Skip to main content

Towards Automatic Ontology Alignmentfor Enriching Sensor Data Analysis

  • Conference paper
  • 765 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 415))

Abstract

In this work ontology alignment is used to align an ontology comprising high level knowledge to a structure representing the results of low-level sensor data classification. To resolve inherent uncertainties from the data driven classifier, an ontology about application domain is aligned to the classifier output and the result is recommendation system able to suggest a course of action that will resolve the uncertainty. This work is instantiated in a medical application domain where signals from an electronic nose are classified into different bacteria types. In case of misclassifications resulting from the data driven classifier, the alignment to an ontology representing traditional microbiology tests suggests a subset of tests most relevant to use. The result is a hybrid classification system (electronic nose and traditional testing) that automatically exploits domain knowledge in the identification process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alirezaie, M., Loutfi, A.: Ontology Alignment for Classification of Low Level Sensor Data. In: Proceedings of 4th KEOD International Conference on Knowledge Engineering and Ontology Development, pp. 89–97. Springer (2012)

    Google Scholar 

  2. Salvadores, M., Horridge, M., Alexander, P.R., Fergerson, R.W., Musen, M.A., Noy, N.F.: Using SPARQL to Query BioPortal Ontologies and Metadata. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 180–195. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Zhang, J., Silvescu, A., Honavar, V.: Ontology-Driven Induction of Decision Trees at Multiple Levels of Abstraction. In: Koenig, S., Holte, R. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 316–323. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bouza, A., Reif, G., Bernstein, A., Gall, H.: SemTree: Ontology-Based Decision Tree Algorithm for Recommender Systems. In: International Semantic Web Conference (Posters & Demos) (2008)

    Google Scholar 

  5. Kong, H., Hwang, M., Kim, P.: Design of the automatic ontology building system about the specific domain knowledge. 8th ICACT International Conference on Advanced Communication Technology, International Symposium on High Performance Distributed Computing (2006)

    Google Scholar 

  6. Jakulin, A., Mladenić, D.: Ontology Grounding. In: Proceedings of 8th International Multi-Conference Information Society, pp. 170–173 (2005)

    Google Scholar 

  7. Bedini, I., Nguyen, B.: Automatic Ontology Generation: State of the Art. Technical report, University of Versailles (2007)

    Google Scholar 

  8. Gantz, J.F., Chute, C., Manfrediz, A., Minton, S., Reinsel, D., Schlichting, W., Toncheva, A.: The diverse and exploding digital universe: An updated forecast of worldwide information growth through 2011. Technical report, emc, IDC (2008)

    Google Scholar 

  9. Längkvist, M., Loutfi, A.: Unsupervised feature learning for electronic nose data applied to bacteria identification in blood. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  10. Loutfi, A., Coradeschi, S., Saffiotti, A.: Maintaining Coherent Perceptual Information using Anchoring. In: The 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1477–1482 (2005)

    Google Scholar 

  11. Trincavelli, M., Coradeschi, S., Loutfi, A., Söderquist, B., Thunberg, P.: Direct identification of bacteria in blood culture samples using an electronic nose. IEEE Trans. Biomedical Engineering 57 (2010)

    Google Scholar 

  12. Price, C., Spackman, K.: SNOMED clinical terms. British Journal of Healthcare Computing & Information Management 17(3), 27–31 (2000)

    Google Scholar 

  13. Jaro, M.: Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida. Journal of the American Statistical Society 84, 414–420 (1989)

    Article  Google Scholar 

  14. Hlaoui, A.: A new algorithm for inexact graph matching. Object recognition supported by user interaction for service robots, vol. 4, pp. 180–183 (2002)

    Google Scholar 

  15. Melchert, J., Coradeschi, S., Loutfi, A.: Knowledge Representation and Reasoning for Perceptual Anchoring. Tools with Artificial Intelligence 1, 129–136 (2007)

    Google Scholar 

  16. Harnad, S.: The Symbol Grounding Problem. Physica D: Nonlinear Phenomena 42, 335–346 (1990)

    Article  Google Scholar 

  17. Sossai, C., Bison, P., Chemello, G.: Fusion of symbolic knowledge and uncertain information in robotics. Int. J. Intell. Syst. 16, 1299–1320 (2001)

    Article  MATH  Google Scholar 

  18. Chella, A., Frixione, M., Gaglio, S.: Anchoring symbols to conceptual spaces: the case of dynamic scenarios. Robotics and Autonomous Systems 43, 175–188 (2003)

    Article  Google Scholar 

  19. Fiorini, S.R., Abel, M., Scherer, C.M.S.: An approach for grounding ontologies in raw data using foundational ontology. In: Information Systems. Elsevier (2012)

    Google Scholar 

  20. Quinlan, R.: C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning), 1st edn. Morgan Kaufmann (1992)

    Google Scholar 

  21. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer (2006)

    Google Scholar 

  22. Seltmann, G., Holst, O.: The Bacterial Cell Wall. Springer (2002)

    Google Scholar 

  23. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap. Springer (2007)

    Google Scholar 

  24. Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of machine olfaction: electronic nose technology. Wiley-VCH (2003)

    Google Scholar 

  25. Joshi, R., Sanderson, A.C.: Multisensor Fusion: A Minimal Representation Framework. Series in Intelligent Control and Intelligent Automation. World Scientific (1999)

    Google Scholar 

  26. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)

    Google Scholar 

  27. A national clinical and anatomic pathology reference laboratory (2006), http://www.aruplab.com

  28. The BioPortal Metadata Ontology (2012), http://www.aruplab.com

  29. Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E.J., Vlachos, M., Das, G.: Mining Time Series Data. In: Data Mining and Knowledge Discovery Handbook, pp. 1049–1077 (2010)

    Google Scholar 

  30. Moldovan, D., Girju, R.: Domain-Specific Knowledge Acquisition and Classification using WordNet (2000)

    Google Scholar 

  31. Jakulin, A., Mladenić, D.: Ontology Grounding. In: SIKDD at Multiconference IS (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alirezaie, M., Loutfi, A. (2013). Towards Automatic Ontology Alignmentfor Enriching Sensor Data Analysis. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2012. Communications in Computer and Information Science, vol 415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54105-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54105-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54104-9

  • Online ISBN: 978-3-642-54105-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics