’s impact analysis gives a thorough report of all

impacted assets, not just the interfaces. This analysis adds to the total time required for

impact analysis. Tools that would solely report the impacted interfaces would have

significant time savings.

34

To calculate the savings from ID-RTS, we created a three mix of asset changes (in

%) in an iteration. Table 2 describes the three mixes along with the impacted interfaces;

the savings from using ID-RTS is shown in the Figure 9. As seen from the results, the

impacted interfaces and hence savings change with the combination changes. More

programs and copybooks reduce the savings achieved, as these assets impacted the

interfaces more than the rest of the assets.

Mixes in % Comb 1 Comb 2 Comb 3

Source Programs 20 40 50

Files 20 10 5

Copybooks 20 30 30

JCLs/Screens 20 10 10

Database 20 10 5

Total Interfaces per change 100 100 100

Impacted interfaces per change 35.214 50.5 54.869

%Savings from ID-RTS 64.786 49.5 45.131

Table 2. Three asset change mixes and their impacts

35

Figure 9. Three asset change combinations (from Table 2) and their impacts

To calculate the actual savings from ID-RTS, we first recorded changes for the

period of March 2012 to February 2013 by asset type. The findings are tabulated in Table

3 (also Figure 10 and Figure 11). We then estimated impacts on App A by taking

weighted mean of MIT with respect to the frequency of change. The results are shown in

Table 4 and Figure 12. As, in all iterations programs were changed the most, the

impacted interfaces were around 65% of the total 1,554 interfaces. As per ID-RTS, these

are the interfaces to be tested while the retest-all technique tests all of them. For the entire

period the average impacted interfaces per change were 1,023.3 (65.85% of the 1,554

interfaces). Thus the ID-RTS technique can save approximately 34% of testing efforts.

100 100 100

35.214

50.5
54.869

0

10

20

30

40

50

60

70

80

90

100

Comb 1 Comb 2 Comb 3

%

Savings with different combinations

Source Programs Files

Copybooks JCLs/Screens

Database Total Interfaces per change

Impacted interfaces per change

36

This result can vary by the nature of dependencies within the application and the

types of changes that are done. If for App A, there are more changes to DB, files and

JCLs than copybooks and programs the savings would be proportionally more. Also, the

impact might change in assets of the same type, depending on the nature of dependencies.

E.g. Program A has more dependencies than program B, the impact of change of A would

be proportionally more. This experiment was conducted to find out if the impact of actual

production changes span to a subset of the system and calculate savings ID-RTS can

give. Also, a learning phase can be planned, where the impacts of production changes are

monitored to gauge the inter-dependency among the assets of the system. If all the

changes impact significant percentage of interfaces, the retest-all technique can be

employed for that system, saving the time required for impact analysis.

37

Figure 10. Assets changed over a period of one year

0

100

200

300

400

500

600

700

800

900

1000

Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 Jan-13 Feb-13

Assests Changed by Time

Total Source Programs Files Copybooks JCLs/Screens Database

3
7

38

Figure 11. Assets changed by type over a period of one year

0

500

1000

1500

2000

2500

3000

3500

4000

Source Programs Files Copybooks JCLs/Screens Database

T
o

ta
l

A
ss

es
ts

 c
h

a
n

g
ed

 f
ro

m
 M

a
r

1
2

 t
o

 F
eb

 1
3

Type

Assests changed by Type

3
8

39

 Asset Type\Month Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 Feb-13 Total

Source Programs 877 297 178 324 390 152 117 656 445 127 141 3704

Files 5 0 0 1 2 0 0 4 0 0 3 15

Copybooks 32 20 0 12 6 0 0 23 21 3 13 130

JCLs/Screens 0 0 0 0 0 0 0 0 0 0 0 0

Database 0 0 0 0 0 0 0 0 0 0 0 0

Total 914 317 178 337 398 152 117 683 466 130 157 3849

Table 3. Assets changed over a period of one year

Table 4. Tested Interfaces by ID-RTS vs. retest all over a period of one year

Tested Interfaces per

change
Mar-

12
Apr-

12
May-

12
Jun-

12
Jul-

12
Aug-

12
Sep-

12
Oct-

12
Nov-

12
Dec-

12
Feb-

13
Total

Average

ID-RTS 1022.7
1024.

5 1024.9
1023.

6
1023.

0
1024.

9
1024.

9
1022.

6
1024.

6
1024.

7
1017.

7 1023.3

Retest-all 1554 1554 1554 1554 1554 1554 1554 1554 1554 1554 1554 1554

3
9

40

Figure 12. Interfaces tested by ID-RTS vs. retest-all over a period of one year

1022.7 1024.5 1024.9 1023.6 1023.0 1024.9 1024.9 1022.6 1024.6 1024.7 1017.7 1023.3

1554 1554 1554 1554 1554 1554 1554 1554 1554 1554 1554 1554

1000.0

1100.0

1200.0

1300.0

1400.0

1500.0

1600.0

Mar-12 Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec-12 Feb-13 Total

In
te

rf
a

ce
s

te
st

e
d

 p
er

 c
h

a
n

g
e

Savings per change

Retest of all ID-RTS

4
0

41

Chapter 7: Limitations

ID-RTS is a static code analysis based RTS technique. It cannot establish dynamic

dependencies amongst assets. Thus, if a dynamic call is made by a source program to

another source program using its name populated in a variable at run-time, the

dependency amongst them cannot be established by static code analysis. However, such

practices also affect the thorough analysis of program flow in the analysis tools. Hence,

coding best practices must be established to prevent dynamic calls.

Also, the technique relies heavily on performance of the analysis tools. IBM’s RAA

as used in the experiment requires considerable amount of time to import assets into its

DB, tokenize them and establish dependencies (E.g. The importing of application with

48,210 assets required 60 man hours of work). The time required is proportional to the

number of assets in the system. However, the importing has to be done only once in the

system lifetime; the changed assets can be specifically imported using the incremental

import techniques during the system maintenance.

System tests for mainframes were designed to test the system with a black-box

approach i.e. the tests are unaware of the code or the changes that were done. ID-RTS

replaces system tests with a code-aware technique. The system testers have to be aware

of the code changes done to the system, then analyze impacts of changes and run tests

accordingly. However, as seen in the results, significant savings can be achieved by

42

analyzing the changed code and its impact, which justifies the use of a code-aware testing

technique.

43

Chapter 8: Conclusion and Future Work

 Impact-Driven Regression Test Selection (ID-RTS) - a control flow and data

dependence based, intra-procedural regression test selection technique designed for

mainframes - can be used to replace the retest-all system test technique. With the

exception of dynamic calls in COBOL programs, both data and control dependencies in a

system can be drawn out in a system dependence graph using static code analysis.

The savings are achieved by executing only those tests from the system test case

pool that test the impacted interfaces of the system. The impact analysis is done by graph

traversal on the inverse of the system dependence graph, starting from the asset that was

changed and filtering the affected interfaces. The impact of a change spans to a subset of

the system, providing significant savings in the test cycle times. Modern analysis tools

such as IBM’s RAA can be used to establish dependencies among assets of the system

and analyze impact of a change.

ID-RTS though not precise, is a safe RTS technique as it filters all test cases that

walk through the modification of the system. The safety of the technique also depends on

the reliability of the system test cases; and as these tests in the as-is retest-all technique

are used to assure compliance, these test cases are reliable.

As future work, ID-RTS and the various studies on the object oriented RTS

techniques can be integrated to design the framework for object oriented COBOL. Also,

44

the current framework can be extended to include other business-oriented system such as

SAP.

45

References

[1] R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,

New York, 2002.

[2] H. Leung and L. White. Insights into regression testing. In Proceedings of the

Conference on Software Maintenance, pages 60–69,

[3] Weiderman, Nelson H.; Bergey, John K.; Smith, Dennis B.; & Tilley, Scott R.

Approaches to Legacy System Evolution (CMU/SEI-97-TR-014). Pittsburgh, Pa.:

Software Engineering.

[4] G. Rothermel and M. Harrold. Analyzing regression test selection techniques.

IEEE Transactions on Software Engineering, 22(8):529–551, August 1996.

[5] G. Rothermel, R. H. Untch, and M. J. Harrold, ”Prioritizing test cases for

regression testing,” In IEEE Trans. on Software Eng. vol. 27, No. 10, pp. 929–

948, October 2001.

[6] M. J. Harrold, R. Gupta, and M. L. Soffa, ”A methodology for controlling the

size of test suite,” In ACM Trans. on Software Eng. and Methodology (TOSEM),

NY USA, pp. 270–285, 1993.

[7] M. Hennessy, and J. F. Power, ”An analysis of rule coverage as a criterion

in generating minimal test suites for grammar based software,” In Proceedings of

46

the 20th IEEE/ACM International Conference on Automated Software

Engineering (ASE’05), Long Beach, CA, USA, pp. 104–113, November 2005.

[8] A. Kandel, P. Saraph, and M. Last, “Test cases generation and reduction by

automated input-output analysis,” In Proceedings of 2003 IEEE International

Conference on Systems, Man and Cybernetics (ICSMC’3), Washington, D.C.,

October, 2003.

[9] B. Vaysburg, L. H. Tahat, and B. Korel, “Dependence analysis in reduction of

requirement based test suites,” In Proceedings of the 2002 ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA’02), Roma

Italy, pp. 107–111, 2002.

[10] J. A. Jones, and M. J. Harrold, ”Test-suite reduction and prioritization for

modified condition/decision coverage,” In IEEE Trans. on Software Engineering

(TSE’03), Vol. 29, No. 3, pp. 195–209, March 2003.

[11] D. Jeffrey, and N. Gupta, ”Test suite reduction with selective redundancy,” In

Proceedings of the 21st IEEE International Conference on Software Maintenance

(ICSM’05), Budapest, Hungary, pp 549–558, September 2005.

[12] S. R. Khan, I. Rahman, S. R. Malik “The Impact of Test Case Reduction and

Prioritization on Software Testing Effectiveness“ in International Conference on

Emerging Technologies 2009.

[13] G. Rothermel and M. Harrold. Selecting tests and identifying test coverage

requirements for modified software. In Proceedings of the International

Symposium on Software Testing and Analysis, August 1994.

47

[14] Y. Chen, R. Probert, and D. Sims. Specification based regression test selection

with risk analysis. In CASCON ’02: Proceedings of the 2002 conference of the

Centre for Advanced Studies on Collaborative research, 2002.

[15] P. Chittimalli and M. Harrold. Regression test selection on system requirements.

In ISEC ’08: Proceedings of the 1st conference on India software engineering

conference, 2008.

[16] S. Biswas, R. Mall, M. Satpathy and S. Sukumaran. Regression Test Selection

Techniques: A Survey. Informatica. 35(3):289-321, October 2011.

[17] M. Harrold and M. Soffa. An incremental approach o unit testing during

maintenance. In Proceedings of the International Conference on Software

Maintenance, pages 362–367, October 1988.

[18] A. Taha, S. Thebaut, and S. Liu. An approach tosoftware fault localization and

revalidation based on incremental data flow analysis. In Proceedings of the 13th

Annual International Computer Software and Applications Conference, pages

527–534, September 1989.

[19] F. Vokolos and P. Frankl. Pythia: A regression test selection tool based on textual

differencing. In Proceedings of the 3rd International Conference on Reliability,

Quality & Safety of Software-Intensive Systems (ENCRESS’ 97), pages 3–21,

May 1997.

[20] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its

use in optimization. ACM Transactions on Programming Languages and Systems,

9(3):319–349, July 1987.

48

[21] J. Laski and W. Szermer. Identification of program modifications and its

applications in software maintenance. In Proceedings of the Conference on

Software Maintenance, pages 282–290, November 1992.

[22] G. Rothermel and M. Harrold. A safe, efficient regression test selection technique.

ACM Transactions on Software Engineering and Methodology, 6(2):173–210,

April 1997.

[23] H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental regression testing.

In IEEE International Conference on Software Maintenance, pages 348–357,

1993.

[24] H. Leung and L. White. A study of integration testing and software regression at

the integration level. In Proceedings of the Conference on Software Maintenance,

pages 290–300, November 1990.

[25] G. Rothermel, "Efficient, Effective Regression Testing Using Safe Test Selection

Techniques," PhD dissertation, Clemson Univ., May 1996.

[26] Norman Wilde. Understanding Program Dependencies. SEI-CM. August 1990.

[27] J. Highsmith and M. Fowler. The Agile Manifesto. Software Development

Magazine, 9(8), 29–30, 2001.

[28] Keren, A.; Hazzan, O.; Dubinsky, Y. Agile software testing in a large-scale

project. In Software, IEEE, July-Aug. 2006.

