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Abstract. Reasoning about algebraic data types and functions that op-
erate over these data types is an important problem for a large variety of
applications. In this paper, we present a decision procedure for reasoning
about data types using abstractions that are provided by catamorphisms:
fold functions that map instances of algebraic data types into values in
a decidable domain. We show that the procedure is sound and complete
for a class of monotonic catamorphisms.
Our work extends a previous decision procedure that solves formulas in-
volving algebraic data types via successive unrollings of catamorphism
functions. First, we propose the categories of monotonic catamorphisms
and associative-commutative catamorphisms, which we argue provide
a better formal foundation than previous categorizations of catamor-
phisms. We use monotonic catamorphisms to fix an incompleteness in
the previous unrolling algorithm (and associated proof). We then use
these notions to address two open problems from previous work: (1) we
provide a bound on the number of unrollings necessary for completeness,
showing that it is exponentially small with respect to formula size for
associative-commutative catamorphisms, and (2) we demonstrate that
associative-commutative catamorphisms can be combined within a for-
mula whilst preserving completeness.

1 Introduction

Decision procedures have been a fertile area of research in recent years, with
several advances in the breadth of theories that can be decided and the speed
with which substantial problems can be solved. When coupled with SMT solvers,
these procedures can be combined and used to solve complex formulas relevant
to software and hardware verification. An important stream of research has fo-
cused on decision procedures for algebraic data types. Algebraic data types are
important for a wide variety of problems: they provide a natural representation
for tree-like structures such as abstract syntax trees and XML documents; in ad-
dition, they are the fundamental representation of recursive data for functional
programming languages.

Algebraic data types provide a significant challenge for decision procedures
since they are recursive and usually unbounded in size. Early approaches focused
on equalities and disequalities over the structure of elements of data types [2,16].
While important, these structural properties are often not expressive enough



to describe interesting properties involving the data stored in the data type.
Instead, we often are interested in making statements both about the structure
and contents of data within a data type. For example, one might want to express
that all integers stored within a tree are positive or that the set of elements in
a list does not contain a particular value.

In [23], Suter et al. described a parametric decision procedure for reasoning
about algebraic data types using catamorphism (fold) functions. In the proce-
dure, catamorphisms describe abstract views of the data type that can then be
reasoned about in formulas. For example, suppose that we have a binary tree
data type with functions to add and remove elements from the tree, as well as
check whether an element was stored in the tree. Given a catamorphism setOf
that computes the set of elements stored in the tree, we could describe a speci-
fication for an ‘add’ function as:

setOf
(
add(e, t)

)
= {e} ∪ setOf(t)

where setOf can be defined in an ML-like language as:

fun setOf t = case t of Leaf ⇒ ∅ |
Node(l, e, r) ⇒ setOf(l) ∪ {e} ∪ setOf(r)

Formulas of this sort can be decided by the algorithm in [23]. In fact, the decision
procedure in [23] allows a wide range of problems to be addressed, because it
is parametric in several dimensions: (1) the structure of the data type, (2) the
elements stored in the data type, (3) the collection type that is the codomain of
the catamorphism, and (4) the behavior of the catamorphism itself. Thus, it is
possible to solve a variety of interesting problems, including:

– reasoning about the contents of XML messages,
– determining correctness of functional implementations of data types, includ-

ing queues, maps, binary trees, and red-black trees.
– reasoning about structure-manipulating functions for data types, such as

sort and reverse.
– computing bound variables in abstract syntax trees to support reasoning

over operational semantics and type systems, and
– reasoning about simplifications and transformations of propositional logic.

The first class of problems is especially important for guards, devices that
mediate information sharing between security domains according to a specified
policy. Typical guard operations include reading field values in a packet, chang-
ing fields in a packet, transforming a packet by adding new fields, dropping
fields from a packet, constructing audit messages, and removing a packet from
a stream. We have built automated reasoning tools (described in [9]) based on
the decision procedure to support reasoning over guard applications.

The procedure was proved sound for all catamorphisms and complete for a
class of catamorphisms called sufficiently surjective catamorphisms, which we
will describe in more detail in the remainder of the paper. Unfortunately, the
algorithm in [23] was quite expensive to compute and required a specialized



predicate called Mp to be defined separately for each catamorphism and proved
correct w.r.t. the catamorphism using either a hand-proof or a theorem prover.

In [24], a generalized algorithm for the decision procedure was proposed,
based on unrolling the catamorphism. This algorithm had three significant ad-
vantages over the algorithm in [23]: it was much less expensive to compute, it
did not require the definition of Mp, and it was claimed to be complete for all
sufficiently surjective catamorphisms. Unfortunately, the algorithm in [24] is in
fact not complete for all sufficiently surjective catamorphisms.

In this paper, we slightly modify the procedure of [24] to remove this incom-
pleteness. We then address two open problems with the previous work [24]: (1)
how many catamorphism unrollings are required in order to prove properties us-
ing the decision procedure? and (2) when is it possible to combine catamorphisms
within a formula in a complete way? To address these issues, we introduce two
further notions: monotonic catamorphisms, which describe an alternative for-
mulation to the notion of sufficiently surjective catamorphisms for describing
completeness, and associative-commutative (AC) catamorphisms, which can be
combined within a formula while preserving completeness results. In addition,
these catamorphisms have the property that they require a very small number
of unrollings. This behavior explains some of the empirical success in applying
catamorphism-based approaches on interesting examples from previous papers
[24,9]. In short, the paper consists of the following contributions:

– We propose the notion of monotonic catamorphisms and show that all suf-
ficiently surjective catamorphisms discussed in [23] are monotonic.

– We revise the unrolling-based decision procedure for algebraic data type [24]
using monotonic catamorphisms and formally prove its completeness.

– We propose the notion of AC catamorphisms, a sub-class of monotonic cata-
morphisms, and show that decision procedure for algebraic data types with
AC catamorphisms are combinable while the procedures for algebraic data
types proposed by Suter et al. [23,24] only work with single catamorphisms.

– We solve the open problem of determining the maximum number of un-
rollings with both monotonic and AC catamorphisms.

– We show that AC catamorphisms can be automatically detected.
– We describe an implementation of the approach, called RADA [18], which ac-

cepts formulas in an extended version of the SMT-LIB2 syntax, and demon-
strate it on a range of examples.

The rest of the paper is organized as follows. Section 2 presents some prelimi-
naries about catamorphisms and the parametric logic in [23]. Section 3 discusses
some properties of trees and shapes in the parametric logic. In Section 4, we
propose an unrolling-based decision procedure for algebraic data types. The de-
cision procedure works with monotonic catamorphisms, which are discussed in
Section 5, and the correctness of the algorithm for these catamorphisms is shown
in Section 6. Section 7 presents AC catamorphisms, and the relationship between
different types of catamorphisms is discussed in Section 8. Experimental results
for our approach are shown in Section 9. Section 10 presents related work. Fi-
nally, we conclude the paper with directions for future work in Section 11.



2 Preliminaries

We describe the parametric logic used in the decision procedures for algebraic
data types proposed by Suter et al. [23,24], the definition of catamorphisms, and
the idea of sufficient surjectivity, which describes situations in which the decision
procedures [23,24] were claimed to be complete.

2.1 Parametric Logic

The input to the decision procedures is a formula φ of literals over elements of
tree terms and abstractions produced by a catamorphism. The logic is parametric
in the sense that we assume a data type τ to be reasoned about, an element
theory E containing element types and operations, a catamorphism α that is
used to abstract the data type, and a decidable theory LC of values in a collection
domain C containing terms C generated by the catamorphism function. Fig. 1
shows the syntax of the parametric logic instantiated for binary trees.

T ::= t | Leaf | Node(T,E, T ) | left(T ) | right(T ) Tree terms
C ::= c | α(T ) | TC C-terms
E ::= variables of type E | elem(T ) | TE Expression
FT ::= T = T | T 6= T Tree (in)equations
FC ::= C = C | FC Formula of LC
FE ::= E = E | FE Formula of LE
φ ::=

∧
FT ∧

∧
FC ∧

∧
FE Conjunctions

ψ ::= φ | ¬φ | φ ∨ φ | φ ∧ φ | φ⇒ φ | φ⇔ φ Formulas

Fig. 1. Syntax of the parametric logic. Its semantics can be found in [23].

The syntax of the logic ranges over data type terms T and C-terms of a
decidable collection theory LC . TC and FC are arbitrary terms and formulas in
LC , as are TE and FE in LE . Tree formulas FT describe equalities and disequal-
ities over tree terms. Collection formulas FC and element formulas EC describe
equalities over collection terms C and element terms E, as well as other opera-
tions (FC , FE) allowed by the logic of collections LC and elements LE . E defines
terms in the element types E contained within the branches of the data types. φ
defines conjunctions of (restricted) formulas in the tree and collection theories.
The φ terms are the ones solved by the decision procedures in [23]; these can be
generalized to arbitrary propositional formulas (ψ) through the use of a DPLL
solver [8] that manages the other operators within the formula. Although the
logic and unrolling procedure is parametric with respect to data types, in the
sequel we focus on binary trees to illustrate the concepts and proofs.

2.2 Catamorphisms

Given a tree in the parametric logic, we can map the tree into a value in C using
a catamorphism, which is a fold function of the following format:



α(t) =

{
empty if t = Leaf

combine
(
α(tL), e, α(tR)

)
if t = Node(tL, e, tR)

where empty is an element in C and combine : (C, E , C) → C is a function that
combines a triple of two values in C and an element in E into a value in C.

Table 1. Sufficiently surjective catamorphisms in [23]

Name α(Leaf) α(Node(tL, e, tR)) Example
Set ∅ α(tL) ∪ {e} ∪ α(tR) {1, 2}
Multiset ∅ α(tL) ] {e} ] α(tR) {1, 2}
SizeI 0 α(tL) + 1 + α(tR) 2
Height 0 1 + max{α(tL), α(tR)} 2

List List()
α(tL) @ List(e) @ α(tR) (in-order) (1 2)
List(e) @ α(tL) @ α(tR) (pre-order) (2 1)
α(tL) @ α(tR) @ List(e) (post-order) (1 2)

Some None Some(e) Some(2)
Min None min′{α(tL), e, α(tR)} 1

Sortedness (None, None, true)
(None, None, false) (if tree unsorted)

(1, 2, true)
(min element, max element, true) (if tree sorted)

Catamorphisms from [23] are shown in Table 1. The first column contains
catamorphism names1. The next two columns define α(t) when t is a Leaf and
when it is a Node, respectively. The last column shows examples of the appli-
cation of each catamorphism to Node

(
Node(Leaf, 1, Leaf), 2, Leaf

)
. In the Min

catamorphism, min′ is the same as the usual min function except that min′

ignores None in the list of its arguments, which must contain at least one non-
None value. The Sortedness catamorphism returns a triple containing the min
and max element of the subtree, and true/false depending on whether it is sorted
or not.

Tree shapes: The shape of a tree in the parametric logic is obtained by removing
all element values in the tree.

Definition 1 (Tree shapes). The shape of a tree is defined by constant SLeaf
and constructor SNode( , ) as follows:

shape(t) =

{
SLeaf if t = Leaf

SNode
(
shape(tL), shape(tR)

)
if t = Node(tL, , tR)

Sufficiently surjective catamorphisms: The decision procedures proposed by Suter
et al. [23,24] were claimed to be complete if the catamorphism used in the pro-
cedures is sufficiently surjective [23]. Intuitively, a catamorphism is sufficiently
surjective if the inverse relation of the catamorphism has sufficiently large car-
dinality when tree shapes are larger than some finite bound.

1 SizeI, which maps a tree into its number of internal nodes, was originally named
Size in [23]. We rename the catamorphism to easily distinguish between itself and
function size, which returns the total number of all vertices in a tree, in this paper.



Definition 2 (Sufficient surjectivity). α is sufficiently surjective iff for each
p ∈ N+, there exists, computable as a function of p, (1) a finite set of shapes
Sp and (2) a closed formula Mp in the collection theory such that Mp(c) implies
|α−1(c)| > p , such that Mp

(
α(t)

)
or shape(t) ∈ Sp for every tree term t.

Despite its name, sufficient surjectivity has no surjectivity requirement for
the codomain of α. It only requires a “sufficiently large” number of trees for
values satisfying the condition Mp. Table 1 describes all sufficiently surjective
catamorphisms in [23]. The only catamorphism in [23] not in Table 1 is the Mir-
ror catamorphism; since the cardinality of the inversion function of the cata-
morphism is always 1, the sufficiently surjective condition does not hold for this
catamorphism.

3 Properties of Trees and Shapes in the Parametric Logic

We present some important properties of trees and shapes in the parametric
logic which will play important roles in the subsequent sections of the paper.

3.1 Properties of Trees

Property 1 follows from the syntax of the parametric logic. Properties 2 and 3
are well-known properties of full binary trees [6,19] (i.e., binary trees in which
every internal node has exactly two children).

Property 1 (Type of tree). Any tree in the parametric logic is a full binary tree.

Property 2 (Size). The number of vertices in any tree in the parametric logic is
odd. Also, in a tree t of size 2k + 1 (k ∈ N), we have:

ni(t) = k nl(t) = k + 1

where ni(t) and nl(t) are the number of internal nodes and the number of leaves
in t, respectively.

Property 3 (Size vs. Height). In the parametric logic, the size of a tree of height
h ∈ N must be at least 2h+ 1.

3.2 Properties of Tree Shapes

In this section, we show a special relationship between tree shapes and the well-
known Catalan numbers [22], which will be used to establish some properties of
monotonic and AC catamorphisms in Sections 5 and 7.

Define the size of the shape of a tree to be the size of the tree. Let N̄ be the
set of odd natural numbers. Because of Property 2, the size of a shape is in N̄.
Let ns(s) be the number of tree shapes of size s ∈ N̄ and let Cn, where n ∈ N,
be the n-th Catalan number [22].



Lemma 1. The number of shapes of size s ∈ N̄ is the s−1
2 -th Catalan number:

ns(s) = C s−1
2

Proof. Property 1 implies that tree shapes are also full binary trees. The lemma
follows since the number of full binary trees of size s ∈ N̄ is C s−1

2
[22,13]. ut

Using the expression Cn = 1
n+1

(
2n
n

)
[22], we could easily compute the val-

ues that function ns : N̄ → N+ returns. This function satisfies the monotonic
condition in Lemma 2.

Lemma 2. 1 = ns(1) = ns(3) < ns(5) < ns(7) < ns(9) < . . .

Proof. Provided in [17]. ut

4 Unrolling-based Decision Procedure Revisited

In this section, we restate the unrolling procedure proposed by Suter et al. [24]
and propose a revised unrolling procedure, shown in Algorithms 1 and 2. The
input of both algorithms is a formula φ written in the parametric logic and a
program Π, which contains φ and the definitions of data type τ and catamor-
phism α. The decision procedure works on top of an SMT solver S that supports
theories for τ, E , C, and uninterpreted functions. Note that the only part of the
parametric logic that is not inherently supported by S is the applications of the
catamorphism. The main idea of the decision procedure is to approximate the
behavior of the catamorphism by repeatedly unrolling it and treating the calls
to the not-yet-unrolled catamorphism instances at the leaves as calls to an un-
interpreted function. However, the uninterpreted function can return any values
in its codomain; thus, the presence of these uninterpreted functions can make
SAT results untrustworthy. To address this issue, each time the catamorphism is
unrolled, a set of boolean control conditions B is created to determine whether
the uninterpreted functions at the bottom level are necessary to the determina-
tion of satisfiability. That is, if all control conditions are true, no uninterpreted
functions play a role in the satisfiability result.

Algorithm 1: Unrolling decision
procedure in [24] with sufficiently
surjective catamorphisms
1 (φ,B)← unrollStep(φ,Π, ∅)
2 while true do
3 switch decide(φ ∧

∧
b∈B b) do

4 case SAT
5 return “SAT”

6 case UNSAT
7 switch decide(φ) do
8 case UNSAT
9 return “UNSAT”

10 case SAT
11 (φ,B)← unrollStep(φ,Π,B)

Algorithm 2: Revised unrolling
procedure with monotonic cata-
morphisms
1 (φ,B)← unrollStep(φ,Π, ∅)
2 while true do
3 switch decide(φ ∧

∧
b∈B b) do

4 case SAT
5 return “SAT”

6 case UNSAT
7 switch decide(φ ∧ Rα) do
8 case UNSAT
9 return “UNSAT”

10 case SAT
11 (φ,B)← unrollStep(φ,Π,B)



The unrollings without control conditions represent an over-approximation
of the formula with the semantics of the program with respect to the parametric
logic, in that it accepts all models accepted by the parametric logic plus some
others (due to the uninterpreted functions). The unrollings with control condi-
tions represent an under-approximation: all models accepted by this model will
be accepted by the parametric logic with the catamorphism.

The algorithm determines the satisfiability of φ through repeated unrolling α
using the unrollStep function. Given a formula φi generated from the original φ
after unrolling the catamorphism i times and the set of control conditions Bi of
φi, function unrollStep(φi, Π,Bi) unrolls the catamorphim one more time and
returns a pair (φi+1, Bi+1) containing the unrolled version φi+1 of φi and a set of
control conditions Bi+1 for φi+1. Function decide(ϕ) simply calls S to check the
satisfiability of ϕ and returns SAT/UNSAT accordingly. The algorithm either
terminates when φ is proved to be satisfiable without the use of uninterpreted
functions (line 5) or φ is proved to be unsatisfiable when assigning any values to
uninterpreted functions still cannot make the problem satisfiable (line 9).

The central problem of Algorithm 1 is that its termination is not guaranteed.
For example, non-termination can occur if the uninterpreted function Uα rep-
resenting α can return values outside the range of α. Consider an unsatisfiable
input problem: SizeI (t) < 0, for an uninterpreted tree t when SizeI is defined
over the integers in an SMT solver. Although SizeI is sufficiently surjective, Al-
gorithm 1 will not terminate since each uninterpreted function at the leaves of
the unrolling can always choose an arbitrarily large negative number to assign
as the value of the catamorphism, thereby creating a satisfying assignment when
evaluating the input formula without control conditions. These negative values
are outside the range of SizeI, and this termination problem can occur for any
catamorphism that is not surjective. Unless an underlying solver supports pred-
icate subtyping, such catamorphisms are easily constructed, and in fact SizeI or
Height catamorphisms are not surjective when defined against SMT-LIB 2.0 [3].

To address the non-termination issue, we need to constrain the assignments
to uninterpreted functions Uα(t) representing α(t) to return only values inside
the range of α. Let Rα be a condition that, together with Uα(t), represents the
range of α. The collection of values that Uα(t) can return can be constrained
by Rα. In Algorithm 2, the user-provided range Rα is included in the decide
function to make sure that any values that Uα(t) returns could be mapped to
some “real” tree t′ ∈ τ such that α(t′) = Uα(t):

∀c ∈ C :
(
c = Uα(t) ∧Rα(c)

)
⇒
(
∃t′ ∈ τ : α(t′) = c

)
(1)

Formula (1) defines a correctness condition for Rα. Unfortunately, it is difficult
to prove this without the aid of a theorem prover. On the other hand, it is
straightforward to determine whether Rα is a sound approximation of the range
of R (that is, all values in the range of R are accepted by Rα) using induction and
an SMT solver. To do so, we simply unroll α a single time over an uninterpreted
tree t. We assume Rα is true for the uninterpreted functions in the unrolling but
that Rα is false over the unrolling. If an SMT solver can prove that the formula



is UNSAT, then Rα soundly approximates the range; this unrolling encodes both
the base and inductive case.

5 Monotonic Catamorphisms

In the rest of the paper, we propose monotonic catamorphisms and prove that
Algorithm 2 is complete for this class, provided that Rα accurately characterizes
the range of α. We show that this class is a subset of sufficiently surjective cata-
morphisms, but general enough to include all catamorphisms described in [23,24]
and all those that we have run into in industrial experience. Monotonic catamor-
phisms admit a termination argument in terms of the number of unrollings, which
is an open problem in [24]. Moreover, a subclass of monotonic catamorphisms,
associative-commutative (AC) catamorphisms can be combined while preserving
completeness of the formula, addressing another open problem in [24].

5.1 Definition

Given a catamorphism α and a tree t, β(t) is the size of the set of trees that
map to α(t):

β(t) = |α−1
(
α(t)

)
|

Definition 3 (Monotonic catamorphism). A catamorphism α : τ → C is
monotonic iff there exists hα ∈ N+ such that:

∀t ∈ τ : height(t) ≥ hα ⇒
(
β(t) =∞ ∨
∃t0 ∈ τ : height(t0) = height(t)− 1 ∧ β(t0) < β(t)

)
Note that if α is monotonic with hα, it is also monotonic with any h′α ∈ N+

bigger than hα.

5.2 Examples of Monotonic Catamorphisms

This section proves that all sufficiently surjective catamorphims introduced by
Suter et al. [23] are monotonic. These catamorphisms are listed in Table 1. Note
that the Sortedness catamorphism can be defined to allow or not allow duplicate
elements [23]; we define Sortednessdup and Sortednessnodup for the Sortedness
catamorphism where duplications are allowed and disallowed, respectively.

The monotonicity of Set, SizeI, Height, Some, Min, and Sortednessdup cata-
morphisms is easily proved by showing the relationship between infinitely sur-
jective abstractions [23] and monotonic catamorphisms.

Lemma 3. Infinitely surjective abstractions are monotonic.

Proof. According to Suter et al. [23], α is infinitely surjective S-abstraction,
where S is a set of trees, if and only if β(t) is finite for t ∈ S and infinite for
t /∈ S. Therefore, α is monotonic with hα = max{height(t) | t ∈ S}+ 1. ut



Theorem 1. Set, SizeI, Height, Some, Min, and Sortednessdup are monotonic.

Proof. [23] showed that Set, SizeI, Height, and Sortednessdup are infinitely surjec-
tive abstractions. Also, Some and Min have the properties of infinitely surjective
{Leaf}-abstractions. Therefore, the theorem follows from Lemma 3. ut

It is more challenging to prove that Multiset, List, and Sortednessnodup cata-
morphisms are monotonic since they are not infinitely surjective abstractions.
First, we define the notion of strict subtrees and supertrees.

Definition 4 (Strict subtree). Given two trees t1 and t2 in the tree domain
τ , tree t1 is a subtree of tree t2, denoted by t1 � t2, iff:

t1 = Leaf ∨
t1 = Node(t1L, e, t1R) ∧ t2 = Node(t2L, e, t2R) ∧ t1L � t2L ∧ t1R � t2R

Tree t1 is a strict subtree of tree t2, denoted by t1 � t2, iff

t1 � t2 ∧ size(t1) < size(t2)

Similarly, we define the notion � of strict supertrees as the inverse of �.
Next, we state Lemma 4 before proving that Multiset, List, and Sortednessnodup
catamorphisms are monotonic. The proof of Lemma 4 is omitted since it is
obvious.

Lemma 4. For all h ∈ N+, any tree of height h must be a strict supertree of at
least one tree of height h− 1.

Theorem 2. List catamorphisms are monotonic.

Proof. Let hα = 2. For any tree t such that height(t) ≥ hα, there are exactly
ns
(
size(t)

)
distinct trees that can map to α(t). Thus, β(t) = ns

(
size(t)

)
. Due to

Lemma 4, there exists t0 such that t0 � t∧height(t0) = height(t)−1, which leads
to size(t0) < size(t). From Property 3, height(t) ≥ hα = 2 implies size(t) ≥ 5.
From Lemma 2, ns

(
size(t0)

)
< ns

(
size(t)

)
, which means β(t0) < β(t). ut

Theorem 3. Multiset catamorphisms are monotonic.

Proof. Provided in [17]. ut

Theorem 4. Sortednessnodup catamorphisms over integer trees are monotonic.

Proof. Provided in [17]. ut

6 Unrolling Decision Procedure - Proof of Correctness

We now prove the correctness of the unrolling decision procedure in Algorithm
2. We start with some properties of monotonic catamorphisms in Section 6.1
and then discuss the main proofs in Section 6.2. In this section, p stands for the
number of disequalities between tree terms in the input formula.



6.1 Some Properties of Monotonic Catamorphisms

In the following α is assumed to be a monotonic catamorphism with hα and β
as defined earlier.

Definition 5 (Mβ).Mβ(h) is the minimum value of β(t) of all trees t of height
h:

∀h ∈ N :Mβ(h) = min{β(t) | t ∈ τ, height(t) = h}

Corollary 1. Mβ(h) is always greater or equal to 1.

Proof. ∀h ∈ N :Mβ(h) ≥ 1 since ∀t ∈ τ : β(t) = |α−1
(
α(t)

)
| ≥ 1. ut

Lemma 5 (Monotonic Property of Mβ). Function Mβ : N → N satisfies
the following monotonic property:

∀h ∈ N, h ≥ hα :Mβ(h) =∞⇒Mβ(h+ 1) =∞ ∨
Mβ(h) <∞⇒Mβ(h) <Mβ(h+ 1)

Proof. Provided in [17]. ut

Corollary 2. For any natural number p > 0, Mβ(hα + p) > p.

Proof. By induction on h based on Lemma 5 and Corollary 1. ut

Theorem 5. For every number p ∈ N+, there exists some height hp ≥ hα,
computable as a function of p, such that for every height h ≥ hp and for every
tree th of height h, we have β(th) > p.

Proof. Let hp = hα + p. From Corollary 2,Mβ(hp) > p. Based on Lemma 5, we
could show by induction on h that ∀h ≥ hp : Mβ(h) > p. Hence, this theorem
follows from Definition 5. ut

Lemma 6. For all number p ∈ N+ and for all tree t ∈ τ , we have:

β(t) > p⇒ β
(
Node( , , t)

)
> p ∧ β

(
Node(t, , )

)
> p

Proof. Consider tree t′ = Node(tL, e, t). The value of α(t′) is computed in terms
of α(tL), e, and α(t). There are β(t) trees that can map to α(t) and we can
substitute any of these trees for t in t′ without changing the value of α(t′). Hence,
β(t) > p implies β(t′) > p. In other words, β(t) > p ⇒ β

(
Node( , , t)

)
> p.

Similarly, we can show that β(t) > p⇒ β
(
Node(t, , )

)
> p. ut

6.2 Proof of Correctness of the Unrolling-based Decision Procedure

We claim that our unrolling-based decision procedure with monotonic catamor-
phisms is (1) sound for proofs, (2) sound for models, (3) terminating for sat-
isfiable formulas, and (4) terminating for unsatisfiable formulas. Due to space
limitations, we do not present the proofs for the first three properties, which can
be adapted with minor changes from similar proofs in [24]. Rather, we focus on
proving that Algorithm 2 is terminating for unsatisfiable formulas. As defined in
Section 2.1, the logic is described over only conjunctions, but this can easily be
generalized to arbitrary formulas using DPLL(T ) [8]. The structure of the proof
in this case is the same. The outline of the proof is as follows:



1. Given an input formula φin, without loss of generality, we perform purifica-
tion and unification on φin to yield a formula φP . We then define a maximum
unrolling depth D and formula φD, in which all catamorphism instances in
φD are unrolled to depth D as described in Algorithm 2. Note that the
formulas differ only in the treatment of catamorphism terms.

2. Given an unrolling φD, if all control conditions are true, then the catamor-
phism functions are completely determined. Therefore, any model for φD
can be easily converted into a model for φin.

3. If at least one control condition for the unrolling is false, we may have a tree
t where αD(t) does not match α(t) since the computation of αD(t) depends
on an uninterpreted function. In this case, we show that it is always possible
to replace t with a concrete tree t′ that satisfies the other constraints of the
formula and that yields the same catamorphism value.

4. To construct t′, we first note that past a certain depth of unrolling depthmax
φin

+
1, the value chosen for any catamorphism applications will satisfy all con-
straints other than disequalities between tree terms. We then note that all
tree disequality constraints can be satisfied if we continue to unroll the cata-
morphism hp times.

Now, let φin be an input formula of Algorithm 2. Without loss of generality, we
purify the formula φin (as in [23]) and then perform tree unification (as in [2])
on the resulting formula. If there is a clash during the unification process, φin
must be unsatisfiable; otherwise, we obtain a substitution function σ = {t1var 7→
T1, . . . , t

m
var 7→ Tm} where each tree variable tivar, where 1 ≤ i ≤ m, does not

appear anywhere in tree terms T1, . . . , Tm. Following [23], the remaining variables
(which unify only with themselves and occur only at the leaves of tree terms)
we label parametric variables.

We substitute for tree variables and obtain a formula φP = φt ∧ φc ∧ φe ∧ φb
that is equisatisfiable with φin, where φt contains disequalities over tree terms
(tree equalities have been removed through unification), φc contains formulas
in the collections theory, φe contains formulas in the element theory, and φb is
a set of formulas of the form c = α(t), where c is a variable in the collections
theory and t is a tree term. We observe that given σ and any model for φP , it is
straightforward to create a model for φin.

Given φP , Algorithm 2 produces formulas φD which are the same as φP
except that each term c = α(t) in φb is replaced by c = αD(t), where αD is the
catamorphism unrolled D times.

To prove the completeness result, we compute depthmax
φin

, which is, in-
tuitively, the maximum depth of any tree term in φP . Let depthmax

φin
=

max{depthφP (t) | tree term t ∈ φP } where depthφP (t) is defined as follows:

depthφP (t) =

{
1 + max{depthφP (tL), depthφP (tR)} if t = Node(tL, , tR)

0 if t = Leaf | tree variable

We next define a lemma that states that assignments to catamorphisms are
compatible with all formula constraints other than structural disequalities be-



tween trees. We define φ∗P to be the formula obtained by removing all the tree
disequality constraints φt in φP .

Lemma 7. Given a formula φ∗P with monotonic catamorphism α and correct
range predicate Rα, after D ≥ depthmax

φin
+ 1 unrollings, if φD has a model, then

φ∗P also has a model.

Proof. Provided in [17]. ut

Theorem 6. Given a formula φin with monotonic catamorphism α and correct
range predicate Rα, after D = depthmax

φin
+ 1 + hp unrollings, if φD has a model,

then φin also has a model.

Proof. Provided in [17]. ut

Corollary 3. Given a formula φin with monotonic catamorphism α and correct
range predicate Rα, Algorithm 2 is terminating for unsatisfiable formulas.

Proof. This is the immediate contrapositive of Theorem 6. Suppose φin does not
have a model. In this case, φD also does not have a model and the SMT solver
S will return UNSAT. ut

This proof implies that Algorithm 2 terminates after no more than depthmax
φin

+
1+hp number of unrollings for unsatisfiable formulas. If the number of unrollings
exceeds depthmax

φin
+ 1 + hp, we conclude that φin is satisfiable; note that if we

are interested in complete tree models, we still need to keep unrolling until we
reach line 5 in Algorithm 2.

Corollary 4. Monotonic catamorphisms are sufficiently surjective.

Proof. Provided in [17]. ut

7 Associative-Commutative (AC) Catamorphisms

This section presents associative-commutative (AC) catamorphisms, a sub-class
of monotonic catamorphisms that have some important properties. They are
detectable, combinable, and impose an exponentially small upper bound of the
number of unrollings. The question whether these results extend to the full class
of sufficiently surjective catamorphisms is still open.

7.1 Definition

Definition 6 (AC catamorphism). Catamorphism α : τ → C is AC if

α(t) =

{
id⊕ if t = Leaf

α(tL) ⊕ δ(e) ⊕ α(tR) if t = Node(tL, e, tR)

where ⊕ : (C, C)→ C is an associative and commutative binary operator with an
identity element id⊕ ∈ C (i.e., ∀x ∈ C : x ⊕ id⊕ = id⊕ ⊕ x = x) and δ : E → C
is a function that maps2 an element value in E into a corresponding value in C.

2 For instance, if E is Int and C is IntSet, we can have δ(e) = {e}.



Like catamorphisms defined in [23,24], AC catamorphisms are fold functions
mapping the content of a tree in the parametric logic into a value in a collection
domain where a decision procedure is assumed to be available. There are two
main differences in the presentation between AC catamorphisms and those in
[23,24]. First, the combine function is replaced by an associative, commutative
operator ⊕ and function δ. Second, Leaf is mapped to the identity value of
operator ⊕ instead of the empty value of C (though the two quantities are usually
the same in practice).

Detection: Unlike sufficiently surjective catamorphisms, AC catamorphisms are
detectable. A catamorphism, written in the format in Definition 6, is AC if the
following conditions hold:

– ⊕ is an associative and commutative operator over C.
– id⊕ is an identity element of ⊕.

These conditions can be easily proved by SMT solvers [1,5] or theorem provers
such as ACL2 [11].

Signature: An AC catamorphism α is completely defined if we know its collection
domain C, element domain E , AC operator ⊕, and function δ : E → C. In other
words, the 4-tuple 〈C, E ,⊕, δ〉 is the signature of α. It is unnecessary to include
tree domain τ and identity element id⊕ in the signature since the former depends
only on E and the latter must be specified in the definition of ⊕.

Definition 7 (Signature of AC catamorphisms). The signature of an AC
catamorphism α is defined as follows:

sig(α) = 〈C, E ,⊕, δ〉

Values: Because of the associative and commutative operator ⊕, the value of an
AC catamorphism for a tree has an important property: it is independent of the
structure of the tree.

Corollary 5 (Values of AC catamorphisms). The value of α(t), where α is
an AC catamorphism, only depends on the values of elements in t. Furthermore,
the value of α(t) does not depend on the relative positions of the element values.

α(t) =

{
id⊕ if t = Leaf

δ(e1) ⊕ δ(e2) ⊕ . . . ⊕ δ(eni(t)) otherwise

where e1, e2, . . . , eni(t) are all element values stored in ni(t) internal nodes of t.

Examples: In Table 1, Height, List, Some, and Sortedness are not AC because
their values depend on the positions of tree elements. This is also demonstrated
by some concrete examples in [17].



Other catamorphisms in Table 1, including Set, Multiset, SizeI, and Min
are AC. Furthermore, we could define other AC catamorphisms based on well-
known associative and commutative operators such as +,∩,max,∨,∧, etc. We
could also use user-defined functions as the operators in AC catamorphisms; in
this case, we will need the help of an additional analysis tool to verify that all
conditions for AC catamorphims are met.

7.2 AC Catamorphisms are Monotonic

AC catamorphisms are not only automatically detectable but also monotonic.
Thus, they can be used in Algorithm 2.

Lemma 8. If α is an AC catamorphism then

∀t ∈ τ : β(t) ≥ ns
(
size(t)

)
Proof. Provided in [17]. ut

Theorem 7. AC catamorphisms are monotonic.

Proof. Provided in [17]. ut

7.3 Exponentially Small Upper Bound of the Number of Unrollings

In the proof of Theorem 5, we use hp = hα + p to guarantee that the algorithm
terminates after unrolling no more than depthmax

φin
+1+hp times. The upper bound

implies that the number of unrollings may be large when p is large, leading to a
high complexity for the algorithm with monotonic catamorphisms.

In this section, we demonstrate that in the case of AC catamorphims, we
could choose a different value for hp such that not only the termination of the
algorithm is guaranteed with hp, but also the growth of hp is exponentially small
compared with that of p. Recall from the proof of Theorem 5 that as long as
we can choose hp ≥ hα such that Mβ(hp) > p, Theorem 5 will follow. We will
define such hp after proving the following important lemma.

Lemma 9. If α is AC then ∀h ∈ N :Mβ(h) ≥ Ch.

Proof. Let th ∈ τ be any tree of height h. We have β(th) ≥ ns
(
size(th)

)
from

Lemma 8. Thus, β(th) ≥ ns(2h+1) due to Property 3 and Lemma 2. Therefore,
β(th) ≥ Ch by Lemma 1. As a result, Mβ(h) ≥ Ch from Definition 5. ut

Let hp = max
{
hα,min{h | Ch > p}

}
. By construction, hp ≥ hα and Chp > p.

From Lemma 9, Mβ(hp) ≥ Chp > p. Thus, Theorem 5 follows.
The growth of Cn is exponential [7]. Thus, hp is exponentially smaller than

p since Chp > p. For example, when p = 104, we can choose hp = 10 since
C10 > 104. Similarly, when p = 5× 104, we can choose hp = 11. In the example,
we assume that hα ≤ 10, which is true for all catamorphisms in this paper.



7.4 Combining AC Catamorphisms

Let α1, . . . , αm be m AC catamorphisms where the signature of the i-th catamor-
phim (1 ≤ i ≤ m) is sig(αi) = 〈Ci, E ,⊕i, δi〉. Catamorphism α with signature
sig(α) = 〈C, E ,⊕, δ〉 is a combination of α1, . . . , αm if

– C is the domain of m-tuples, where the ith element of each tuple is in Ci.
– ⊕ : (C, C)→ C is defined as follows, given 〈x1, . . . , xm〉, 〈y1, . . . , ym〉 ∈ C:

id⊕ = 〈id⊕1 , id⊕2 , . . . , id⊕m〉
〈x1, x2, . . . , xm〉 ⊕ 〈y1, y2, . . . , ym〉 = 〈x1 ⊕1 y1, x2 ⊕2 y2, . . . , xm ⊕m ym〉

– δ : E → C is defined as follows: δ(e) =
〈
δ1(e), δ2(e), . . . , δm(e)

〉
– α is defined as in Definition 6.

Theorem 8. Every catamorphism obtained from the combination of AC cata-
morphims is also AC.

Proof. Provided in [17]. ut

Note that while it is easy to combine AC catamorphims, it might be chal-
lenging to compute Rα, where α is a combination of AC catamorphisms.

8 The Relationship between Abstractions

This section discusses the relationship between different types of catamorphisms,
including sufficiently surjective, infinitely surjective, monotonic, and AC cata-
morphisms. Their relationship is shown in Fig. 2.

Fig. 2. Relationship between different types of catamorphisms

Monotonic and sufficiently surjective catamorphisms: Corollary 4 shows that
all monotonic catamorphisms are sufficiently surjective. Theoretically, the set of
sufficiently surjective catamorphisms is a super-set of that of monotonic cata-
morphisms. In practice, however, we are not aware of any sufficiently surjective
catamorphisms that are not monotonic.

Infinitely surjective and monotonic catamorphisms: All infinitely surjective cata-
morphisms are monotonic, as proved in Lemma 3.



AC and monotonic catamorphisms: All AC catamorphisms are monotonic, as
proved in Theorem 7.

Infinitely surjective and AC catamorphisms: The sets of the two types of cata-
morphisms are intersecting, as shown in Fig. 2.

9 Experimental Results

We have implemented our algorithm in RADA [18], a verification tool used in the
Guardol system [9], and evaluated the tool with a collection of 38 benchmark
guard examples listed in Table 2. The results are very promising: all of them
were automatically verified in a very short amount of time.

Table 2. Experimental results

Benchmark Result # unrollings Time (s)

sumtree(01|02|03|05|06|07|10|11|13) sat 1− 4 0.52− 1.02
sumtree(04|08|09|12|14) unsat 0− 2 0.52− 0.98
negative positive(01|02) unsat 1− 6 0.33− 0.82

min max(01|02) unsat 1− 6 0.74− 1.44
mut rec1 sat 2 0.78

mut rec(3|4) unsat 1− 2 0.72− 1.03
Email Guard Correct (01| . . . |17) unsat 1− 2 0.72− 0.99

The collection of benchmarks is divided into four sets. The benchmarks in
the first three sets were manually designed and those in the last set were auto-
matically generated from Guardol [9]. The first set consists of examples related
to Sum, an AC catamorphism that computes the sum of all element values in a
tree. The second set contains combinations of AC catamorphisms that are used
to verify some interesting properties such as (1) there does not exist a tree with
at least one element value that is both positive and negative and (2) the mini-
mum value in a tree can not be bigger than the maximum value in the tree. The
definitions of the AC catamorphisms used in the first two sets of benchmarks
can be found in [17].

To further evaluate the performance of our algorithm, we have conducted
some experiments with non-monotonic catamorphisms in the last two sets of
benchmarks. In particular, the third set contains simple mutually recursive cata-
morphisms. Each of the Guardol benchmarks in the last set has 8 mutually
recursive data types, 6 catamorphisms, and complex verification conditions.

All benchmarks were run on a machine using an Intel Core I3 running at 2.13
GHz with 2GB RAM with Z3 [5] as the underlying solver (S) in the experiments.

10 Related Work

We discuss some work that is closest to ours. Our approach extends the work
by Suter et al. [23,24]. In [23], the authors propose a family of procedures for



algebraic data types where catamorphisms are used to abstract tree terms. Their
procedures are complete with sufficiently surjective catamorphisms, which are
closely related to the notion of monotonic catamorphisms in this paper. We
have shown that all monotonic catamorphisms are sufficiently surjective and
all sufficiently surjective catamorphisms described in [23] are monotonic. More-
over, there are a number of advantages of using monotonic catamorphisms, as
discussed in Sections 5 and 7. In the early phase of the Guardol project [9], we
implemented the decision procedures [23] on top of OpenSMT [4] and found some
flaws in the treatment of disequalities in the unification step of the procedures;
fortunately, the flaws can be fixed using the techniques in [2].

Our unrolling-based decision procedure is based on the work by Suter et al.
[24]. As pointed out in Section 4, their work has a non-terminating issue involving
the use of uninterpreted functions. Also, their method works with sufficiently
surjective catamorphisms while ours is designed for monotonic catamorphisms.

One work that is close to ours is that of Madhusudan et al. [15], where
a sound, incomplete, and automated method is proposed to achieve recursive
proofs for inductive tree data-structures while still maintaining a balance be-
tween expressiveness and decidability. The method is based on Dryad, a recur-
sive extension of the first-order logic. Dryad has some limitations: the element
values in Dryad must be of type int and only four classes of abstractions are
allowed in Dryad. In addition to the sound procedure, [15] shows a decidable
fragment of verification conditions that can be expressed in Stranddec [14].
However, this decidable fragment does not allow us to reason about some im-
portant properties such as the height or size of a tree. However, the class of data
structures that [15] can work with is richer than that of our approach.

Using abstractions to summarize recursively defined data structures is one
of the popular ways to reason about algebraic data types. This idea is used
in the Jahob system [25,26] and in some procedures for algebraic data types
[21,24,10,15]. However, it is often challenging to directly reason about the ab-
stractions. One approach to overcome the difficulty, which is used in [24,15], is
to approximate the behaviors of the abstractions using uninterpreted functions
and then send the functions to SMT solvers [5,1] that have built-in support for
uninterpreted functions and recursive data types (although recursive data types
are not officially defined in the SMT-LIB 2.0 format [3]).

Recently, Sato et al. [20] proposes a verification technique that has support for
recursive data structures. The technique is based on higher-order model check-
ing, predicate abstraction, and counterexample-guided abstraction refinements.
Given a program with recursive data structures, we encode the structures as
functions on lists, which are then encoded as functions on integers before send-
ing the resulting program to the verification tool described in [12]. Their method
can work with higher-order functions while ours cannot. On the other hand, their
method cannot verify some properties of recursive data structures while ours can
thanks to the use of catamorphisms. An example of such a property is as follows:
after inserting an element to a binary tree, the set of all element values in the
new tree must be a super set of that of the original tree.



11 Conclusion

We have proposed a revised unrolling decision procedure for algebraic data types
with monotonic catamorphisms. Like sufficiently surjective catamorphisms, mono-
tonic catamorphisms are fold functions that map abstract data types into values
in a decidable domain. We have showed that all sufficiently surjective catamor-
phisms known in the literature to date [23] are actually monotonic. We have also
established an upper bound of the number of unrollings with monotonic cata-
morphisms. Furthermore, we have pointed out a sub-class of monotonic catamor-
phisms, namely associative-commutative (AC) catamorphisms, which are proved
to be detectable, combinable, and guarantee an exponentially small maximum
number of unrollings thanks to their close relationship with Catalan numbers.
Our combination results extend the set of problems that can easily be reasoned
about using the catamorphism-based approach.

In the future, we would like to generalize the notion of catamorphisms to
allow additional inputs related to either control conditions (e.g. member) or leaf
values (e.g. fold functions), while preserving completeness guarantees. Also, we
would like to generalize the completeness argument for mutually recursive data
types involving multiple catamorphisms.

In addition, our decision procedure assumes a correct Rα value, and may
diverge if this value is not correct. We believe that it is possible to check the Rα
value during unrolling and to return error if the value is incorrect by examining
the soundness of Rα after removing a value chosen for Uα within the problem
(call this Rα−U ). If this is sound, then R is incorrect, and we should return error.
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