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Abstract. Collecting, managing, and analyzing huge data sets (i.e., Big
Data) in science and industry poses challenges to current data storage
systems in terms of storage capacity, performance, and reliability. In
particular, the I/O performance may be a key factor to speed up the
data analysis. However, the performance of a storage system significantly
depends on its configuration and the access pattern. Designing stor-
age systems always implies making compromises between performance,
fault tolerance and net capacity. The decision which compromise is made
(e.g., which RAID level is used) has to be taken at deployment time be-
cause runtime reconfigurations are usually prohibitively expensive (due
to coarse granularity) in current storage architectures.

In this paper, we propose a workload-driven approach to adaptive re-
configuration covering the functionality of the file system, volume man-
ager and RAID. Our approach enables fine-grained reconfigurations of
the data organization of files and file fragments to adapt the storage
system to changing workloads, while considering the different character-
istics of the storage devices (e.g., SSDs and HDDs) in a heterogeneous
storage system. We first discuss how our approach decreases the costs of
adaptations compared to existing approaches making a continuous and
effective adaptation feasible, even for large volumes of data. Then, we
present an evaluation based on a prototypical implementation confirming
the benefits of our approach.

1 Introduction

The capability to manage, process, and analyze data sets of extreme size, di-
versity, and complexity is becoming a key requirement in modern business. It
enables companies and organizations to mine such sets of Big Data for valuable
information in order to faster gain enhanced insight into trends, customers, and
markets as well as to better identify opportunities and assess the risks. In this
context, storage systems are an essential prerequisite that links the collection of
data with its subsequent analysis. First and foremost, a storage system has to
provide enough capacity to accommodate Big Data volumes. But beyond that,
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the speed with which data can be accessed is particularly important [6] in or-
der to accelerate the processing and analysis of data sets. With the advent of
new storage technologies such as flash memory as built into Solid-State Drives
(SSDs), more storage alternatives to conventional Hard Disk Drives (HDDs) be-
come available that, on the one hand, promise a significant performance gain
and speed up, but on the other hand, currently offer only limited capacities at
much higher costs. To profit from both worlds, heterogeneous storage systems
provide an elegant solution.

Heterogeneous storage systems often comprise several drive pools each featur-
ing a different technology [2,4] and/or data organization, e.g., RAID scheme [11].
Please note that besides the storage technology, data organization also has a ma-
jor impact on performance (with respect to bandwidth and latency of requests),
reliability (with respect to drive failures), and usable storage capacity [5]. Each
data item is, then, stored in the pool which best meets its performance, reliabil-
ity, and capacity requirements. Moreover, if the access pattern changes, the data
item can be migrated to a different pool that better suits the new pattern which
renders the storage system adaptive. In general, this is leveraged to maximize
the performance for those data items accessed most frequently1.

However, the coarse granularity of adaptations provided by current storage
systems severely limits the effectiveness of this approach. In fact, only logical
volumes are often subject to migration although access statistics within the
volume may vary widely. Thus, decisions are based on mean values and also affect
those portions of the volume that actually do not profit from migration. Even
if sub-volume data units are considered [4], as done by more advanced storage
systems, these units still have the size of several megabytes. This alleviates the
issue, but does not solve the problem. Similarly, adapting the size of the storage
pools or changing their RAID policy is usually avoided [11] due to the coarse
granularity of the required data reorganization and associated reorganization
costs. For instance, removing a drive from one pool and adding it to another
with a different RAID configuration, requires a complete data reorganization on
the block layer for both pools. In particular for Big Data volumes, it is nearly
impossible to accurately estimate whether this huge reorganization effort will
pay off in reasonable time.

In this paper, we present a workload-driven approach for an automated fine-
grained reconfiguration of storage systems. By adapting the storage configuration
in tiny steps, we can capture access patterns much more accurately in large
volumes while minimizing the migration and reorganization overhead at the same
time. For this purpose, we apply RAID policies at sub-file level and track access
patterns at this granularity in order to decide on reorganizations based on the
evaluation of benefits and costs. We provide a case study and evaluation that
proves the feasibility of the approach and demonstrates its advantages.

1 Alternatively, caching is often used to speed up access times for frequently used data.
Please note, that caching is an orthogonal concept that can be used in addition to
data migration and RAID policy adaptation, respectively.
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The remainder of this paper is structured as follows: Sect. 2 introduces the
background on RAID systems. Based on that, we present our approach in Sect. 3.
Sect. 4 describes our case study, followed by the experimental evaluation. Finally,
the paper is concluded in Sect. 5.

2 RAID

RAID (Redundant Array of Independent Disks) [9,8] denotes a technique for
combining a drive collection into a single logical drive to increase the perfor-
mance, reliability and storage capacity. This is achieved through data striping
(declustering), mirroring and/or adding parity. A RAID policy is defined by
means of different attributes and their values: the RAID level, the number of
used drives and configuration parameters specific to the RAID level (e.g., the
stripe unit or chunk size, the number of data copies). The RAID level deter-
mines the data organization and which of the concepts above are used. Each
RAID policy provides a different trade-off between performance, fault tolerance,
and usable storage capacity. Thus, an improvement regarding to one of the char-
acteristics often goes along with a degradation in at least one of the others.

A RAID policy can be specified and implemented on different levels within
the storage (software) stack, which has major implications for the policy’s scope
and the reorganization overhead in case of a policy change. Most RAID systems
are implemented on the block layer and, thus, allow to specify a policy on a per-
volume basis. More advanced implementations additionally subdivide volumes
in smaller units in the range of several megabytes and allow to set a RAID policy
for a group of such units. Changing the RAID policy requires the reorganization
of the complete volume or, in the case of sub-volume units, considerable parts of
it causing substantial reorganization overhead. Since on the block level, it cannot
be distinguished whether a block contains user data or is actually unused, the
overhead is always proportional to the size of the reorganized storage space.

More recently, RAID logic has been integrated into file systems such as Btrfs
or ZFS. Nevertheless, the RAID policy applies to whole volumes, and is eventu-
ally implemented on the basis of blocks. Reorganization support is still rudimen-
tary or even missing although it may be implemented in a clever way considering
only used blocks. However, when RAID and file system implementations are com-
bined, there is no reason to not allow a more fine-grained specification of the
RAID policy, e.g., on the basis of directories or even individual files as proposed
by Appuswamy et al. [1]. This increases flexibility but does not always reduce
the overhead of potential data reorganizations in case of policy changes because
large files may have the size of or may even be bigger than small volumes.

3 Automated RAID Policy Adaptation

As motivated in Sect. 1, automated reconfiguration of the RAID policy is a
promising mean to address changes in access pattern. However, reconfiguring
large volumes containing assets of Big Data suffers from high costs due to the
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coarse-grained application of common RAID policies. Therefore, we propose to
apply reconfigurations as fine-grained as possible based on the trade-off between
cost and benefit that is derived from continuous monitoring of access pattern
and requirements (specified by application or user).

The idea is to decompose files into small segments and specify the RAID pol-
icy for each segment that can later be individually changed and adapted. The
data chunks of each segment are then distributed over available drives according
to the segment’s RAID policy. Disjoint drives are randomly selected when a new
segment is created in order to spread larger requests over multiple drives and
balance the load. The exact mapping is stored in metadata and is independent of
the chunk’s position within the segment. Depending on the modified attributes,
this can avoid relocations of the chunks when the RAID policy is changed. Obvi-
ously, this approach needs a tight integration into the file system. In this paper,
however, we neglect integration details and solely focus on an automated adap-
tation. In particular, this includes the general concepts to derive an adaptation
policy that takes application requirements and reorganization costs into account.

3.1 RAID Reconfiguration Control

The control of RAID reconfigurations is based on the evaluation of system pa-
rameters and settings as well as on optimization objectives and priorities between
them, thus, basically restricting possible reconfigurations. If, for instance, a par-
ticular level of fault tolerance needs to be ensured for certain files, a number
of more efficient, but less reliable RAID policies may not be applicable. For
the remaining policies, optimization objectives such as performance or storage
capacity help weighting the gains of different alternatives. The selection of the
RAID policy is based on a generic bonus-malus system which also triggers the
execution of corresponding RAID reconfigurations.

To optimize performance, for instance, the data layout of a file segment is
adapted to the most frequent access pattern. Thus, if the current layout is well
suited for a particular request, a bonus is granted encouraging the current RAID
policy, otherwise a malus is taken into account. Bonus and malus are set off
against each other, whereby the bonus-malus ratio is maintained for each file
segment as score. The score is increased when a malus is taken into account
and decreased in the case of bonus. However, the score is reset to 0 when it has
dropped below 0 in order to keep the heuristic reactive to pattern changes. If
the score reaches a predefined upper bound, the RAID policy is changed and
a corresponding reconfiguration is triggered. Hence, when defining the upper
bound, a threshold depending on the reorganization overhead needs to be con-
sidered. To reduce the latency of the request that triggered the reconfiguration,
the reconfiguration can take place after the request has been served.

If optimizing for storage capacity, space-efficient data layouts periodically get
a bonus, while others receive a malus. In the meantime, however, the space-
inefficient layouts may also score bonus points if data accesses are served per-
formantly. As consequence, primarily cold data gets reorganized first, while
performance-oriented RAID policies are kept for hot data as long as possible.
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With respect to reliability, we assume that a minimum level of fault tolerance
is defined for each data item. Therefore, reconfigurations due to optimization of
performance or storage capacity consider only RAID policies meeting this level.
If the defined reliability level is low enough, performance optimization may result
in striping without redundancy, trading reliability for performance and capacity.

3.2 RAID Reconfiguration Costs

A data layout reorganization in the course of RAID reconfiguration causes ad-
ditional read and write requests to the drives that dominate the reconfiguration
overhead. Hence, we discuss the overhead in terms of such requests. The reconfig-
uration overhead depends on which changes of the RAID policy are performed.
In all cases described below, the number of read requests can be reduced if the
affected data is located in the page cache. Changing the RAID level corresponds
to switching between striping (either with or without parity) or mirroring. In
the event of switching from striping to mirroring, each chunk of a stripe has to
be read and replicated multiple times in order to produce the desired number of
copies. However, the original chunk can be reused saving one write. Switching
from mirroring to striping requires to read the mirrored data and write it to sev-
eral stripe units. Additionally, in the case of striping with parity, it is required
to calculate and write the parities.

Changing the number of drives used in a RAID policy also has a major impact.
In the case of mirroring, this translates to increasing or decreasing the number
of copies. Adding copies requires reading a chunk once and writing it to each
additional drive. Decreasing the number of copies, however, may not require
accessing the data at all. In the case of striping, the change of stripe width
necessitates to relocate at least a subset of chunks in each stripe of which each
must be read and written. If parity is involved, all parities have also to be
recalculated and rewritten. Moreover, assigning chunks to drives independently
of their position within the stripe can avoid relocations in certain situations, e.g.,
when parity is added/removed and the stripe width is correspondingly adjusted.

4 Case Study: RAID Level Reconfiguration

This section describes an exemplary instance of the approach proposed in Sect. 3.
The objective is to maintain high write throughput by adapting the RAID level
based on the request size under the constraint that no data should be lost in the
case of up to two arbitrary drives failing simultaneously. Therefore, we consider
RAID 10 with triple mirroring and RAID 6 and fix the number of drives to the
minimum of six. Furthermore, we also fix and use the same maximum chunk size
for both RAID policies. Thus, in case of reconfiguration either a file segment in
RAID 6 layout is split into two RAID 10 segments or two adjacent RAID 10
segments are merged into one RAID 6 segment. Both reconfiguration cases do
not require a relocation of data chunks, reducing the reorganization overhead.
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Table 1. RAID 6 and RAID 10 layout scores for HDDs and SSDs

Affected Chunks RAID 6 HDDs RAID 10 HDDs RAID 6 SSDs RAID 10 SSDs
1 56 29 30 10
2 55 53 28 20
3 56 72 24 38
4 54 94 21 39

4.1 Reconfiguration Policy

The write throughput depends on the number of affected chunks within a file
segment which results from the request size. The reason is that write requests
to a file segment translate to different number of subsequent chunk reads and
writes depending on the number of affected chunks. The assessment of each
RAID layout, with respect to the number of affected chunks and device type
(HDD or SSD), is based on measured average throughput (the measurements
are described in Sect. 4.2). The considered write overhead is determined by
averaged write latency, which is translated into scores summarized in Table 1,
where 1 point equals 0.1 ms for HDDs and 0.01 ms for SSDs. For example,
according to the first line in Table 1, a write affecting one chunk takes 5.6 ms on
HDDs for RAID 6, but only 2.9 ms for RAID 10, saving 2.7 ms when performed
in the better suited RAID 10 layout. The considered bonus or malus equals the
difference in write latency between the RAID 6 and RAID 10 layout with respect
to the device type.

After completing a write request to a segment, its RAID level is switched in
the case that its score exceeds a threshold. A reasonable minimum value for the
threshold is given by the reconfiguration overhead, but it should be set higher
in order to avoid oscillations between the two configurations. The considered
reconfiguration overhead is based on measurements and corresponds to the av-
erage reconfiguration time (the corresponding measurements are described in
Sect. 4.2). Switching from RAID 6 to RAID 10 requires 9.9 ms on HDDs and
0.54 ms on SSDs. The reconfiguration threshold is set to 100 for HDDs and to 55
for SSDs. Switching from RAID 10 to RAID 6 requires 6.5 ms on HDDs (which
lies below the average access time of 8.5 ms [10] due to seek time optimizations
performed by the HDDs when multiple requests are submitted in parallel) and
0.29 ms on SSDs. Thus, the threshold is set to 66 for HDDs and to 30 for SSDs.

4.2 Experimental Evaluation

A server-class machine (2x Intel Xeon E5-2680, 128 GiB RAM, LSISAS2308 con-
trollers) equipped with Seagate ST91000640SS HDDs and Samsung 830 SSDs
served as testbed. On the software side, Linux (kernel 3.7) was used and all
measurements were obtained using fio 2.0.13 [3]. The workload consisted of syn-
thetically generated file I/O traces. The RAID reconfiguration (explained in
Sect. 4.1) was emulated by translating file I/O traces into resulting I/O requests
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Fig. 1. Average write throughput for RAID 10 compared to RAID 6 considering dif-
ferent number of affected chunks (64 KiB per chunk)

to block devices before measurement. Then, these requests were submitted to
drives using fio and employing direct, native Linux asynchronous I/O. Further-
more, the noop I/O scheduler was used and NCQ was enabled for all drives. To
minimize the impact of caching, the on-drive caching was disabled on HDDs,
however, not on SSDs because read caching cannot be disabled using hdparm or
sdparm. In all experiments, the maximum chunk size was 64 KiB. Each experi-
ment was repeated three times and the mean value was taken as result. In the
case of SSDs, the TRIM command was applied between runs to discard all data.

The assessment of the considered RAID configurations described in Sect. 4.1
is based on measurements of the average write throughput on varying number
of affected chunks, which were performed separately for HDDs and SSDs to
consider the different device type characteristics. Write requests were carried
out on a set of files on randomly chosen file segments with request sizes based
on the intended number of affected chunks: 64 KiB for 1 chunk, 128 KiB for
2 chunks etc. Moreover, to consider the influence of spare capacity on the write
performance of SSDs [7], file sets of different sizes were used (Fig. 1(b)). For each
RAID layout and device type, the average throughput was measured for writing
an amount of data corresponding to 60 GiB.

The measurements for HDDs depicted in Fig. 1(a) show that RAID 10 is more
suitable for writes affecting up to 2 chunks, while RAID 6 should be preferred
when 3 or 4 chunks are affected due to the higher throughput. The results for
SSDs in Fig. 1(b) indicate the same trend, while the differences between RAID 10
and RAID 6 are more pronounced for writes affecting up to 2 chunks. However,
the measurements also show that RAID 10 throughput is highly sensitive to
the amount of occupied capacity and, hence, of available spare capacity. SSDs
perform out-of-place updates, thus, if our data set occupies as much capacity
that further write requests will trigger the garbage collection, the write perfor-
mance drops significantly (cf. [7]). This effect is emphasized in cases where the
file set occupies the whole drive capacity, which is represented by the black bars
in Fig. 1(b). However, RAID 6 is less sensitive to this effect since its data layout
occupies only half of the storage capacity (in our setup) compared to RAID 10.
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Therefore, the throughput remains roughly the same. Please note, that we cope
with the sensitivity of SSDs to the amount of spare capacity in the remain-
ing experiments by choosing the amount of written data such that the storage
capacity of each SSD is not completely utilized. The reconfiguration thresholds
mentioned in Sect. 4.1 are based on measurements of the average reconfiguration
time on HDDs and SSDs. For both types of reconfiguration and each device type
320, 000 file segments (80 GB file data) were reconfigured in random order. The
overall duration was measured and used to calculate the average reconfiguration
time.

The proposed heuristic for adaptation of the RAID level to the write re-
quest size was compared to an offline algorithm as well as to static RAID 6
and RAID 10 setups. An offline algorithm determines which initial RAID level
and reconfigurations lead to the highest write throughput with respect to the
empirical cost model described in Sect. 4.1 based on the a priori knowledge of
all write requests to each file segment. For the sake of comparing the RAID level
adaptation to static setups, the average write throughput was measured based
on five synthetically generated workloads (denoted as A, B1, B2, C1, and C2)
with different characteristics that are described in the following. Each workload
represents overwriting data in randomly chosen file segments (in a set of files
comprising 20 GB data) with different request sizes, which leads to different
number of affected chunks. The overall amount of data written to a set of files
equals 200 GB for each workload. In workload A, the size of each write request
is chosen at random, hence, each number of affected chunks is almost equally
likely. Unlike this, in the remaining workloads B1, B2, C1, and C2, a partic-
ular file segment receives a number of recurring writes that last for a certain
period, whereby this period is four times longer for B2 and C2 than for B1 and
C1, respectively. Moreover, the request size distribution of B1 and B2 is biased
to larger requests affecting 3 and 4 chunks. In contrast to this, C1 and C2 are
dominated by smaller requests, i.e., 1 chunk and 2 chunks.

The results for HDDs depicted in Fig. 2(a) indicate that the RAID level adap-
tation heuristic leads to a notable performance gain, if a certain write pattern
persists for a longer amount of time, which applies to the workload B2 and C2.
For both workloads, the average write throughput reaches over 95% of through-
put achieved by the offline algorithm, whose optimization decisions are based
on the a priori knowledge of all performed write requests. However, if the write
pattern changes more frequently (as in workload B1 and C1), the heuristic can
trigger reconfigurations that will not pay off, thus, even leading to lower per-
formance than a static configuration. This applies for workload C1, where the
heuristic reaches a notably lower throughput than RAID 10. However, this ad-
vantage seems less when the write pattern changes, e.g., making the RAID 6
setup the better choice. Beside that, the results for workload A indicate a min-
imal deviation from the empirical cost model, due to approx. 1% higher write
throughput in the case of RAID 6 compared to the offline algorithm.

The results for SSDs depicted in Fig. 2(b) show that the heuristic outper-
forms both static setups for workloads dominated by small requests (C1 and C2).
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Fig. 2. Relative average write throughput for HDDs and SSDs compared to offline
model-optimal RAID level adaptation

However, as C1 and C2 are dominated by small requests, RAID 10 is expected to
be the better choice according to the write overhead results shown in Fig. 1(b),
where RAID 10 clearly outperforms RAID 6, which seems to clash with the re-
sults for C1 and C2 (where RAID 6 slightly outperforms RAID 10). This stems
from the recurring writes to a file segment that increase the temporal locality of
reference, which is exploited by the on-drive caching. Please note, that RAID 6
also incurs subsequent chunk reads in the case that writing a file segment affects
up to 3 chunks, which does not apply to RAID 10. Thus, when all chunk reads
are served from cache the difference between RAID 6 and RAID 10 is evened out
if a write affects 1 or 2 chunks. Furthermore, read caching performed by SSDs
also widens the performance gap between RAID 6 and RAID 10 for workloads
B1 and B2, and additionally introduces a remarkable deviation from the empir-
ical cost model (RAID 6 performs better than the offline algorithm). However,
for workload A the impact of caching is less pronounced due to lower temporal
locality.

5 Conclusion

The performance of secondary storage systems is crucial, in particular, when
processing Big Data. It may be the decisive factor to accelerate and speed up the
data analysis allowing it to complete within a given time frame. In this paper,
we tackled the challenge of adapting the data organization in heterogeneous
storage systems to access patterns and storage requirements (e.g., performance,
reliability, and capacity). We have proposed a scheme for a workload-driven
RAID policy adaptation that was employed in order to increase the performance.
To avoid prohibitive reorganization costs due to moving potentially large amount
of data, our approach is based on RAID policies that are applied at sub-file level.
This permits reacting to fine-grained changes of the workload. We evaluated
this approach using a case study and an initial implementation, showing both,
its applicability and its advantages. However, our results also make clear that
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the characteristics of different device types and caching have to be properly
considered in order to avoid that optimization turns into the opposite.

As very large data sets have often to be distributed over several storage servers,
we plan to continue our research in two directions: First, we will further improve
the adaptation strategies and consider the current requirements on storage space
and reliability as well as extending the reconfiguration to further parameters.
This requires to refine the model of the secondary storage system by taking
device-specific performance properties and the impact of caching into account.
In addition to this, it may also be beneficial to consider hints provided and
requirements posed by applications. Second, we will extend our strategies to
scenarios, where data sets are distributed over multiple storage servers. In this
case, global information on access patterns, demands, and system state need to
be gathered and exploited to improve the overall data organization.
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