Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1462 Accesses

Abstract

High Order Cartesian Tensors (HOTs) were introduced in Generalized DTI (GDTI) to overcome the limitations of DTI. HOTs can model the apparent diffusion coefficient (ADC) with greater accuracy than DTI in regions with fiber heterogeneity. Although GDTI HOTs were designed to model positive diffusion, the straightforward least square (LS) estimation of HOTs doesn’t guarantee positivity. In this chapter we address the problem of estimating 4th order tensors with positive diffusion profiles.Two known methods exist that broach this problem, namely a Riemannian approach based on the algebra of 4th order tensors, and a polynomial approach based on Hilbert’s theorem on non-negative ternary quartics. In this chapter, we review the technicalities of these two approaches, compare them theoretically to show their pros and cons, and compare them against the Euclidean LS estimation on synthetic, phantom and real data to motivate the relevance of the positive diffusion profile constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  2. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  3. Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597–3603 (1965)

    Article  Google Scholar 

  4. Ozarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)

    Article  Google Scholar 

  5. Barmpoutis, A., Jian, B., Vemuri, B.C.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Information Processing in Medical Imaging (IPMI 2007), Kerkrade, pp. 308–319 (2007)

    Google Scholar 

  6. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth-order tensor field estimation from DW-MRI. NeuroImage 45, 153–162 (2009)

    Article  Google Scholar 

  7. Pasternak, O., Sochen, N., Basser, P.J.: The effect of metric selection on the analysis of diffusion tensor MRI data. NeuroImage 49, 2190–2204 (2010)

    Article  Google Scholar 

  8. Qi, L., Yu, G., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Milne, T., Ghosh, A., Deriche, R.: Constrained diffusion kurtosis imaging using ternary quartics and MLE. In: Computational Diffusion MRI Workshop (CDMRI), 2012, MICCAI, Nice (2012)

    Google Scholar 

  10. Fletcher, P., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Proceedings of the Computer Vision Approaches to Medical Image Analysis, Prague (2004)

    Google Scholar 

  11. Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006). A preliminary version appeared as INRIA Research Report 5255, July 2004.

    Google Scholar 

  13. Lenglet, C.: Geometric and variational methods for diffusion tensor MRI processing. PhD thesis, Universite de Nice – Sophia Antipolis (2006)

    Google Scholar 

  14. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56, 411–421 (2006). PMID: 16788917.

    Article  Google Scholar 

  15. Moakher, M.: Fourth-order cartesian tensors: old and new facts, notions and applications. Q. J. Mech. Appl. Math. 61, 181–203 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moakher, M.: The algebra of fourth-order tensors with application to diffusion MRI. In: Laidlaw, D., Weickert, J. (eds.) Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 57–80. Springer, Berlin/Heidelberg (2009). 10.1007/978-3-540-88378-4_4

    Chapter  Google Scholar 

  17. Itskov, M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189, 419–438 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Medical Image Computing And Computer-Assisted Intervention – MICCAI. Volume 5241 of Lecture Notes in Computer Science, New York, pp. 858–865. Springer (2008)

    Google Scholar 

  19. Basser, P.J., Pajevic, S.: Spectral decomposition of a 4th-order covariance tensor: applications to diffusion tensor MRI. Signal Process. 87, 220–236 (2007)

    Article  MATH  Google Scholar 

  20. Barmpoutis, A., Vemuri, B.C.: A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints. In: Proceedings of ISBI10: IEEE International Symposium on Biomedical Imaging, Rotterdam, pp. 1385–1388 (2010)

    Google Scholar 

  21. Rudin, W.: Sums of squares of polynomials. Am. Math. Mon. 107, 813–821 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ghosh, A., Moakher, M., Rachid, D.: Ternay quartic approach for positive 4th order diffusion tensors revisited. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, pp. 618–621 (2009)

    Google Scholar 

  23. Powers, V., Reznick, B.: Notes towards a constructive proof of Hilbert’s theorem on ternary quartics. In: Quadratic Forms and Their Applications (Dublin 1999). Contemporary Mathematics, vol. 272. American Mathematical Society, Providence (2000)

    Google Scholar 

  24. Jian, B., Vemuri, B.C.: Metric learning using Iwasawa decomposition. In: IEEE International Conference on Computer Vision, Rio de Janeiro 0, pp. 1–6 (2007)

    Google Scholar 

  25. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge/New York (1992)

    Google Scholar 

  26. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Fiber orientation mapping using generalized diffusion tensor imaging. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Arlington, pp. 1036–1039 (2004)

    Google Scholar 

  27. Ghosh, A., Deriche, R.: Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Rotterdam, pp. 1105–1108 (2010)

    Google Scholar 

  28. Campbell, J., Siddiqi, K., Rymar, V., Sadikot, A., Pike, B.: Flow-based fiber tracking with diffusion tensor q-ball data: validation and comparison to principal diffusion direction techniques. NeuroImage 27, 725–736 (2005)

    Article  Google Scholar 

  29. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single and multiple shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64, 554–566 (2010)

    Google Scholar 

  30. Poupon, C., Poupon, F., Allirol, L., Mangin, J.F.: A database dedicated to anatomo-functional study of human brain connectivity. In: Twelfth Annual Meeting of the Organization for Human Brain Mapping (HBM), Florence (2006)

    Google Scholar 

  31. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are partially supported by the NucleiPark research project (ANR Program “Maladies Neurologique et maladies Psychiatriques”) and the France Parkinson Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurobrata Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghosh, A., Deriche, R. (2014). Fourth Order Symmetric Tensors and Positive ADC Modeling. In: Westin, CF., Vilanova, A., Burgeth, B. (eds) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54301-2_7

Download citation

Publish with us

Policies and ethics