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Abstract.  Executing complex network packet applications typically requires 
using network processors and parallel processing to handle packet transmission 
speeds of 1 gigabit per second and beyond.  Heterogeneous computing ap-
proaches also employ specialized coprocessors, such as associative memory 
processors for flow matching and regular expression (regex) processors for 
packet payload searching.  Our goals for this kind of heterogeneous processing 
are to free application developers from hardware-specific details and to develop 
systems in which we can deploy new hardware and software components in 
modular, plug-and-play fashion.  Our initial contribution to realizing these goals 
involves (1) expressing classic packet operations in a C dialect as C/C++-style 
operators; (2) compiling user code into bytecodes for a packet-processing  
virtual machine that hides machine-specific details; and (3) interpreting the  
bytecodes with microcoded interpreters that orchestrate an ensemble of hetero-
geneous processors on the users’ behalf. 

1 Introduction 

As computer networks continue their relentless speed increases the need for increas-
ing packet processing speeds moves in tandem. Since the late 1990s network 
processing vendors have responded to the need for speed and flexibility by using net-
work processors that are optimized for classic packet processing tasks.  These proces-
sors are often used in conjunction with separate, specialized coprocessors [1, 2]. As 
Douglas Comer observed in a popular textbook [1], designers have generated a varie-
ty of architectures that typically use some combination of specialized instructions, 
parallel processing and pipelining. His 2005 survey of commercial architectures [2] 
had these categories: 
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• Embedded processors with special instructions for packet processing 
• Parallel processors, assisted by specialized coprocessors 
• Parallel pipelines of either homogenous processors or heterogeneous ones 

Our hardware approach falls into the category for parallel processors, augmented 
with coprocessors.  Our basic building blocks are the following: 

• Network processors (microengines by Intel) with a reduced instruction set comput-
er (RISC) processor as their host 

• Xilinx, Inc.® Virtex® 5 field programmable gate arrays (FPGAs) to perform  
specialized functions e.g., ingress processing, to identify packet headers 

• Ternary content addressable memory (TCAM) chips (associative memory proces-
sors) to match key header fields’ contents 

• Regular expression (regex) processors to match packet payload contents to strings 
specified as regular expressions.  

We use the kinds of processors often seen in commercial systems.  Thus, our con-
tribution is not a particular ensemble of specialized processors but the use of high-
level languages to isolate chip-specifics and interpreters to manage heterogeneity: 

 
• Expressing packet operations with high-level language operators 
• Compiling programs into machine-independent bytecodes for packet processinge 
• Interpreting bytecode programs via multiple copies of a microcoded interpreter, 

running in parallel and orchestrating diverse coprocessors’ actions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Parallel packet processing model and language features (in italics). Copyright Cloud-
Shield Technologies, 2013. 
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The paper reviews our programming model, then traces our extended data types 
and operators from their high-level forms in packetC® [3] through domain-specific 
bytecodes to their implementation by specialized coprocessors.  We present experi-
ments then end by reviewing related work and summarizing. 

2 Parallel Processing Model 

Our ultimate goal is a flexible system in which we can swap one coprocessor for 
another or substitute a software component for a coprocessor.  To support this, our 
model of parallel packet processing has the following characteristics. 

• It uses coarse-grained parallelism at the packet level to hide machine specifics. 
• The host system is expected to provide classic ingress and egress processing (see 

Fig. 1) but the model does not specify how this to be done. 
• Capabilities are specified for matching packet header fields and searching packet 

payloads but their implementation is not. 

Developers express parallelism at a coarse-grained level with a program that com-
pletely processes one packet at a time.  Thus, we allocate each packet to a specific 
copy of the application (a context) and runs the contexts simultaneously in single 
program multiple data (SPMD) fashion.  Using coarse-grain parallelism frees devel-
opers from fine-grain, processor-specific mechanics, like synchronizing low-level 
tasks. 

3 packetC Language Overview 

The first component of the approach consists of using high-level operators in the 
packetC language, rather than lower-level operators that reflect coprocessor specifics.  
packetC [3] extends C99 with data types and operators that provide classic packet 
processing functionality.  Types used in the experiments section are sketched below. 

Databases act like an array of structures divided into identically typed “data” and 
“mask” halves for wildcarded matching against packet contents [5] (typically, to 
match header fields).  Users provide a base type from which the compiler constructs 
the data and mask halves.  Users then match structures against those portions of the 
data half that have bits set to “on” in their corresponding mask.  
 

struct stype { short dest; short src;}; 
database stype myDB[50]; 
// myDB element layout is { stype data; stype mask;}; 
rownum = myDB.match( myStruct ); // do masked search 
 
Searchsets are aggregates of strings or regular expressions that are matched against 

the contents of the packet payload via C++-style methods [6].  The first of the sear-
chset items to be found is reported in a result structure with position information. 



 Managing Heterogeneous Processor Machine Dependencies 283 

 

searchset pets[3][3] = {“cat”, “dog”, “owl” }; 
SearchResult ansStruct; 
try {  // match vs. a 3-byte slice of packet 
   ansStruct = pets.match( currPkt[64:66] ); 
} 
catch ( ERR_SET_NOMATCH ) {…} 

4 Translation to Bytecodes 

Our approach’s second key consists of translating high-level packetC operations into 
machine-independent bytecodes (Fig 2).  Just as packetC hides processor specifics 
from application developers, the bytecodes hide them from the tool-chain and runtime 
support system to isolate the effects of replacing accelerators with new processors or 
software equivalents.  A single bytecode may express a complex operation that will 
be implemented by a specialized coprocessor.  Due to space constraints we show only 
a human-readable version of the database match bytecode as a representative  
example. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.   Example bytecode translation flow for databases and searchsets. Copyright Cloud-
Shield Technologies, 2013. 
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// packetC code – database match 
struct stype { short dest; short src;}; 
database stype myDB[50]; 
rownum = myDB.match( myRec ); // match contents of myDB 
// Bytecode – database decl, then MATCH operation 
DBASE_DECL  myDB [500] 5 // 5 is the ID 
DB_MATCH Id, maskKind, inData, inMask, rownum 
//    Id: integer indicating with DB to use 
//    maskKind: scenario indicator 
//    inData: data to match 
//    inMask: to combine w/ each element mask 
//    rownum: 32bit integer to rec matching DB row # 

The next section describes how we use interpreters to turn the bytecodes above in-
to coprocessor actions. 

5 Interpreter as Heterogeneous Processor Orchestrator 

Our approach’s third component consists of using microcoded interpreters to execute 
bytecodes and encapsulate coprocessor specifics.  Such interpreters can effectively 
exploit machine-level resources and fine-grain operations to implement our bytecodes.  
For example, the interpreters exploit various data pathways to control specialized pro-
cessors.  Interpreters also isolate coprocessor-specific aspects of the communication.  
Specifically, an interpreter 

• Sends a coprocessor input operands in some required format 
• Sends an indication of which operation to perform 
• Receives results and coprocessor error information, again, in prescribed formats 

The complexity of these operations may vary considerably, depending on whether 

• Operands consist of a small number of scalars or an aggregate (such as the packet 
payload treated as a byte array) 

• The coprocessor performs a single operation or many (which must therefore be 
distinguished in communications) 

An appreciation of how such dependencies and of how a bytecode interpreter man-
ages them is best gained by concrete example.  Thus, the next section describes one of 
our fielded system’s processor components and shows in considerable detail how an 
interpreter drives operations on two coprocessor (accelerator) systems. 

6 Implementing Interpreter and Coprocessor Communication 

Our products, such as the PN41 [7], use multi-core network processing units (NPUs) 
optimized for packet operations.  The PN41 uses an IXP 2800 with 16 microengines 
as its NPU Although the IXP is often programmed in fine-grain parallel fashion [8], 
we use the coarse-grained approach described in section 2, with 95 microengine  
contexts running an interpreter and other contexts providing house-keeping functions.  
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These interpreters interact with multiple kinds of coprocessor to implement operations 
originally coded as packetC operators, then translated to bytecode form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. PN41 Communications between IXP-based interpreters and TCAM chips. Copyright 
CloudShield Technologies, 2013. 

In our first example a Xilinx, Inc.® Virtex® 5 FPGA controls a silicon database 
(SDB) that uses Broadcom NL 5512 TCAM chips to match packetC databases.  
When an interpreter encounters a match operation, these actions occur (Fig. 3): 

• The interpreter uses a quad data rate (QDR) interface to send a match command 
(in a control language) to a command mailbox associated with the SDB controller. 

• The interpreter passes the data to compare and ID of the database to use. 
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The TCAM performs a given match on all the relevant database entries in parallel, 
a significant performance benefit.  However, moving operands and results back and 
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The next section presents two experiments that show that this kind of microcoded 
interpretation with coprocessors achieves high speeds. 
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Fig. 4. Searching packet data via a regex system. Copyright CloudShield Technologies, 2013. 

7 Experiments Emphasizing Coprocessors 

The experiments used a CloudShield PN41 [7] 10 gigabit Ethernet blade to run pack-
etC applications and an IXIA® XM12 traffic generator [11] to produce network traffic 
at a maximum of 10 gigabits per second (Gbps).  Each experiment involved micro-
code interpreting bytecodes and invoking coprocessors for key operations. 
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TCAM subsystem shown in sections 4 and 6 above (see also Fig. 3).  For this scenario 
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presence of one or more patterns, defined by a packetC searchset of 10,000 simple 
patterns – each containing a wild card substring.  This searchset and the high-level 
find operation used the bytecodes and regex subsystem shown in sections 4 and 6 
above (see Fig. 4).  The maximum speed achieved, 5.9 Gbps, is expected, since the 
regex subsystem has a maximum speed of roughly 5 Gbps and most of this applica-
tion’s time is spent in the subsystem.  For further details, the packetC source con-
structs and related experiments are described in an analysis of searchsets [6]. 

A traditional presentation might report comparative metrics for alternative tech-
niques, typically from experimental prototypes.  In this paper we report the data 
points that we have, which are from a commercial product line with more than 10 
years in the fields. Our claim is not that techniques we describe are superior in per-
formance to particular alternatives but, instead, that the portability and retargetability 
benefits of this approach are gained while performing deep packet inspection (DPI) at 
speeds of two to nine Gbps, which we believe to be state-of-the-practice DPI at this 
time. 
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Fig. 5. (a) Using a TCAM coprocessor to match a bit pattern. (b) Using a regex coprocessor to 
search for string matches.  Copyright CloudShield Technologies, 2013. 

8 Related Work 

Intel Corporation®’s Microengine C [8] is a C dialect targeted to the IXP network 
processor family.  Its processing model involves breaking programs into multiple 
threads that are partitioned across microengines.  The user manages communications 
among threads and swaps out tasks.  Microengine C reflects a variety of machine-
specific IXP features, such as memory and register classes. 

J. Wagner and R. Leupers describe a processor-specific C dialect geared to the In-
fineon network processor in [12].  Language’s extensions let the user map protocol 
headers to special registers and manipulate those values via operands with arbitrary 
bit-widths.  A collection of compiler intrinsics lets users exploit these capabilities.  

L. George and M. Blume described the NOVA language for the IXP network pro-
cessor in [13].  NOVA has features for specifying header representation, including a 
layout construct for packed and unpacked forms and an overlay construct for alterna-
tive organizations within a layout.  Network Protocol Description Language Vin, et al. 
proposed the Baker programming language [14], a C dialect augmented by data-flow 
concepts, which emphasized pipelining packet data from function to function. 

Cavium Networks, Inc. makes Octeon® networking and communications proces-
sor families [15] that use specialized processors for regular expression processing  
and fast matching.  Their software approach appears to use C/C++, augmented by 
application programming interfaces (APIs) and libraries.  AMCC® has also produced 
network processors (e.g., nP3700) that feature multiple network processing cores and 
specialized coprocessors, including regex processors [16] and TCAMs [17]. 
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MicroEngineC and C for the Infineon® chip extend C to include machine-specific 
details, whereas packetC disguises machine particulars.  Like AMCC and Cavium, 
our architecture uses multi-core processing engines, supplemented by coprocessors.  
However, we use different approaches to translating and running application pro-
grams on those coprocessors.  Although we cannot be certain, our approach appears to 
be the only one on current, packet processing systems that uses microcoded interpre-
ters or  high-level bytecodes to trigger coprocessor operations for classic network 
operations. 

9 Summary 

The key elements of our approach to parallel, heterogeneous programming are 

• Expressing user operations in terms of high-level packetC operators that act on 
extended, C-style data types. 

• Compiling user programs to machine-independent bytecodes that describe a packet 
processing virtual machine. 

• Using microcoded interpreters to process bytecodes and trigger coprocessor opera-
tions as needed. 

packetC high-level operators have proven easy to use and to teach.  Both packetC 
and bytecodes have survived chipset and NPU changes without requiring tool-chain 
redesign or user code recompilation.  The interpreter scheme requires detailed micro-
code, NPU and coprocessor expertise but only from tool-chain developers, not appli-
cation code developers.  Freed from arcane processor details, users can concentrate on 
solving problems in terms of high-level networking application domain constructs.   

We believe the techniques described above, both individually and in combination, 
offer significant benefits to other heterogeneous processing practitioners. 

Acknowledgements. Mary Pham, Scott Tillman, Greg Triplett, Jim Frandeen and 
Minh Nguyen made key contributions to coprocessor subsystems, loaders, and the 
interpreters.  The export approval number for the paper is 13-SAIC-0517-1012. 
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