Skip to main content

Modelling Population Dynamics Using Grid Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7991))

Abstract

A new formalism, Grid Systems, aimed at modelling population dynamics is presented. The formalism is inspired by concepts of Membrane Computing (P Systems) and spatiality dynamics of Cellular Automata. The semantics of Grid Systems describes how stochasticity is exploited for reaction duration as well as reaction selection. Grid Systems perform reactions in maximally parallel manner, imitating natural processes. Environmental events that change population behaviour can be defined in Grid Systems as rewrite rules.

A population model of a species of mosquitoes, Aedes albopictus, is presented. The model considers three types of external events: temperature change, rainfall, and desiccation. The events change the behaviour of the species directly or indirectly. Each individual in the population can move around in the ecosystem. The simulation of the model was performed by using a semantics based tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rio Declaration on Environment and Development. United Nations Conference on Environment and Development (UNCED), Rio de Janeiro, Brazil (1992)

    Google Scholar 

  2. Adamatzky, A.: Identification of Cellular Automata. Taylor and Francis, London (1994)

    MATH  Google Scholar 

  3. Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: The calculus of looping sequences. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 387–423. Springer, Heidelberg (2008)

    Google Scholar 

  4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Rama, A.: A process calculus for molecular interaction maps. In: Membrane Computing and Biologically Inspired Process Calculi (MeCBIC), pp. 35–49 (2009)

    Google Scholar 

  5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: Compositional semantics and behavioral equivalences for p systems. Theor. Comput. Sci. 395(1), 77–100 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: A p systems flat form preserving step-by-step behaviour. Fundam. Inform. 87(1), 1–34 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An overview on operational semantics in membrane computing. Int. J. Found. Comput. Sci. 22(1), 119–131 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Modelling the dynamics of an aedes albopictus population. In: Proceedings of Application of Membrane Computing, Concurrency and Agent-based Modelling in Population Biology (2010)

    Google Scholar 

  9. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010)

    Google Scholar 

  10. Cardona, M., Colomer, M.A., Perez-Jimenez, M.J., Sanuy, D., Margalida, A.: A P system modeling an ecosystem related to the bearded vulture. In: Proceedings of Sixth Brainstowming Week on Membrane Computing, pp. 52–66 (2008)

    Google Scholar 

  11. Chaloupka, M.: Stochastic simulation modelling of southern great barrier reef green turtle population dynamics. Ecol. Model. 148, 79–109 (2001)

    Article  Google Scholar 

  12. Dematté, L., Priami, C., Romanel, A.: The BlenX language: a tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008)

    Google Scholar 

  13. Focks, D.A., Daniels, E., Haile, D.G., Keesling, J.E.: A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am. J. Trop. Med. Hyg. 53, 489–506 (1995)

    Google Scholar 

  14. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)

    Article  Google Scholar 

  15. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  16. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  17. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001)

    Article  Google Scholar 

  18. Goss, P.J., Peccoud, J.: Quantitative modeling of stochastic system in molecular biology by using Petri Nets. J. Bioinform. Comput. Biol. 95, 6750–6755 (1990)

    Google Scholar 

  19. Hawley, W.A.: The biology of aedes albopictus. J. Am. Mosq. Control Assoc. 4, 1–39 (1988)

    Google Scholar 

  20. John, M., Ewald, R., Uhrmacher, A.M.: A spatial extension to the \(\pi \)-calculus. Electron. Notes Theoret. Comput. Sci. 194, 133–148 (2009)

    Article  Google Scholar 

  21. Kahramanoğullari, O., Jordan, F., Lynch, J.: CoSBiLab LIME: a language interface for stochastic dynamical modelling in ecology. Environ. Model Softw. 26, 685–687 (2011)

    Article  Google Scholar 

  22. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecule interaction maps of bioregularity networks: a general rubric for systems biology. Mol. Biol. Cell 17, 1–13 (2005)

    Article  Google Scholar 

  23. Lanotte, R., Tini, S.: Probabilistic bisimulation as a congruence. ACM Trans. Comput. Log. 10(2), 1 (2009)

    Article  MathSciNet  Google Scholar 

  24. Li, H., Petzold, L.: Logarithmic Direct Method for Discrete Stochastics Simulation of Chemically Reacting Systems. Technical report, University of California Santa Barbara (2006)

    Google Scholar 

  25. Milazzo, P.: Qualitative and quantitative formal modeling of biological systems. Ph.D. thesis, Università di Pisa (2007)

    Google Scholar 

  26. Milner, R.: Communication and mobile systems: the \(\pi \)-calculus. In: Proceeding of the Pacific Symposium on Biocomputing, pp. 459–470 (2001)

    Google Scholar 

  27. Moreno, D.H.R., Federico, P., Canziani, G.A.: Population dynamics models base on cellular automata that includes habitat quality indices defined through remote sensing. In: ISRSE RM (2001)

    Google Scholar 

  28. Pardini, G.: Formal modelling and simulation of biological systems with spatiality. Ph.D. thesis, Università di Pisa (2011)

    Google Scholar 

  29. Pineda-Krch, M.: Gillespie SSA: implementing the stochastic simulation algorithm in R. J. Stat. Softw. 25, 1–18 (2008)

    Google Scholar 

  30. Priami, C., Regev, A., Silverman, W., Shapiro, E.Y.: Application of a stochastic name-passing calculus to representation and simulation a molecular processes. Inf. Process. Lett. 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)

    Article  MATH  Google Scholar 

  32. Păun, G.: Twenty six research topics about spiking neural P systems. In: Proceeding of Sixth Brainstowming Week on Membrane Computing (2008)

    Google Scholar 

  33. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the \(\pi \)-calculus process algebra. In: Proceeding of the Pacific Symposium on Biocomputing, pp. 459–470 (2001)

    Google Scholar 

  34. Tini, S.: Non-expansive epsilon-bisimulations for probabilistic processes. Theor. Comput. Sci. 411(22–24), 2202–2222 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported partly by UNU-IIST and partly by Macao Science and Technology Development Fund, File No. 07/2009/A3, in the context of the EAE project. Suryana Setiawan is supported by a PhD scholarship under I-MHERE Project of the Faculty of Computer Science, University of Indonesia (IBRD Loan No. 4789-IND & IDA Credit No. 4077-IND, Ministry of Education and Culture, Republic of Indonesia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Barbuti , Antonio Cerone , Andrea Maggiolo-Schettini , Paolo Milazzo or Suryana Setiawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbuti, R., Cerone, A., Maggiolo-Schettini, A., Milazzo, P., Setiawan, S. (2014). Modelling Population Dynamics Using Grid Systems. In: Cerone, A., et al. Information Technology and Open Source: Applications for Education, Innovation, and Sustainability. SEFM 2012. Lecture Notes in Computer Science(), vol 7991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54338-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54338-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54337-1

  • Online ISBN: 978-3-642-54338-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics