
Impact of the Memory Controller

on the Performance of Parallel Workloads

Crisṕın Gómez Requena

Departamento de Sistemas Informáticos,
Universidad de Castilla–La Mancha, Albacete, Spain

Abstract. Multicore processors have become de facto the typical pro-
cessors being implemented in almost all microprocessor-based systems
ranging from embedded devices to large-scale data centers.

Technology advances allow the integration of a larger amount of cores
with each new microprocessor generation. Consequently, the number of
memory requests competing for memory rises, so increasing the already
huge memory latencies. A straightforward solution to deal with this prob-
lem is to increase the number of memory controllers so spreading memory
requests among them. However, this solution is not feasible because it
would be too costly and it is also limited by technological constraints
since core size shrinks at a higher pace than the memory subsystem
components.

This paper explores the impact of the number of memory controllers
for a medium to large range (manycore) of number of cores with the aim
of analyzing the best tradeoff between performance and cost. Results
are shown for parallel workloads, which are typically targeted to these
processors.

1 Introduction

Chip-multiprocessors (CMPs) have dominated a wide spectrum of the
microprocessor market, ranging from embedded to supercomputers, since a
few years ago. The on-chip core counts in CMPs have rapidly grown and it is
expected to reach several hundreds of cores in the following years
[Bell et al.(2008)Bell, Edwards, and Amann, et al]. This trend will even grow in
a more significant way in computation-intensive environments like servers, where
even we can find current products with tens of cores [Held(2010)]. This means
that manycore processors are in the near horizon.

This large number of cores jointly with the tend to implement aggressive
out-of-order execution cores contribute to increase contention in the memory
subsystem which in turns increases even more the high latency of accessing the
main memory. A way to hide this huge memory latencies observed by cores and
increase the memory bandwidth is based on using several memory controllers
in order to increase the parallelism in the memory access. Having several mem-
ory controllers helps to the system performance but at expenses of important
energy consumption, which means that the selection of the number of mem-
ory controllers in a system must be properly balanced to provide competitive

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 423–432, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



424 C.G. Requena

products in the market achieving the best performance with the least power
consumption.

Due to this fact, this paper analyzes the impact of the memory controller
design in CMPs. The idea is to provide insights on how many memory controllers
are required depending on the core aggressiveness. In particular, as cores are
more powerful and a larger number of them are present in the processors, the
memory subsystem becomes the main bottleneck, and therefore in this paper
we explore the memory subsystem performance, as a measure of the system
performance, by analyzing the impact of the number of memory controllers on
the latency observed by cores.

In this paper, we assume that a CMP is composed by two main subsystems:
core and main memory. Actually, the system performance depends on the inter-
action among them. On one hand, the cores are the elements that can produce
the memory requests and the memory is the one that receives and answers these
requests. However, a deep and through study of all the interactions among them
is out of the scope of this paper.

From the applications point of view, while it is true that serial workloads
still make up a strong segment of the market today, many-core processor designs
usually assume parallel workload as recently claimed by James Reinders, Director
of Intel Corporation [Jam(2012)]. Thus, in this paper we use parallel workloads
to perform this analysis as the workloads that must be considered in highly
parallel systems.

Experimental results show that increasing the number of memory controllers
in the system helps the machine to reduce the overall memory latency observed
by cores which depends on the number of cores and the core aggressiveness and
is translated to lower execution times for the benchmarks. Thus, in this paper
we claim that a holistic system design must be done considering the features of
the different components in order to obtain a balanced system, obtaining the
highest benefits of each component.

The remainder of this paper is organized as follows. Section 2 presents the base-
line system architecture and discusses pros an cons on the overall performance
from the two major subsystems points of view: core and memory. Section 3 high-
lights the reasons of the the holistic approach by focusing on the benefits of con-
sidering interactions among subsystems. Section 4 introduces the experimental
framework used in this work. Section 5 presents and analyzes the experimental
results. Finally, Section 6 presents some concluding remarks.

2 Major Subsystems: Cores and Main Memory

This section describes the baseline system and discusses the impact of the two
major subsystems on performance.

2.1 Baseline Architecture

This paper focuses on high-performance multicore processors. For instance, the
Intel SCC prototype consists of 48 cores [Jainschigg(2012)]. This processor



Impact of the Memory Controller on the Performance of Parallel Workloads 425

consists of 4 memory controllers and 4 memory domains, that is, each MC is
used by the closest 12 cores. This scheme, where memory domains are distributed
among several MC is the typical expected approach for future systems to reduce
memory latency by reducing contention in the MCs (a subset of cores access each
MC) and network latency (less hops are required to reach the nearest MCs).

In Figure 1 we show a block diagram of the modeled system. A typical tiled
multicore processor is assumed, each core has its private L1 cache and L2 cache,
and coherence is supported by using a MOESI-like [et al.(2003)] coherence pro-
tocol. Several memory controllers are supported to enhance memory access par-
allelism, and at the same time, to shorten the average distance from cores to
memory controllers.

The design of such a system must address both performance and costs since
both are the main concerns. Overall performance depends on the combined per-
formance of the core and memory subsystems. The idea is to achieve a good
tradeoff between performance and power.

2.2 Core

System designers have traditionally focused on the processor since it provides
the ever increasing demanding computational power of the machine. This com-
putational power increase is being accomplished following three major trends: i)
improving the computational power of individual cores, ii) increasing the number
or cores, or iii) combining both actions together.

Most processors manufacturers moved to multicore processors with the aim
of providing a good tradeoff between performance and power. To this end, first
they included several simple (e.g. in-order execution) cores. However, recent

n8

n3 MM

Network
Interconnection

n7

s7

s3

Tile 7

Tile 3

n2

s2

s6

n6

Tile 6

Tile 2Tile 1Tile 0

n1n0

s1

s5s4

s0

n5n4

Tile 5Tile 4

MMMM

Fig. 1. Baseline processor: cores, on-chip network (NoC) and caches, and MCs. A single
memory domain is considererd.



426 C.G. Requena

Fig. 2. Scheme of a MC with two memory channels, two banks per channel and two
ranks per bank

advances in both technology and microarchitectural techniques, have allowed
manufacturers to deploy aggressive out-of-order execution cores in CMPs.

Nowadays even in high performance processors, the power consumption is a
concern. So processors are designed both from the power-aware perspective and
high-performance point of view. From a high-level point of view, two main fea-
tures characterize the processor, the number of cores and its aggressiveness. In
this work, we explore the impact on performance of both features in a multicore
processor as a part within the envisioned baseline system. Different aggressive-
ness have been explored by varying the decode, issue, and commit width of the
computational cores.

2.3 Main Memory

The main memory subsystem has become the major design concern in high-
performance processors because it represents a major performance bottleneck,
which is even more aggravated with the increasing core counts. This is caused
by the large number of memory requests delivered by multiple cores that com-
pete among them for accessing a given memory module attached to a memory
controller. This access is performed through the NoC that usually implements a
mesh topology in CMPs. Figure 2 depicts a block diagram of a modern memory
architecture consisting of two memory channels, two banks per channel and two
ranks per bank.

Memory requests issued at the cores that do not hit in the cache hierarchy
are enqueued at the memory controller. It represents the interface with main
memory modules (e.g. DRAM). It translates memory requests to memory mod-
ules commands. Memory controllers usually deploy several queues and handles
them according to specific priority policies. The most simple and widely-used is
the First Come - First Served (FCFS) in which memory requests are served in
arrival order.

Apart from having several memory controllers, with the aim of alleviating the
huge memory access latency, the memory is organized in channels, banks and



Impact of the Memory Controller on the Performance of Parallel Workloads 427

ranks to enhance memory access parallelism. Memory channels are the mean
that interconnects the memory controller to the memory chips, that is, a memory
controller can issue as many commands concurrently to main memory as number
of memory channels. A memory bank holds a set of rows also referred to as
memory pages, which expand through multiple devices that are accessed at the
same time (not shown for clarification purposes).

On the arrival of a command through the channel to the corresponding bank,
the bank is accessed and the channel is released until the data is available at
the row buffer (bank output). Thus, assuming that a channel transaction lasts
one cycle, the memory controller can issue two distinct requests through the
same channel in two consecutive bus (channel) cycles if they target different
memory banks (i.e. no bank conflict arises). If two requests target the same
memory bank, the memory controller will stop the second one until the first one
is completed. Finally, banks in a channel can be organized in different ranks.
Each rank corresponds to an independent set of devices. Thus banks in different
ranks can be accessed in parallel. Thus increasing the number of ranks increases
the potential bank level parallelism.

3 Dependencies among the Two Major Subsystems

The system performance and energy consumption depend not only on the indi-
vidual performance of each subsystem, but on how subsystems interact among
them.

The number of cores in each memory domain is, in general, a key design
issue, since it affects costs, energy, and performance. Performance of the mem-
ory controller can be expressed in terms of latency and throughput. Increasing
the number of memory controllers reduces the number of cores in each memory
domain, thus the number of access conflicts due to accesses to the same main
memory bank is also reduced. In other words, a higher number of memory con-
trollers supports by design a higher level of memory access parallelism. This
means that the larger the core counts, the higher the number of memory con-
trollers required for a given memory controller performance. On the other hand,
the main memory cost represents an important fraction of the overall system
cost [Hennessy and Patterson(2012)].

In order to design a balanced system addressing performance, energy, and
cost, a compromise must be met with the number and aggressiveness of cores
and the memory subsystem design (number of MCs, number of banks, etc). This
work pursues to provide high-performance designers insights on such issues.

4 Experimental Framework

This section presents the simulation environment used for the design
exploration study. An extended version of the Multi2sim simulation framework
[Ubal et al.(2012)Ubal, Jang, Mistry, Schaa, and Kaeli] has beenused tomodel the
devised future manycore embedded system. Contention at the different points of



428 C.G. Requena

the system has been modeled: link and injection buffer contention at NoC, chan-
nel, bank, and queue contention atMC, as well as stalls at the cores due to resource
availability and stalls due tomemory operations,mispredictions, and so on. Table 1
summarizes the main architectural parameters for the three studied subsystems

As aforementioned, it is expected that manycore processors would be used to
executed parallel loads. Therefore, we took some applications from the SPLASH2
benchmark suite [Woo et al.(1995)Woo, Ohara, Torrie, Singh, and Gupta], which
characterize the parallel behavior of near future applications. No sampling tech-
nique or kernels are used to collect the results, the benchmarks have been executed
completely.

5 Experimental Evaluation

Nowadays, as cores are more powerful and more cores are deployed in CMPs, the
pressure on the memory memory is greater. This results into memory latency is
even more a major design concern since it limits the performance achieved by
the CMP. In this section, we explore the system performance depending on the
memory subsystem performance as we change the core aggressiveness and the
number of memory controllers.

Table 1. Machine parameters

Microprocessor core

Issue policy Out of order
Fetch, issue, commit width 2/4/8 instructions/cycle
ROB size (entries) 256
L1 inst. cache 64B-line, 2-way, 32KB, 2-cycle
L1 data cache 64B-line, 2-way, 32KB, 2-cycle
L2 unified cache 128B-line, 16-way, 1MB, 10-cycle

NoC

Topology Mesh
Virtual channels No
Routing algorithm X-Y
Switch buffer size 2 entries

Memory subsystem

Memory controller single queue 64-entry single queue
FCFS

Channels 2
Banks / ranks 4 / 1
DRAM access time 300-cycle



Impact of the Memory Controller on the Performance of Parallel Workloads 429

5.1 Impact of the Number of Memory Controllers on Performance

Systems with a relatively high number of cores, such as 64-core systems, are
heavily constrained by main memory latencies, as depicted in Figure 3. The
64-core system configurations with just a single memory controller show a huge
memory latency for all the evaluated benchmarks. Despite the memory access
time is 300 cycles, the latency reached by all the benchmarks and configurations
increases over 900 cycles, due to the pressure done by the high number cores on
the memory subsystem which results in an extreme congestion in the MC and a
huge number of bank and channel conflicts.

This congestion turns in unacceptable memory subsystem performance, which
will fill the ROB due to pending memory requests and therefore, the processor
will be blocked hurting the performance. Considering core aggressiveness, it can
be seen that it has a small but increasing influence for FFT and Ocean, but it is
markedly stronger in Radix, in whichmemory latency is increased from 1931 cycles
to 2315 cycles when core width goes from 2 to 8 ways. As core width grows, more
memory requests can be sent at the same time from the cores to main memory
which leads to increase the congestion in the NoC and in the memory itself.

The straightforward solution to alleviate this performance problem is to de-
ploy multiple memory controllers. Nevertheless, the ideal number of memory
controllers to achieve a good trade-off between performance and cost is still an
open research problem. The aim of this section is to provide insights into this
concern. To this end, this section evaluates the impact on performance of adding
more memory controllers to a 64-core system. For evaluation purposes, we as-
sume that all the memory controllers are uniformly distributed on the border
of the system, except for the 64-memory controller configurations where each
core has a MC attached to its switch. We consider the configuration with 64
MCs in spite of being impossible to implement to show an upper bound of the
performance that can be obtained by only adding more memory controllers.

Figure 3 shows that, in general, the memory access time linearly decreases
with the number of MCs in the system. For instance, in FFT it drops from 2094
cycles with 1 MC to 1788, 1388, 846, and 382 cycles for 2, 8, 16, and 64 memory
controllers, respectively. This is the expected outcome, since when deploying
more memory controllers the number of bank/channel conflicts is enormously
reduced. Furthermore, the NoC utilization is spread all over the different MCs
equally distributed along its border which reduces network congestion, and as a
side-effect memory access time. As it can be seen, the more MCs that are in the
system, the better latency results that are obtained.

However, in order to fully analyze the effect of adding more MCs to the system
is not enough to study the memory latency reduction, but its impact on the total
execution time of the applications, which is plotted in Figure 4. Having 2 or more
MCs clearly has a positive influence on the execution time. Again for FFT and
2 ways, execution time is reduced to 74%, 56%, 42%, and 28% of the execution
time with 1 MC. Reductions in execution time from 2 to 64 MCs are linearly
consistent in each application, thus again results show that as many MCs there
are in the system, the better.



430 C.G. Requena

Fig. 3. Average memory latency measured in core cycles for different applications
varying the number of MCs and core aggresiveness in 64-core systems

Fig. 4. Normalized execution time for different applications varying the number of
MCs and core aggresiveness in 64-core systems



Impact of the Memory Controller on the Performance of Parallel Workloads 431

However, cost should also be considered, since in FFT to almost halve execu-
tion time from the configurations with 16 MCs to the configuration with 64 MCs,
cost is multiplied by 4. So the optimal trade-off between cost and performance
lies between 8 MCs and 16 MCs, where performance is increased linearly with
the increase in cost of adding more MCs to the system.

6 Conclusions

Multicore/manycore systems have become the fastest growing segment in the
microprocessor market. Nowadays power and also as traditionally performance
are key design concerns of CMP systems. The two major subsystems that con-
tribute to the system performance are cores and the memory subsystem. In this
paper we explore the design space for future high-performance manycore by
focusing on the analysis of interactions among the aforementioned two major
subsystems. In particular, we explore the memory subsystem performance as a
main contributor of the system performance, as a result of the interactions with
the other subsystems.

Experimental results show that, increasing the number of memory controllers
in the system helps the machine to reduce the overall memory access time and ex-
ecution time of the applications. A optimum number of cores per MC to achieve
a good performance-cost tradeoff is between 8 and 16 cores. Thus, one can con-
clude that interactions among the two major subsystems should be considered in
order to obtain a well balanced global system, and obtaining the most benefits
of each component, and therefore obtaining a good performance-cost tradeoff.

Acknowledgments. This work was supported by the Universitat Ppolitècnica
de València with tthe grant Primeros Proyectos de Investigacin (PAID-06-10),
with reference number 2370, and jointly supported by the Spanish MINECO and
European Commission under the project TIN2012-38341-C04-04.”

References

[Bell et al.(2008)Bell, Edwards, and Amann, et al] Bell, S., Edwards, B., Amann, J.,
et al.: TILE64TM processor: A 64-core SoC with mesh interconnect, pp. 88–598

[Held(2010)] Held, J.: “Single-chip cloud computer”, an IA tera-scale research proces-
sor. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M.,
Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par-
Workshop 2010. LNCS, vol. 6586, pp. 85–85. Springer, Heidelberg (2011)

[Jam(2012)] http://goparallel.sourceforge.net/ask-james-reinders-multicore

-vs-manycore/ (2012)
[Jainschigg(2012)] Jainschigg, J.: (2012), http://goparallel.sourceforge.net/

manycore-mobiles/

[et al.(2003)] Martin, M.M.K., et al.: Protocol Specifications and Tables for Four Com-
parable MOESI Coherence Protocols: Token Coherence, Snooping, Directory, and
Hammer (2003), http://www.cs.wisc.edu/

http://goparallel.sourceforge.net/ask-james-reinders-multicore-vs-manycore/
http://goparallel.sourceforge.net/ask-james-reinders-multicore-vs-manycore/
http://goparallel.sourceforge.net/manycore-mobiles/
http://goparallel.sourceforge.net/manycore-mobiles/
http://www.cs.wisc.edu/


432 C.G. Requena

[Hennessy and Patterson(2012)] Hennessy, J.L., Patterson, D.A.: Computer Architec-
ture: A Quantitative Approach, 5th edn. Morgan Kaufmann Publishers Inc., San
Francisco (2012); Appendix E by T. Conte

[Ubal et al.(2012)Ubal, Jang, Mistry, Schaa, and Kaeli] Ubal, R., Jang, B., Mistry, P.,
Schaa, D., Kaeli, D.: Multi2sim: a simulation framework for cpu-gpu computing.
In: Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques, PACT 2012, pp. 335–344. ACM, New York (2012)

[Woo et al.(1995)Woo, Ohara, Torrie, Singh, and Gupta] Woo, S.C., Ohara, M., Tor-
rie, E., Singh, J.P., Gupta, A.: The splash-2 programs: characterization and
methodological considerations. SIGARCH Comput. Archit. News 23, 24–36 (1995)

[Bailey(1989)] Bailey, D.H.: FFTs in External or Hierarchical Memory. In: Proceedings
of the ACM/IEEE Conference on Supercomputing (1989)


	Impact of the Memory Controlleron the Performance of Parallel Workloads
	1 Introduction
	2 Major Subsystems: Cores and Main Memory
	2.1 Baseline Architecture
	2.2 Core
	2.3 Main Memory

	3 Dependencies among the Two Major Subsystems
	4 Experimental Framework
	5 Experimental Evaluation
	5.1 Impact of the Number of Memory Controllers on Performance

	6 Conclusions
	References




