Skip to main content

A Mathematical Model for Extremely Low Dose Adaptive Computed Tomography Acquisition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8177))

Abstract

One of the main challenges in Computed Tomography is to balance the amount of radiation exposure to the patient at the time of the scan with high image quality. We propose a mathematical model for adaptive Computed Tomography acquisition whose goal is to reduce dosage levels while maintaining high image quality at the same time. The adaptive algorithm iterates between selective limited acquisition and improved reconstruction, with the goal of applying only the dose level needed for sufficient image quality. The theoretical foundation of the algorithm is nonlinear Ridgelet approximation and a discrete form of Ridgelet analysis is used to compute the selective acquisition steps that best capture the image edges. We show experimental results where the adaptive model produces significantly higher image quality, when compared with known non-adaptive acquisition algorithms, for the same number of projection lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arias-Castro, E., Candès, E., Davenport, M.: On the fundamental limits of adaptive sensing. IEEE Trans Info. Theory 59, 472–481 (2013)

    Article  Google Scholar 

  2. Barnes, E.: MBIR aims to outshine ASIR for sharpness, CT dose reduction. Article in AuntMinnie (May 18, 2010)

    Google Scholar 

  3. Brenner, D., Ellison, C.: Estimated risks of radiation-induced fatal cancer from Pediatric CT. American Journal of Roentgenology 176, 289–296 (2001)

    Article  Google Scholar 

  4. Candès, E.: Ridgelets: Theory and applications. Ph.D. Thesis, Stanford University (1998)

    Google Scholar 

  5. Candès, E., Donoho, D.: New tight frames of Curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure App. Math. 57, 219–266 (2003)

    Article  Google Scholar 

  6. Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast Discrete Curvelet Transforms. Multiscale Modeling & Simulation 5, 861–899 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MATH  Google Scholar 

  8. Compressive Sensing Resources home page, http://dsp.rice.edu/cs

  9. Courant, R.: Variational methods for the solution of problems with equilibrium and vibration. Bull. Amer. Math. Soc. 49, 1–23 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delaney, A., Bresler, Y.: Globally Convergent Edge-Preserving Regularized Reconstruction: An Application to Limited-Angle Tomography. IEEE Trans. Image Proc. 7, 204–221 (1998)

    Article  Google Scholar 

  11. De Man, B., Basu, S.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49, 2463–2475 (2004)

    Article  Google Scholar 

  12. DeVore, R.: Nonlinear approximation. Acta Numerica 7, 50–150 (1998)

    Article  Google Scholar 

  13. DeVore, R., Jawerth, B., Lucier, B.: Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 38, 719–746 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Do, M., Vetterli, M.: The Finite Ridgelet transform for image representation. IEEE Trans. Image Proc. 12, 16–28 (2003)

    Article  MathSciNet  Google Scholar 

  15. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)

    Google Scholar 

  16. Frikel, J.: A new framework for sparse regularization in limited angle x-ray tomography. In: Proc. IEEE Conf. Biomedical Imaging, pp. 824–827 (2010)

    Google Scholar 

  17. Frikel, J.: Sparse regularization in limited angle tomography. ACHA 34, 117–141 (2013)

    MATH  MathSciNet  Google Scholar 

  18. Hestenes, M.: Multiplier and gradient methods. Journal of Optimization Theory and Applications 4, 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hsieh, J.: Computed Tomography, principles, design, artifacts and recent advances, 2nd edn. SPIE and Wiley-Interscience (2009)

    Google Scholar 

  20. Kolditz, D., Kyriakou, Y., Kalender, W.: Volume-of-interest (VOI) imaging in C-arm flat-detector CT for high image quality at reduced dose. Medical Physics 37, 2719–2730 (2010)

    Article  Google Scholar 

  21. Kutyniok, G., Labate, D.: Construction of Regular and Irregular Shearlet Frames. J. Wavelet Theory and Appl. 1, 1–10 (2007)

    Google Scholar 

  22. Labate, D., Lim, W.-Q., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. Wavelets XI, 254–262 (2005); SPIE Proc. 5914

    Google Scholar 

  23. Li, C.: An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing. Master’s thesis, Rice University (September 2009)

    Google Scholar 

  24. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. The Sparse Way. Academic Press (2009)

    Google Scholar 

  25. Mao, Y., Fahimian, B., Osher, S., Miao, J.: Development and optimization of regularized tomographic reconstruction algorithms. IEEE Trans. Image Proc. 19, 1259–1268 (2010)

    Article  MathSciNet  Google Scholar 

  26. McCollough, C., Bruesewitz, M., Kofler, J.: CT Dose Reduction and Dose Management Tools: Overview of Available Options. Radiographics 26, 503–512 (2006)

    Article  Google Scholar 

  27. Moore, J., Barret, H., Furenlid, L.: Adaptive CT for high-resolution, controlled-dose, region-of-interest imaging. In: IEEE Nucl. Sci. Symp. Conf., pp. 4154–4157 (2009)

    Google Scholar 

  28. Natterer, F.: The mathematics of computerized tomography. Classics in applied mathematics, vol. 32. SIAM (1986)

    Google Scholar 

  29. Nelson, R.: Thousands of new cancers predicted due to increased use of CT. Medscape news (December 17, 2009)

    Google Scholar 

  30. Powell, M.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, London (1969)

    Google Scholar 

  31. Quinto, T.: Singularities of the X-ray transform and limited data tomography in \(\mbox{I\!R}^2\) and \(\mbox{I\!R}^3\). SIAM J. Math. Anal. 24, 1215–1225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ramani, S., Fessler, J.: Parallel MR image reconstruction using augmented Lagrangian methods. IEEE Trans. Med. Imag. 30, 694–706 (2011)

    Article  Google Scholar 

  33. Rutt, B.: Scanned projection radiography using high speed computed tomographic scanning system. U.S Patent 4,573,179

    Google Scholar 

  34. Shuryak, I., Sachs, R., Brenner, D.: Cancer Risks after Radiation Exposure in Middle Age. J. National Cancer Institute 102, 1606–1609 (2010)

    Article  Google Scholar 

  35. Thibault, J., Sauer, K., Bouman, C., Hsieh, J.: A three-dimensional statistical approach to improved image quality for multislice helical CT. Med. Phys. 34, 4526–4544 (2007)

    Article  Google Scholar 

  36. Thibault, J., Sauer, K., Bouman, C., Hsieh, J.: Fast Model-Based X-Ray CT Reconstruction Using Spatially Nonhomogeneous ICD Optimization. IEEE Trans. Image Proc. 20, 161–175 (2011)

    Article  MathSciNet  Google Scholar 

  37. Li, C., Yin, W., Zhang, Y.: TVAL3 homepage, http://www.caam.rice.edu/~optimization/L1/TVAL3/

  38. Zubal, I., Harrell, C., Smith, E., Rattner, Z., Gindi, G., Hoffer, P.: Computerized three-dimensional segmented human anatomy. Med. Phys. 21, 299–302 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barkan, O., Averbuch, A., Dekel, S., Tenzer, Y. (2014). A Mathematical Model for Extremely Low Dose Adaptive Computed Tomography Acquisition. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2012. Lecture Notes in Computer Science, vol 8177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54382-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54382-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54381-4

  • Online ISBN: 978-3-642-54382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics