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Abstract. Workflow scheduling has been traditionally targeted to map
the execution of set of tasks onto a set of resources for makespan min-
imization. With the increasing popularity of Cloud computing systems,
the financial cost entailed for executing these tasks plays also an impor-
tant role. Existing works have however combined both, makespan and
cost, on a single function and no analysis of the tradeoff between both
criteria has been produced. In addition, no work in the context a real
commercial cloud system exists. This paper includes a comparison of two
real multi-objective workflow scheduling, MOHEFT and SPEA2* in the
context of Amazon EC2. The carried experiments show that MOHEFT
outperforms SPEA2* and that the analysis of the tradeoff solutions can
help in selecting good scheduling solutions.

1 Introduction

Scientific workflows are an attractive model for building large scale applications.
Typically, a workflow application consists of several (legacy) programs (referred
from now on as tasks or activities) in the form of a dependency graph, where the
input of some of these programs may depend on the output of the others. The
workflow paradigm does not impose any restriction about the activities that com-
pose an application, being possible that they belong to different actors or agents.
In such a situation, a Distributed Virtual Environment (DVE) [10] appears as
the ideal candidate for the execution of collaborative workflow applications.

Cloud computing is an approach to offer a DVE. Previous work [14] has
pointed out, however, that one of the main challenges in the case of a cloud-based
DVE solution has to do with the design of algorithms for resource provisioning,
i.e., how many resources are required for executing an application. In the context
of workflow-applications, the answer to the aforementioned issue depends on how
the execution of the tasks composing a workflow is scheduled. Traditionally, that
scheduling has been targeted to minimize the time required for executing the
workflow, a.k.a makespan.

In a Cloud scenario the economic cost plays an important role on the schedul-
ing. Many of commercial Clouds apply a hour-based pricing model, i.e., users
are charged per hours of computation. This model introduces a tradeoff between
makespan and economic cost. For example, a workflow that can sequentially run
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in less than an hour in a single machine may be accelerated by considering a par-
allel execution on several machines, thus increasing the price but decreasing the
utilisation of the rented resources. In addition to this, some commercial clouds
offer heterogeneous types of resources at different prices and with different perfor-
mance. For example, in Amazon EC2 (http://aws.amazon.com/ec2/pricing/)
a user can choose among different types of instances, where the fastest re-
source is about eight times more expensive than the slowest one. Under these
circumstances, it is clear that workflow scheduling in a Cloud scenario is a
multi-objective optimisation problem (MOP) aimed at optimising at least two
conflicting criteria: makespan and economic cost. The main characteristic of
MOPs is that no single solution exists that is optimal with respect to all ob-
jectives, but a set of tradeoff solutions known as Pareto front. Solutions within
this set cannot be further improved in any of the considered objectives without
causing the degradation of at least another objective.

While only a few approaches exist for computing these sets of tradeoff so-
lutions, most of the related works [8,9,2] aggregate the different optimisation
criteria in a single analytical function. The main drawback of this approach is
that only a single solution, instead of a set, is computed. In addition, approaches
computing the whole set of tradeoff solutions have been only applied in the con-
text of utility grids or clusters.

The purpose of this paper is to compare and analyse the solutions computed
by two multi-objective workflow scheduling methods on the context of a real
commercial Cloud, Amazon EC2. On the one hand, we consider MOHEFT, a
multi-objective list-based heuristic which extends the mono-objective workflow
scheduing HEFT. Previous work [6] has demonstrated that MOHEFT can com-
pute a high-quality solutions in a set of synthetically defined problems . On the
other hand, we consider SPEA2* [17], as an application of evolutionary compu-
tation to solve this problem. Both, MOHEFT and SPEA2*, are applied in this
work for scheduling two real workflow applications.

The paper is organised as follows. The next section describes the related work.
Section 3 includes some definitions for a better understanding of this work. In
Section 4, we describe MOHEFT and SPEA2*. We present in Section 5 the
experimental setup for evaluating these techniques on Amazon EC2 (Section 6).
Finally, we summarise the conclusions and the future work in Section 7.

2 Related Work

Many existing approaches to multi-objective workflow scheduling reduce the
problem to mono-objective optimisation and compute only a single solution.
There exist two different ways to do so. The first consists in aggregating all
the optimisation criteria in a single function by means of using user preferences.
Previous work using this approach combine reliability and makespan [2,8,9]. The
second line consists in sorting and constraining the different criteria, which are
later on optimised in a sequential fashion as much as possible without violating
the imposed constraints. An example of work following this approach is [15]
where the authors optimise for makespan and economic cost in utility Grids.
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Approaches computing the whole Pareto front are also classified on two groups:
evolutionary-based methods and list-based heuristic. Examples of evolutionary
algorithms applied for multi-objective workflow scheduling are SPEA2*, NSGA-
II*, and PAES* [17], a bi-objective genetic algorithm proposed in [12], and
R-NSGA-II [7]. Different multi-objective extensions of list-based heuristic are
proposed in [4,6] by extending HEFT [16], a popular heuristic aimed at optimis-
ing makespan of workflows in heterogeneous systems.

The aforementioned approaches were however always applied in the context
of utility Grids. To the best of our knowledge, no application of them in a
real commercial Cloud scenario exists. This work differs from related work in
this sense. In particular, our target here is the application and comparison of
MOHEFT and SPEA2* for workflow scheduling in Amazon EC2.

3 Model

3.1 Workflow Model

We model a workflow application as a directed acyclic graph: W = (A, D) con-
sisting of n activities A = |J;_; {A;}, interconnected through control flow and
data flow dependencies; D = {(A;, A;, Data;;) | (A;, Aj) € A x A}, where Data;;
represents the size of the data which needs to be transferred from activity A4; to
activity A;. We use pred(A;) = {Ax| (Ak, A;, Datay;) € D} to denote the prede-
cessor set of activity A;, (i.e. activities to be completed before starting A;). We
assume that the computational workload of every activity A; is known and is
given by the number of machine instructions required to be executed.

3.2 Resource Model

We assume that our hardware platform consists of a set of m heterogeneous
resources R = UL, R;, which can be of any type as provided by Amazon EC2.
In particular, we consider in this paper the five Amazon EC2 resources analysed
in [1]. For a given resource R; of a certain type, we know its average performance
measured in GFLOPs and its price per every hour of computation (see [1]). The
final price is based not only on the resources’ usage, but also in the data stored
and transferred among different instances which depends on four components:
(1) price per hours of resource’s usage PER,; (2) price per MB of data storage
PSr,; (3) price per MB of data received PIg,; (4) price per MB of data sent
PORg,. The prices of these components depend on the Cloud provider.

Amazon EC2 introduces a constraint that must be included in the resource
model. While in theory a user can access an infinite pool of resources, in practice
most providers restrict this number to a maximum of N = 20 instances that can
be simultaneously acquired. These N resources can be of any type and do not
have to keep invariant during the workflow execution.
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3.3 Problem Definition

We use sched(A;) to denote the resource on which the task A; is scheduled to be
executed. We describe in the following how makespan and cost are computed.

Makespan. For computing the makespan, it is necessary to define the execution
time t(a, r;) of an activity A; on a resource R; = sched (A;) as the sum of the
time required for transferring the biggest input data from any A, € pred (A4,)
and the time required to execute A; in R;:

Datap; } " workload (A;) 1)

t = max
(Ai-Rj) Ap6pred(Ai){ bpj 55

where Datay; is the size of the data to be transferred between A, and A;, by;

is the bandwidth of one TCP stream between the resource where task A, was
executed and the resource R;, workload (A;) the length of the task A; in machine
instructions, and s; the speed of the resource R; in number of machine instruc-
tions per second. Next, we can compute the completion time T4, of activity A,
considering the execution time of itself and its predecessors:

t(Ai,sched(Ai))’ pred (A;) = 0;
Ty, = 2
o APEI;I'V%;((AH Tap + t(Az““hed(Ai))} » pred (A;) # 0. @)

The workflow makespan is finally defined as the maximum completion time of
all the activities in the workflow:

Tw = igi’;] {T(Ai,sch,ed(Ai))} . 3)

Economic Cost. The economic cost depends on two terms: the computation
cost C(¢©P) and the cost of data transfer and storage C(et@),

We define C’((i(,ltg_) as the cost of the data transfers In(A;) and Out (A;) and
storage Data (A;) resulting from executing activity A, on resource R;:

CE(ZI:T;J) = Data (A.L) . t(Ai‘Rj) . PSRi =+ I’I’L(AL) . PIRi + Out (A.L) . PORi7 (4)

In defining the cost Cl(%cjomp ) of using a resource R;, we assume that for each

task A; executed on R; we record two timestamps: tf;jwt) when the activity

starts and tf::td) when the activity finishes its execution. We consider without
loss of generality that the times for transferring the input In (A4;) and the output
data Out (A;) are included in the interval between tf:fart) and t(Aeind).

Let us consider now the set of all p activities scheduled on resource R; denoted

as {Ji,...,Jp}, where p < n and sched (J;) = R;,i € [1,p], sorted based on their
start timestamp: t(f'lmrt) <. < t(f:a”). Based on this ordering, we cluster these
activities in ¢ < p different groups G,(cj ), 1 < k < g, so that all activities in
one group are executed consecutively without releasing the resource. After the

activity with the largest start timestamp in the group completes, the resource is
released.
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We construct the first group ng) ={Jy,...,Jr},r < p following three rules:

1. The first activity J; belongs to the first group: Ji € ng);

2. Every activity J; € ng),Q < i < r, starts before the current leased hour
expires and before the machine is released:

) _ 4(start)

(end
4 (stort) < t(stn,rf,)Jr tJi—l J1 3600 (5)
Ji 1 3600 '

We divide the total time in seconds of using a resource by 3600 in order to
convert it to hours, and use the ceiling operator to round this value to com-
plete hours of computation. This equation guarantees a contiguous resource
allocation of activities within one hour slot;

3. The next activity not part of the first group J,1+1 ¢ ng), r+ 1 < p, starts
after the last hour of computation elapses and the resource is released:

t(;nd) _ tf;"m)
(start) r 1 . (start)
5+ 3600 3600 < 57 (6)

Successive groups are built until the last activity J, has been assigned to one

group. The second group ng ) is constructed in the same way starting from the

task J,41 instead of Ji. The same strategy is used for the rest of the groups.

Once all the groups have been created, we define the cost C’I({C;mp ) of using the

resource R; as the number hours required for executing all groups multiplied by
the cost per hour:

clom?) = pEp . 7
R; LAY 3600 (7

k=1

q "EAieGg_) t(Ai‘Rj)“
J .

We compute the economic cost of executing the entire workflow W = (4, D)
as the computation cost on all m resources plus the cost for transferring and
storing the data:

m

_ (comp) (data)
Cw = ZCRj + > C(Ai,Rj)‘ ()
J=1 (Aj,Aj,Data;;)eD

4 Evaluated Techniques

MOHEFT. This method extends HEFT [16] for multi-objective workflow
scheduling. MOHEFT [6] requires the number and type of each resource be-
fore its execution and the size of the set of tradeoff solutions K. It starts by
ranking the tasks in the workflow using the B-rank metric and creating a set
S of K empty schedules. Afterwards, MOHEFT iterates over the list of tasks
and extends every solution in S by mapping the next task to be executed onto
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all m possible resources. These new produced schedules are stored in a tempo-
ral set S’, initially empty. After each iteration, S’ replaces S before the next
task in the list is considered. Obviously, this strategy results in an exhaustive
search if we do not include any restrictions. To avoid it, MOHEFT saves only
the best K tradeoffs solutions from the temporary set S’ to the set S. These
best solutions are selected based on the objective functions and the diversity of
the set, i.e., how different are the selected solutions (see [6]). MOHEFT was
not originally designed for working with commercial clouds. As a consequence,
some modifications are applied in this work to deal with the characteristics of
such systems, like the restriction on the maximum number of instances that can
be used simultaneously. To deal with this scenario, we extend the algorithm to
discard any schedule that use more than N simultaneous resources.

SPEA2*. This algorithm proposed in [17] is a genetic algorithm. It works
with a population (set) of solutions which are iteratively recombined with the
aim of evolving towards the optima. SPEA2* is initialised with a nearly-optimal
solution in terms of makespan (computed using HEFT) and in terms of economic
cost (computed with a heuristic aimed at optimising cost). Here, we consider
SPEA2* with an population size K = 10 and run it for 1000 generations, as
performed in [17].

To adapt it for the cloud scenario, we slightly modified SPEA2* in this work.
In particular, we enhanced the algorithm with a mechanism for dealing with
constrains, similar to the one proposed in [5]. This mechanism always compares
first two solutions on the basis of their constraint violation. Solutions which do
not violate the constraint are preferred to solutions which violate it (i.e. schedules
using 20 or less instances simultaneously are preferred to schedules using more
than 20 instances). If both solutions violate the constraint, the one violating it
in a lesser extent is preferred (i.e. a solution using 23 machines simultaneously is
preferred to a schedule that uses 30). In any other case, solutions are compared
considering their makespan and economic cost. By using this mechanism, only
the solutions which violate the constraints less survive to the next generation.

It is worth mentioning that SPEA2* is an stochastic algorithm and then it
may compute different fronts in different runs of the algorithm. In order to avoid
our conclusions be biased by any hazard effect, we run it for five times and always
consider the run producing the front with the best values.

5 Experimental Setup

We describe in this section the criteria considered for our comparison, the work-
flow applications, and the resources infrastructure.

Evaluation Metrics. We consider three criteria for comparing the quality of
solutions computed by MOHEFT, and SPEA2*: the shortest makespan of the
schedules computed, the cheapest solution reported by each technique. For the
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sake of comparison we also include HEFT in our graphs describing the results.
We also attend to the quality of the computed set of tradeoff solutions. In this
last case, we use the hypervolume quality indicator [11]. This indicator assigns
a numerical value to each set of tradeoff solutions. The higher this number is,
the better the solutions within the set.

We also analyse the computed tradeoff solutions. The idea is to study the bal-
ance between makespan and cost, and how much can be gained in one objective
by deteriorating the other. For this analysis we rely on a graphical representa-
tion of the solutions computed by the two algorithms. The presented graphs start
with the most makespan-efficient schedule and continue along the Pareto-front
towards the cheapest solution. The two plotted metrics, the cost savings and
the makespan deterioration, are presented as percentages relative to the most
makespan-efficient solution.

Workflow Applications. We consider in our evaluation two real-world work-
flows coming from our real-world collaborations with domain scientists in the
Austrian Grid. These two applications are known as WIEN2k [3] and POV-
Ray [13]. The former is a material science workflow for performing structure cal-
culations of solids using density functional theory based on linearized augmented
plane-wave; the latter is a free tool for creating three-dimensional graphics. Both
workflows contain a high number of independent activities that can be executed
in parallel, as well, as sequential parts.

Resource Infrastructure. We consider that the user has access to the default
maximum number of N = 20 Amazon instances which can be of any of the five
types summarised in cite [1]. We assume that no public IP addresses are required
for running the experiments on the Amazon EC2 infrastructure. Additionally,
the output data transfers from Amazon to the outside Internet are constant,
take place only at the end of the workflow execution and thus, do not influence
the scheduling results. In this situation, we assume in our experiments that the
prices for data sent and received are zero: PIr, =0 and POg, = 0.

6 Evaluation

In this section we compare MOHEFT and SPEA2*. For the two considered
applications, we have evaluated different workflow instances containing between
100 and 1000 activities.

Wien2k. Fig. 1a shows that MOHEFT always outperformed SPEA2* in terms
of the hypervolume. The differences in this metric value are high and tend to
increase with the number of workflow activities. An explanation for this be-
haviour is related to the higher difficulty of solving this workflow application.
Our hypothesis is that SPEA2* got stuck in some areas of the search space, thus
requiring a prohibitively large number of evaluations for increasing the quality
of the computed results. The results for makespan and economic cost displayed
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Fig. 1. Evaluation results for the WIEN2k workflow

in Fig. 1b and 1c. In these criteria, both algorithms performed equally well and
computed the solution with the lowest makespan and similar cost.

An example comparing the tradeoff solutions delivered by MOHEFT and
SPEA2* is illustrated in Fig. 1d. In this case we can see that huge economic
savings can be obtained by MOHEFT with only a small increase in makespan.
In this case, SPEA2* requires a huge loss in performance for obtaining similar
cost results. For example, MOHEFT computed a solution which halves the price
of the schedule with the shortest makespan and experienced only a 5% of time
deterioration. Meanwhile, a 1% of cost saving in SPEA2* would have required
an increase of 250% in makespan. In 23.3% of the cases, SPEA2* computed
schedules requiring more than 20 resources, while all solutions computed by
MOHEFT met this constraint.

Pov-Ray. Fig. 2a shows the hypervolume of the sets of tradeoff solutions. Also
in this case MOHEFT outperformed SPEA2* for all the evaluated workflow sizes.
For this application, the higher the number of tasks in the workflow is, the harder
is for MOHEFT to compute a set of tradeoff solutions with high quality. This
result can be visualized in the hypervolume that decreases with the number of
tasks. This behavior is not that obvious for SPEA2*, however, the quality of the
computed fronts are of poorer quality than the ones of MOHEFT, as reflected by
the low values of the indicator. As in the previous experiment, all the algorithms
computed the same solution with the shortest makespan (see Fig. 2b) and the
same cheapest schedule too (see Fig. 2c).

An example of the tradeoff solutions computed by MOHEFT and SPEA2* for
this application is shown in Fig. 2d. In this case, while MOHEFT found a solution
halving the price for the sake of only 3% increase in makespan, SPEA2* required
a 4.7% increase. Nevertheless, the small difference between both techniques has
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Fig. 2. Evaluation results for the POV-Ray workflow

to be carefully interpreted, since in 40% of the cases SPEA2* has been unable
to produce a workflow schedule using 20 or less resources.

7 Conclusions and Future Work

In this paper we compare the tradeoff solutions computed by two multi-objective
workflow scheduler, MOHEFT and SPEA2, in the context of the commercial
Clouds Amazon EC2. Both methods are evaluated using real-world applications.

In all experiments, MOHEFT computed schedules with the same makespan
as the SPEA2* and similar economic cost; however, MOHEFT outperformed
SPEA2* in terms of hypervolume used as an indicator of the quality of the whole
set of tradeoff solutions, meaning that for the same cost, MOHEFT computed
solutions with shorther makespan. Finally, our experiments revealed that MO-
HEFT was able to meet the constraints imposed by current commercial Clouds
in terms of the maximum amount of instances, while SPEA2* failed on this issue.
We also showed the potential of the Pareto front as a tool for decision support
in selecting the most appropriate tradeoff solutions. In particular, the visualisa-
tion of the Pareto front for some workflow types revealed that one can obtain
solutions with a marginal 5% makespan increase by investing half of the money
in renting Cloud instances. In future work we intend to evaluate MOHEFT and
SPEA2* for other objective functions such as security issues, reliability of spot
instances or energy consumption.
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