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Abstract. The computing power of modern high performance systems
cannot be fully exploited using traditional parallel programming mod-
els. On the other hand, the growing demand for processing big data
volumes requires a better control of the workflows, an efficient storage
management, as well as a fault-tolerant runtime system. Trying to of-
fer our proper solution to these problems, we designed and developed
GPI-Space, a complex but flexible software development and execution
platform, in which the data coordination of an application is decoupled
from the programming of the algorithms. This allows the domain user to
focus on the implementation of its problem only, while the fault tolerant
runtime framework automatically runs the application in parallel in com-
plex environments. We discuss the advantages and the disadvantages of
our approach by comparison with the most popular MapReduce imple-
mentation, Hadoop. The tests performed on a multicore cluster with the
wordcount use case showed that GPI-Space is almost three times faster
than Hadoop when strictly the execution times are considered, and more
than six times faster when the data loading time is also considered.

1 Introduction

Nowadays, clusters with thousands of cores are present in many companies and
institutions. At the same time, the price of the data storage has significantly
decreased and the companies have now the possibility to stock or to archive
big amounts of data related to their businesses, with affordable costs. In this
way, they can occasionally or regularly process the backuped data and extract
from it valuable information that may contribute to improve their services or to
increase their profits. A fundamental question that arises in this context is how
to efficiently exploit the full computing power of large multicore clusters when
dealing with big amounts of data and which programming model to use for
achieving this goal? The MapReduce model, although not perfect, is an answer
to this question. Although the MapReduce paradigm existed for a long time
in Computer Science, in one form or another, it was first evoked in the form
known today by two researchers working at Google, in a paper published in
2004 [3]. Since then, a lot of research studies have been published and a number
of different of MapReduce frameworks, written in different languages, have been
developed [5].
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In this paper we present GPI-Space, a complete software solution for dealing
with data intensive computations on multicore clusters. On top of this infrastruc-
ture we developed a Petri net workflow for MapReduce computations, giving thus
the users that are acquainted with this model the possibility to easily integrate
their applications. GPI-Space offers superior performance compared to other
tools by using the in-memory storage and sophisticated workflow parallelization
and scheduling strategies. While most of the MapReduce implementations are
targeted at commodity hardware, GPI-Space relies on the Global Address Space
Programming Interface (GPI) middleware [1], which is able to take advantage
of the modern network interconnects that enable the Remote Directory Memory
Access (RDMA).

1.1 The MapReduce Model

MapReduce represents currently the most successful model that has been applied
and has proved its efficiency at large scale [9]. This model tries to ease the
task of building large scale data intensive applications, by hiding the details of
parallelism, allowing the users to focus on the data processing strategies. The
advantages and the limitations of the model are discussed in [7].

The MapReduce programming model is founded on concepts that are rather
proper to the functional programming [6]. Generally, in order to build a MapRe-
duce application, the user is required to provide only specific implementation for
a reduced number of interface methods, with the signature known in advance.
In the first place, the user is required to write the map and the reduce methods.
Typically, map takes as input parameter a key-value pair and produces a list
of intermediate pairs, while the reduce method takes as input parameters a key
and a list of values associated with this key and returns a list of output values:

map (in key,in value) — list (out key, intermediate value)

reduce (out key,list(intermediate value)) — list (out value)

Additionally, the user may provide an implementation for a partitioning method,
a compare method and a combine method [9].

Among all the MapReduce implementations, the most important are Google
MapReduce [3] and Hadoop [14]. Hadoop is currently an important component
of the infrastructure of many web companies, such as Yahoo [12], Facebook [2]
and Twitter [8]. Other companies, like eBay, Amazon, IBM, Microsoft, Oracle
use or offer services that are based on Hadoop.

2 Fraunhofer GPI-Space

The available computing power of distributed high performance systems, often
with several thousands of cores, can hardly be mastered with the conventional
programming models. On the other hand, the growing demand for processing
huge amounts of data requires a better control of the workflows being executed,
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an efficient storage management and a fault-tolerant execution of the workflows.
Handling these aspects correctly may exceed the capabilities of a normal user,
requiring expert knowledge. In order to properly handle this situation and to
alleviate the domain specific programmer’s mission, a natural idea would be
to ensure a separation of the coordination level from the execution level of
parallel applications. This requires a more sophisticated programming model
and an execution framework that offers support for automatic parallelization
and scheduling, a fault-tolerance mechanism and services for the job execution
control, monitoring, memory management, etc. Trying to put this concept in
practice, we designed and implemented a programming model and an execu-
tion framework that clearly realizes this separation. GPI-Space is a complex but
flexible software platform, combining several important software components
that can also be used either as standalone applications or in combination with
other software tools or packages. Each of this components were designed and
implemented taking into account the experience accumulated with other im-
portant high performance computing projects [11,10]. GPI-Space consists of: a
distributed runtime system, a workflow engine and a storage layer.

2.1 The Distributed Run-Time System

The Distributed Run-Time System (DRTS) represents the execution layer of
GPI-Space. It is dynamic, fault-tolerant and can dynamically build arbitrary
topologies. It relies on a master-slave architecture, where an agent may have
multiple masters, event subscribers and workers. On top of such an architecture
stays the orchestrator, which is responsible with handling the user requests and
scheduling them on the available agents. The agents may have access to the
partitioned global address space and thus trigger large data transfers from or to
the virtual memory. The agents may dispose of a workflow engine that interprets
sub-workflows, creates intermediary tasks and assembles the results. A graphical
representation of a DRTS, deployed as a tree topology, is as in the figure 1. In
fact, the agents can form logical communication topologies with a much more
complex graph structure, allowing thus a straightforward implementation of the
parallel algorithms that assume a certain structure of the logical communication
graph. The agents implement a Staged Event Driven Architecture [13] and are
controlled by finite state machines. The stages are basically thread pools with a
shared queue of events and they can asynchronously exchange messages, making
thus the agent more flexible and more responsive. The whole distributed run-
time system is fault-tolerant and an agent can join and leave the system at any
time, without stopping the execution of the submitted workflow. The agent was
designed with the bridge pattern in mind, trying to decouple as much as possi-
ble the abstract part from the implementation part [4]. An agent is composed of
several software components like: a job manager, a scheduler, a worker manager
and a backup service. The jobs may be submitted together with a list of require-
ments and the workers may have different capabilities. Each agent disposes of a
scheduler that tries to fairly schedule the jobs on workers whose capabilities are
best matching the requirements.
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Fig. 1. Distributed run-time system deployed as a tree over a partitioned global address
space

2.2 The Workflow Engine

The coordination level consists of a workflow engine, a workflow description lan-
guage and a set of tools that are intended to help the user to build workflows.
The workflows are basically high-level Petri nets, described in a proprietary
XML-based language that we defined. We developed also a workflow engine that
is capable to concurrently interpret and execute these workflows. The user may
either write the workflow directly into the XML-based language or may use
an editor (currently under development, but having basic functionality imple-
mented). Apart of the workflow engine, a number of other tools were developed,
with the goal to assist the user in the course of the development of a workflow:

— a Petri net compiler which translates the XML description of the workflow
into some intermediary format that the workflow engine is capable to under-
stand,

— a verification tool that is able to verify the basic properties of the net,

— a basic visualization tool, based on the Graphviz software package, and

— a graphical editor.

The compiler generates the internal representation of the runtime environment
from the XML representation of the Petri net. It checks the semantic validity of
the input net, being also able to check other properties like termination, absence
of deadlocks, reachability, etc. and to eventually optimize the net. Typically, a
user who wants to write an application for GPI-Space should focus on describing
the workflow and on how to logically organize the storage layer. In the case of
GPI-Space, the Petri nets have a double role: they are used not only for control-
ling the execution of the generated tasks, but also for controlling the access of
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the tasks to the partitioned global address space, acting as a transactional mech-
anism and guaranteeing thus the data integrity. From a global point of view, the
execution of a workflow in GPI-Space consists in the following steps:

— The orchestrator receives a job having attached the internal representation
of a workflow and assigns it to one of the available agents.

— The agent hands over the attached description of a job received from a master
to the workflow engine and this one extracts all the executable activities,
some of them being executed locally and the others being sent to available
workers.

— When the job completes, the assigned worker or agent sends the result to
the corresponding master. This one hands the result over to its workflow
engine, which inserts the corresponding output tokens and looks for new
active transitions. If new activities were generated, they are sent to the
available workers. The process continues until no transition can be fired
anymore.

— When no other activities can be generated, the network is considered to be
completely processed and the result of the job is sent back to the submitter.

2.3 The Storage Layer

The storage layer within GPI-Space is represented by GPI [1]. This is a mid-
dleware that allows for executing parallel applications complying with a Par-
titioned Global Address Space (PGAS) programming model, developed at our
institute [10]. Typically, the memory of the individual nodes in a cluster is ag-
gregated and seen as a single address space, where large objects, often exceeding
the capacity of a single cluster node, can be stored. GPI is targeted at RDMA-
enabled interconnects such as Infiniband or CRAY Gemini. The main idea here is
that the full performance of the RDMA-enabled networks can be delivered to the
application directly, without interrupting the CPUs. GPI constitutes an alter-
native to the traditional message-passing model for the development of parallel
applications that are intended to run on modern multicore systems. GPI focuses
on one-sided communication and the development of asynchronous algorithms,
leveraging the capabilities of modern interconnects to overlap communication
with computation.

At the node level, the Manycore Threading Package (MCTP), developed in
our department with the goal to better take advantage of new multicore archi-
tectures, is used. Within GPI-Space, different applications can be combined into
a workflow and executed using the virtual memory as a persistent layer that
facilitates the interaction with each-other.

3 MapReduce in GPI-Space

As seen above, GPI-Space is a complex software development and execution
platform that allows for writing and executing workflows that rely upon a Petri
net semantics. However, writing such relatively complex workflows might be for
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many users beyond the scope of domain. Therefore, we went one step forward

in this direction and we developed a workflow for MapReduce computations in

GPI-Space. In this way, the mission of the users that are acquainted to this

model is greatly simplified and consists only in overloading a couple of methods.
There are certain similarities between Hadoop and GPI-Space:

— both are focusing on data intensive applications, being able to process large
amounts of data,

— both are essentially using a master/slave architecture,

both of them have their own execution framework,

both of them use a proprietary storage layer,

both are addressing important aspects like fault-tolerance, load balancing

and data integrity.

However, there are also notable differences like:

— GPI-Space stores the intermediary results into the global space resulted from
the aggregation of RAM parts of the cluster nodes and eventually on the local
disks, while Hadoop uses for this purpose its own distributed file system.

— In GPI-Space one can write much more complex workflows and the user has
the freedom to chose, define and combine his own methods, instead of being
restricted to a reduced set of primitives that are to be used for modeling the
problem.

— In GPI-Space, the agents can form logical communication topologies with a
structure of type graph, allowing thus a straightforward implementation of
the algorithms that assume a certain structure of the logical communication
graph.

Two important aspects must be taken into consideration when implementing
the MapReduce pattern on top of GPI-Space: the organization of the virtual
memory and the Petri net scheme that controls the generation and the execution
of the tasks and their accesses to the virtual memory. As a graphical or XML
description of the workflow is not possible here due to space limitations, we try to
sketch out hereafter the main idea behind it. Initially, a configurable number of
memory slots is allocated for each operation type (read, map, partition, reduce).
The input data is split into chunks of equal sizes, which are then read in binary
format, in parallel, and stored into the available read slots. As soon as a map
slot becomes free, a nonempty read slot is chosen, its content is parsed and the
map function is applied to the found items. The output pairs with the keys in
the same partition are grouped together and all the groups are then stored into a
map slot. Afterwards, the read slot is freed and can be reused for loading a new
data chunk. As soon as a partition slot becomes free, a map slot that contains
a contribution to that partition is chosen and the corresponding group of pairs
is first sorted and then merged and reduced in one pass with the content of
the partition slot. When a partition slot becomes full, its content is merged and
reduced in one pass with the content of a free reduce slot, before allowing any
other merge and reduce with the corresponding slice of a map slot. If a reduce
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slot becomes full, its content is reduced on the disk with the corresponding file
(typically, one per partition). An invariant of the application is that the partition
slots and the reduce slots always contain pairs whose keys are sorted according to
a comparison criterion provided by the user. The access to the virtual memory is
controlled by the Petri net, which guarantees the mutual exclusion and the data
integrity. Typically, to each slot it corresponds a token that may be consumed
or released by the transitions corresponding to the MapReduce operations.

One problem that may arise here due to the fact that the data is read in
binary format is that some words may be split into pieces that are stored into
different data chunks. The Petri net scheme takes care of this aspect, too, and
recovers the original words.

We considered as a use case the wordcount example. This is a typical example
available with many MapReduce implementations, consisting in determining for
each word appearing into a file or a collection of files the number of its occur-
rences. We performed tests with this use case on both GPI-Space and Hadoop
frameworks. For GPI-Space we developed our own workflow, while with Hadoop
we used the wordcount example provided in Hadoop-1.1.2, from the Apache in-
cubator. As a hardware setup, we used a set of 12 cluster nodes, each node having
12 Intel Xeon X5660 cores (2.8 Ghz) and disposing of 48 GB RAM. Hadoop was
configured to use one DataNode per node, disposing of 800 gigabytes local disk
space on each node and using a replication factor of 3. GPI-Space was configured
to use a half of the total aggregated RAM for building the partitioned global
address space, each worker having reserved one gigabyte shared memory. With
Hadoop, we used a block size of 64 megabytes. The figure 2 is a snapshot of the
execution monitor of GPI-Space where a MapReduce workflow with the input
data size of one terabyte is executed. In the left hand side, the cores and their ca-
pabilities are shown. The Gantt diagram illustrates the tasks that are executed
and their status. The grey color is used for the created tasks, yellow for the
started tasks, green for the finished tasks, red for the failed tasks and magenta
for the canceled tasks. The figure shows a good CPU utilization and a fair dis-
tribution of the tasks over the cores. The figure 3 illustrates the execution time
of the wordcount example with GPI-Space compared to the execution time with
Hadoop. Wordcount performs better on GPI-Space than on Hadoop, in terms
of execution times. The gap between the two execution times increases with the
size of the input data. For 1031 gigabytes (which is approximately one terabyte)
of data, the execution time on Hadoop is 9097 seconds while on GPI-Space is
3263 seconds. However, we should note that the data loading into GPI-Space is
done at runtime, in parallel with the other MapReduce operations. Moreover,
GPI-Space uses RDMA transfers and thus most of the communication overlaps
the computation. GPI-Space does not require that all the input data be loaded
into the virtual memory before starting the workflow. In the case of Hadoop,
data loading and computing are two distinct phases: first the data is loaded into
the Hadoop distributed file system (HDFS) and only afterwards the computa-
tions are started. The figure 4 shows in comparison the total time for processing
input data files of different sizes, including the data loading, on both execution
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Fig. 2. The task execution monitor of GPI-Space showing the execution of a wordcount
job with 1 TB input data

Execution time of the wordcount example
with GPI-Space and Hadoop
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Fig. 3. Execution time of wordcount on GPI-Space and Hadoop
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Execution time of the wordcount example with GPI-Space
and Hadoop, including the data loading time
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Fig. 4. Total processing time, including data loading, on GPI-Space and Hadoop

frameworks. In this case, processing one terabyte of data with GPI-Space takes
3263 seconds, while with Hadoop, if we count also the data loading time, it takes
20011 seconds. For the users who just want to occasionally use a MapReduce
implementation for performing fast analytic operations and not willing to keep
or migrate their data on HDF'S for different reasons, like security for example,
GPI-Space may represent a better option.

4 Conclusions and Future Work

In this paper we presented GPI-Space, a software development and execution
platform for multicore clusters and we reported experiments with the construc-
tion of a MapReduce workflow on top of this architecture. GPI-Space is fault-
tolerant and does automatic parallelization and scheduling, allowing the users
to focus on the description of the workflow, primarily. Given the popularity
of Hadoop, we considered appropriate to relate to this tool first. Compared to
this, GPI-Space is more flexible, offering tools that facilitate the development of
more complex workflows than MapReduce. In contrast to Hadoop, which stores
the intermediary results on a distributed file system, GPI-Space stores most of
the intermediary results into the partitioned global address space resulted from
the aggregation of RAM slices of cluster nodes and is able to take advantage of
fast RDMA data transfers. The example that we systematically tested, word-
count, showed that GPI-Space is faster than Hadoop, when run over the same
collection of cluster multicore nodes and using the same sample input data.
Our approach has also the advantage that data loading into the virtual memory
is carried out in parallel with the computations. Hadoop requires the data to
be already on its distributed file system before the computations are started.



52

T. Rotaru, M. Rahn, and F.-J. Pfreundt

GPI-Space may represent a better alternative for the users who want to oc-
casionally run fast MapReduce computations and not having the input data
stored on HDFS. Our next goal is to implement more use cases for MapReduce
in GPI-Space and to deploy and test the framework at larger scales.
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