

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 280–289, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Managing Heterogeneous Processor Machine
Dependencies in Computer Network Applications*

Ralph Duncan, Peder Jungck, Kenneth Ross, Jim Frandeen, and Greg Triplett

CloudShield Technologies, A Science Applications International Corporation (SAIC) Company
212 Gibraltar Drive, Sunnyvale, CA 94089 USA

rduncan@cloudshield.com

Abstract. Executing complex network packet applications typically requires
using network processors and parallel processing to handle packet transmission
speeds of 1 gigabit per second and beyond. Heterogeneous computing ap-
proaches also employ specialized coprocessors, such as associative memory
processors for flow matching and regular expression (regex) processors for
packet payload searching. Our goals for this kind of heterogeneous processing
are to free application developers from hardware-specific details and to develop
systems in which we can deploy new hardware and software components in
modular, plug-and-play fashion. Our initial contribution to realizing these goals
involves (1) expressing classic packet operations in a C dialect as C/C++-style
operators; (2) compiling user code into bytecodes for a packet-processing
virtual machine that hides machine-specific details; and (3) interpreting the
bytecodes with microcoded interpreters that orchestrate an ensemble of hetero-
geneous processors on the users’ behalf.

1 Introduction

As computer networks continue their relentless speed increases the need for increas-
ing packet processing speeds moves in tandem. Since the late 1990s network
processing vendors have responded to the need for speed and flexibility by using net-
work processors that are optimized for classic packet processing tasks. These proces-
sors are often used in conjunction with separate, specialized coprocessors [1, 2]. As
Douglas Comer observed in a popular textbook [1], designers have generated a varie-
ty of architectures that typically use some combination of specialized instructions,
parallel processing and pipelining. His 2005 survey of commercial architectures [2]
had these categories:

* Intel is a trademark of Intel Corporation in the United States and/or other countries. Broad-
com® is a registered trademark of Broadcom Corporation in the United States and/or other
countries. Xilinx is a trademark of Xilinx Inc. in the United States and/or other countries.
OCTEON® is a registered trademark of Cavium. AMCC is a registered trademark of Applied
Micro Circuits Corporation. IDT is a trademark of Integrated Device Technology, Inc. pack-
etC® is a registered trademark of CloudShield Technologies, Inc. in the United States and/or
other countries.

 Managing Heterogeneous Processor Machine Dependencies 281

• Embedded processors with special instructions for packet processing
• Parallel processors, assisted by specialized coprocessors
• Parallel pipelines of either homogenous processors or heterogeneous ones

Our hardware approach falls into the category for parallel processors, augmented
with coprocessors. Our basic building blocks are the following:

• Network processors (microengines by Intel) with a reduced instruction set comput-
er (RISC) processor as their host

• Xilinx, Inc.® Virtex® 5 field programmable gate arrays (FPGAs) to perform
specialized functions e.g., ingress processing, to identify packet headers

• Ternary content addressable memory (TCAM) chips (associative memory proces-
sors) to match key header fields’ contents

• Regular expression (regex) processors to match packet payload contents to strings
specified as regular expressions.

We use the kinds of processors often seen in commercial systems. Thus, our con-
tribution is not a particular ensemble of specialized processors but the use of high-
level languages to isolate chip-specifics and interpreters to manage heterogeneity:

• Expressing packet operations with high-level language operators
• Compiling programs into machine-independent bytecodes for packet processinge
• Interpreting bytecode programs via multiple copies of a microcoded interpreter,

running in parallel and orchestrating diverse coprocessors’ actions

Fig. 1. Parallel packet processing model and language features (in italics). Copyright Cloud-
Shield Technologies, 2013.

Data tables

(databases) Input

Packets

search terms

(searchsets)

Global (shared) memory

Ingress

processing

Private

memories

Packet &

Protocol

data (PIB)

Egress

processing

Shared

variables

app

copy

app

copy

Packet &

Protocol

data (PIB)

app

copy

Packet &

Protocol

data (PIB)

Output

Packets

282 R. Duncan et al.

The paper reviews our programming model, then traces our extended data types
and operators from their high-level forms in packetC® [3] through domain-specific
bytecodes to their implementation by specialized coprocessors. We present experi-
ments then end by reviewing related work and summarizing.

2 Parallel Processing Model

Our ultimate goal is a flexible system in which we can swap one coprocessor for
another or substitute a software component for a coprocessor. To support this, our
model of parallel packet processing has the following characteristics.

• It uses coarse-grained parallelism at the packet level to hide machine specifics.
• The host system is expected to provide classic ingress and egress processing (see

Fig. 1) but the model does not specify how this to be done.
• Capabilities are specified for matching packet header fields and searching packet

payloads but their implementation is not.

Developers express parallelism at a coarse-grained level with a program that com-
pletely processes one packet at a time. Thus, we allocate each packet to a specific
copy of the application (a context) and runs the contexts simultaneously in single
program multiple data (SPMD) fashion. Using coarse-grain parallelism frees devel-
opers from fine-grain, processor-specific mechanics, like synchronizing low-level
tasks.

3 packetC Language Overview

The first component of the approach consists of using high-level operators in the
packetC language, rather than lower-level operators that reflect coprocessor specifics.
packetC [3] extends C99 with data types and operators that provide classic packet
processing functionality. Types used in the experiments section are sketched below.

Databases act like an array of structures divided into identically typed “data” and
“mask” halves for wildcarded matching against packet contents [5] (typically, to
match header fields). Users provide a base type from which the compiler constructs
the data and mask halves. Users then match structures against those portions of the
data half that have bits set to “on” in their corresponding mask.

struct stype { short dest; short src;};
database stype myDB[50];
// myDB element layout is { stype data; stype mask;};
rownum = myDB.match(myStruct); // do masked search

Searchsets are aggregates of strings or regular expressions that are matched against

the contents of the packet payload via C++-style methods [6]. The first of the sear-
chset items to be found is reported in a result structure with position information.

 Managing Heterogeneous Processor Machine Dependencies 283

searchset pets[3][3] = {“cat”, “dog”, “owl” };
SearchResult ansStruct;
try { // match vs. a 3-byte slice of packet
 ansStruct = pets.match(currPkt[64:66]);
}
catch (ERR_SET_NOMATCH) {…}

4 Translation to Bytecodes

Our approach’s second key consists of translating high-level packetC operations into
machine-independent bytecodes (Fig 2). Just as packetC hides processor specifics
from application developers, the bytecodes hide them from the tool-chain and runtime
support system to isolate the effects of replacing accelerators with new processors or
software equivalents. A single bytecode may express a complex operation that will
be implemented by a specialized coprocessor. Due to space constraints we show only
a human-readable version of the database match bytecode as a representative
example.

Fig. 2. Example bytecode translation flow for databases and searchsets. Copyright Cloud-
Shield Technologies, 2013.

In the example below, a packetC record – a structure with data and mask halves –
is matched against a database of like elements via a complex DBMATCH bytecode.

packetC

source code

Database constructs Searchset constructs

packet

processing

VM byte-

codes

DB_DECL, DB_MATCH TABLE_DECL, SEARCH_PKT

Microcoded Interpreter(s)

SDB commands & data regex commands & data

TCAMs FPGAs TCAMs Regex

Chips

Virtual Machine

Layer

FPGAs

Chip-level

instructions

Compilation Tool-chain

284 R. Duncan et al.

// packetC code – database match
struct stype { short dest; short src;};
database stype myDB[50];
rownum = myDB.match(myRec); // match contents of myDB
// Bytecode – database decl, then MATCH operation
DBASE_DECL myDB [500] 5 // 5 is the ID
DB_MATCH Id, maskKind, inData, inMask, rownum
// Id: integer indicating with DB to use
// maskKind: scenario indicator
// inData: data to match
// inMask: to combine w/ each element mask
// rownum: 32bit integer to rec matching DB row #

The next section describes how we use interpreters to turn the bytecodes above in-
to coprocessor actions.

5 Interpreter as Heterogeneous Processor Orchestrator

Our approach’s third component consists of using microcoded interpreters to execute
bytecodes and encapsulate coprocessor specifics. Such interpreters can effectively
exploit machine-level resources and fine-grain operations to implement our bytecodes.
For example, the interpreters exploit various data pathways to control specialized pro-
cessors. Interpreters also isolate coprocessor-specific aspects of the communication.
Specifically, an interpreter

• Sends a coprocessor input operands in some required format
• Sends an indication of which operation to perform
• Receives results and coprocessor error information, again, in prescribed formats

The complexity of these operations may vary considerably, depending on whether

• Operands consist of a small number of scalars or an aggregate (such as the packet
payload treated as a byte array)

• The coprocessor performs a single operation or many (which must therefore be
distinguished in communications)

An appreciation of how such dependencies and of how a bytecode interpreter man-
ages them is best gained by concrete example. Thus, the next section describes one of
our fielded system’s processor components and shows in considerable detail how an
interpreter drives operations on two coprocessor (accelerator) systems.

6 Implementing Interpreter and Coprocessor Communication

Our products, such as the PN41 [7], use multi-core network processing units (NPUs)
optimized for packet operations. The PN41 uses an IXP 2800 with 16 microengines
as its NPU Although the IXP is often programmed in fine-grain parallel fashion [8],
we use the coarse-grained approach described in section 2, with 95 microengine
contexts running an interpreter and other contexts providing house-keeping functions.

 Managing Heterogeneous Processor Machine Dependencies 285

These interpreters interact with multiple kinds of coprocessor to implement operations
originally coded as packetC operators, then translated to bytecode form.

Fig. 3. PN41 Communications between IXP-based interpreters and TCAM chips. Copyright
CloudShield Technologies, 2013.

In our first example a Xilinx, Inc.® Virtex® 5 FPGA controls a silicon database
(SDB) that uses Broadcom NL 5512 TCAM chips to match packetC databases.
When an interpreter encounters a match operation, these actions occur (Fig. 3):

• The interpreter uses a quad data rate (QDR) interface to send a match command
(in a control language) to a command mailbox associated with the SDB controller.

• The interpreter passes the data to compare and ID of the database to use.
• Depending on the operation, the interpreter may pass a bit mask to use.
• The SDB replies with acknowledgement signals and the results data.

The TCAM performs a given match on all the relevant database entries in parallel,
a significant performance benefit. However, moving operands and results back and
forth, as well as managing the operation can consume significant time. In practice,
optimizing this data movement is an art and science in its own right.

Our second example involves using IDT PAX.port 2500 content inspection engines
(regex processors) to implement packetC searchset find operations, typically to
search for terms in the packet’s payload [10]. Such a searchset is an array composed
entirely of strings or regular expressions.

Searchset contents are precompiled into a set of regex rules and loaded into a
pattern memory. As Fig. 4 shows, an interpreter running on a microengine ships com-
mand data and the bits within which to search (typically, a slice of the packet payload)
to the subsystem via another specialized FPGA. The regex subsystem returns the index
of the first searchset element to be found (if any), as well as location data.

The next section presents two experiments that show that this kind of microcoded
interpretation with coprocessors achieves high speeds.

Silicon Database
(FPGA-controlled)

commands

Command
mailboxes

Reply
mailboxes

results

QDR iface

IXP 2800

microengine

microengine

microengine

…

TCAMs

RAM chips

286 R. Duncan et al.

Fig. 4. Searching packet data via a regex system. Copyright CloudShield Technologies, 2013.

7 Experiments Emphasizing Coprocessors

The experiments used a CloudShield PN41 [7] 10 gigabit Ethernet blade to run pack-
etC applications and an IXIA® XM12 traffic generator [11] to produce network traffic
at a maximum of 10 gigabits per second (Gbps). Each experiment involved micro-
code interpreting bytecodes and invoking coprocessors for key operations.

Fig 5(a) shows an experiment that matched a sequence of bytes from a specific
packet payload location of each packet against a packetC database of 30,000 stored
patterns. This database and the high-level match operation used the bytecodes and
TCAM subsystem shown in sections 4 and 6 above (see also Fig. 3). For this scenario
the system produces a maximum output rate of 8.85 Gbps. (See [6] for details).

The experiment shown in Fig 5(b) involved searching each entire packet for the
presence of one or more patterns, defined by a packetC searchset of 10,000 simple
patterns – each containing a wild card substring. This searchset and the high-level
find operation used the bytecodes and regex subsystem shown in sections 4 and 6
above (see Fig. 4). The maximum speed achieved, 5.9 Gbps, is expected, since the
regex subsystem has a maximum speed of roughly 5 Gbps and most of this applica-
tion’s time is spent in the subsystem. For further details, the packetC source con-
structs and related experiments are described in an analysis of searchsets [6].

A traditional presentation might report comparative metrics for alternative tech-
niques, typically from experimental prototypes. In this paper we report the data
points that we have, which are from a commercial product line with more than 10
years in the fields. Our claim is not that techniques we describe are superior in per-
formance to particular alternatives but, instead, that the portability and retargetability
benefits of this approach are gained while performing deep packet inspection (DPI) at
speeds of two to nine Gbps, which we believe to be state-of-the-practice DPI at this
time.

Microengine
(InterpreterN)

Regex subsystem

FPGA

SPI-4 interface

find command,
data-to-search

find results

find results

find command,
data-to-search

SPI-3 interface

 Managing Heterogeneous Processor Machine Dependencies 287

Fig. 5. (a) Using a TCAM coprocessor to match a bit pattern. (b) Using a regex coprocessor to
search for string matches. Copyright CloudShield Technologies, 2013.

8 Related Work

Intel Corporation®’s Microengine C [8] is a C dialect targeted to the IXP network
processor family. Its processing model involves breaking programs into multiple
threads that are partitioned across microengines. The user manages communications
among threads and swaps out tasks. Microengine C reflects a variety of machine-
specific IXP features, such as memory and register classes.

J. Wagner and R. Leupers describe a processor-specific C dialect geared to the In-
fineon network processor in [12]. Language’s extensions let the user map protocol
headers to special registers and manipulate those values via operands with arbitrary
bit-widths. A collection of compiler intrinsics lets users exploit these capabilities.

L. George and M. Blume described the NOVA language for the IXP network pro-
cessor in [13]. NOVA has features for specifying header representation, including a
layout construct for packed and unpacked forms and an overlay construct for alterna-
tive organizations within a layout. Network Protocol Description Language Vin, et al.
proposed the Baker programming language [14], a C dialect augmented by data-flow
concepts, which emphasized pipelining packet data from function to function.

Cavium Networks, Inc. makes Octeon® networking and communications proces-
sor families [15] that use specialized processors for regular expression processing
and fast matching. Their software approach appears to use C/C++, augmented by
application programming interfaces (APIs) and libraries. AMCC® has also produced
network processors (e.g., nP3700) that feature multiple network processing cores and
specialized coprocessors, including regex processors [16] and TCAMs [17].

(a)

8.85 Gbs

10,000
Simple patterns

Output
 Gbps

6

4

2

10

8

Input
Gbps

1086 4 2

Output
 Gbps

6

4

2

10

8

Input
Gbps

10 8 642

(b)

5.9 Gbs

288 R. Duncan et al.

MicroEngineC and C for the Infineon® chip extend C to include machine-specific
details, whereas packetC disguises machine particulars. Like AMCC and Cavium,
our architecture uses multi-core processing engines, supplemented by coprocessors.
However, we use different approaches to translating and running application pro-
grams on those coprocessors. Although we cannot be certain, our approach appears to
be the only one on current, packet processing systems that uses microcoded interpre-
ters or high-level bytecodes to trigger coprocessor operations for classic network
operations.

9 Summary

The key elements of our approach to parallel, heterogeneous programming are

• Expressing user operations in terms of high-level packetC operators that act on
extended, C-style data types.

• Compiling user programs to machine-independent bytecodes that describe a packet
processing virtual machine.

• Using microcoded interpreters to process bytecodes and trigger coprocessor opera-
tions as needed.

packetC high-level operators have proven easy to use and to teach. Both packetC
and bytecodes have survived chipset and NPU changes without requiring tool-chain
redesign or user code recompilation. The interpreter scheme requires detailed micro-
code, NPU and coprocessor expertise but only from tool-chain developers, not appli-
cation code developers. Freed from arcane processor details, users can concentrate on
solving problems in terms of high-level networking application domain constructs.

We believe the techniques described above, both individually and in combination,
offer significant benefits to other heterogeneous processing practitioners.

Acknowledgements. Mary Pham, Scott Tillman, Greg Triplett, Jim Frandeen and
Minh Nguyen made key contributions to coprocessor subsystems, loaders, and the
interpreters. The export approval number for the paper is 13-SAIC-0517-1012.

References

1. Comer, D.: Network Systems Design Using Network Processors, Intel 2xxx Version. Pren-
tice Hall, Upper Saddle River (2006)

2. Comer, D.: Network Processors: Programmable Technology for Building Network Sys-
tems. The Internet Protocol Journal 7(4) (2004)

3. Jungck, P., Duncan, R., Mulcahy, D.: packetC Programming. Apress, New York (2011)
4. Duncan, R., Jungck, P., Ross, K.: A paradigm for processing network protocols in parallel.

In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS,
vol. 6082, pp. 52–67. Springer, Heidelberg (2010)

5. Duncan, R., Jungck, P., Ross, K.: packetC language and parallel processing of masked da-
tabases. In: Proceedings of the 39th Intl. Conf. on Parallel Processing, San Diego, USA,
September 13-16, pp. 472–481. IEEE (2010)

 Managing Heterogeneous Processor Machine Dependencies 289

6. Duncan, R., Jungck, P., Ross, K., Tillman, S.: Packet Content matching with packetC
Searchsets. In: Proceedings of the 16th Intl. Conf. on Parallel and Distributed Systems,
Shanghai, China, December 8-10, pp. 180–188 (2010)

7. International Business Machines Corporation. IBM Blade Center PN41. Product datasheet
available from IBM Systems and Technology Group, Route 100, Somers, New York, USA
10589 (2008)

8. Johnson, E.K., Kunze, A.R.: IXP 2400/2800 Programming: The Complete Microengine
Coding Guide. Intel Press, Hillsboro (2003)

9. Broadcom Corporation, NL5064, NL5128, NL5256 and NL5512 Proprietary Interface,
Knowledge-based Processors,
http://www.broadcom.com/products/Knowledge-Based-
Processors/Layers-2—4/NL5000-Family (retrieved on April 30, 2013)

10. Chao, H.J., Liu, B.: High Performance Switches and Routers, pp. 562–564. John Wiley
and Sons, Hoboken (2007)

11. XIA. XM12 High Performance Chassis, http://www.ixia.com.com/
pdfs/datasheets/ch_optixia_xm12.pdf (retrieved on July 25, 2013)

12. Wagner, J., Leupers, R.: C compiler design for a network processor. IEEE Trans. on
CAD 20(11), 1–7 (2001)

13. George, L., Blume, M.: Taming the IXP network processor. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation, San
Diego, California, USA, pp. 26–37. ACM (June 2003)

14. Vin, H.M., Mudigonda, J., Jason, J., Johnson, E.J., Ju, R., Kunze, A., Lian, R.: A Pro-
gramming Environment for Packet-processing Systems: Design Considerations. In: Net-
work Processor Design: Issues and Practices, vol. 3, pp. 145–173. Morgan Kaufmann
(2004)

15. Cavium Networks, Inc. Octeon Multi-Core Processor Family,
http://www.cavium.com/OCTEON_MIPS64.html (retrieved December 13,
2012)

16. Integrated Device Technology, Inc. IDT Strengthens Collaboration with AMCC by Deli-
vering NSE Development Kit with AMCC Network Processor Evaluation System. News
release of (March 1, 2004), http://ir.idt.com/
releasedetail.cfm?ReleaseID=414510 (retrieved December 12, 2012)

17. Melnick, R., Morris, K.: AMCC nPcore NISC Architecture. In: Franklin, M.A., Crowley,
P., Hadimioglu, H., Onufryk, P.Z. (eds.) Network Processor Design: Issues and Practices,
vol. 2, pp. 327–342. Morgan Kaufmann (2003)

	Managing Heterogeneous Processor Machine Dependencies in Computer Network Applications*
	1 Introduction
	2 Parallel Processing Model
	3 packetC Language Overview
	4 Translation to Bytecodes
	5 Interpreter as Heterogeneous Processor Orchestrator
	6 Implementing Interpreter and Coprocessor Communication
	7 Experiments Emphasizing Coprocessors
	8 Related Work
	9 Summary
	References

