
Reliable and Efficient Execution of Multiple
Streaming Applications on Intel’s SCC Processor

Lars Schor, Devendra Rai, Hoeseok Yang, Iuliana Bacivarov, and Lothar Thiele

Computer Engineering and Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland

firstname.lastname@tik.ee.ethz.ch

Abstract. Intel’s Single-chip Cloud Computer (SCC) is a prototype ar-
chitecture for on-chip many-core systems. By incorporating 48 cores into
a single die, it provides unique opportunities to gain insights into many-
core software development. Earlier results have shown that programming
efficient and reliable software for many-core processors is difficult due to
a lack of appropriate programming tools. In this paper, we present a pro-
gramming framework to execute multiple applications specified as Kahn
process networks on the SCC. These applications might be started or
stopped at runtime based on requests of the user. The proposed appli-
cation programming interface (API) abstracts low-level implementation
details from the application designer enabling high-level performance
analysis and automated mapping optimization. To efficiently execute
workload specified by the proposed API, a lightweight runtime-system
and an automated program synthesis backend are presented. Extensive
experiments are carried out to characterize the performance of the pro-
posed framework.

Keywords: Many-Core Programming, Single-chip Cloud Computer,
SCC, Runtime-System, Mapping, Distributed Application Layer, DAL.

1 Introduction

The demand for high computing power of novel real-time multimedia applica-
tions coupled with a single core’s inability to support such high demands forces
hardware designer to choose architectures with a high degree of parallelism. In-
tel’s Single-chip Cloud Computer (SCC) [5] is a prototype of such architectures.
By incorporating 24 tiles, each composed of two cores and local memory, into
a single die, the SCC provides software developers early insights in developing
software for highly parallel and distributed architectures.

The performance of such systems will critically depend on the efficient execu-
tion of applications on multiple cores. However, programming parallel applica-
tions for distributed systems, and Intel’s SCC processer in particular, is difficult
due to several reasons. The programmer has to handle the data transfer be-
tween cores using low-level message passing libraries and the distribution of the
workload across the cores. For instance, unequally distributed workload results

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 790–800, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Reliable and Efficient Execution of Multiple Streaming Applications 791

in low throughput or high latencies. Thus, traditional (low-level) methods to
design and program parallel applications are not anymore appropriate to many-
core systems that are architecturally more complex. Consequently, the goal is
to provide an application programming interface (API) and design-flow that ab-
stracts low-level implementation details from the application designer enabling
high-level performance analysis and automated mapping optimization.

Programming in a high-level language has typically various advantages in-
cluding being less error-prone and having various design optimization steps au-
tomated. A promising paradigm to program distributed systems is to use process
networks as model of computation (MoC). Process networks have the advantage
that they explicitly express the parallelism of an application and separate com-
putation from communication. Such separation of concerns enables the paral-
lelization of computation and communication allowing process networks to fully
exploit the available resources. At the same time, using a process network as MoC
allows the designer to rapidly evaluate the performance of different design can-
didates and hardware/software partitioning options. The distributed application
layer (DAL) [11], for instance, uses the Kahn process network (KPN) [6] MoC
to specify applications. Due to the well-defined semantics of the KPN model,
data races, non-determinism, or the need for strict synchronization are avoided.
In addition, the DAL MoC uses a finite state machine (FSM) to represent inter-
actions between applications. Each state represents an execution scenario, i.e., a
certain set of applications running in parallel. At runtime, the user can switch
between the execution scenarios by starting or stopping applications.

Analyzing the performance, providing quality-of-service guarantees, and op-
timizing the process-to-core mapping of workload specified by the DAL MoC
has been described in [7, 11]. This paper reports our work to execute workload
specified by the DAL MoC onto the SCC. This includes the definition of a high-
level API for programming parallel applications specified as KPNs that abstracts
low-level architectural details from the application designer enabling high-level
performance analysis, process clustering, or mapping optimization. The runtime-
system comes with the capability to start and stop processes, and to create and
destroy FIFO channels at runtime leading to low memory footprint. Great em-
phasis is placed on minimizing the communication overhead by using a highly
optimized inter-process communication protocol. In particular, the RCKMPI li-
brary [2] is used as middleware layer for communication between cores. Finally,
extensive experiments are carried out on Intel’s SCC processor to characterize
the performance of the proposed framework and runtime-system.

The Eclipse SDK has been extended with an editor for the DAL MoC, a
high-level mapping optimization framework, and the program synthesis backend
proposed in this paper. The plugin is available for download under
http://www.tik.ee.ethz.ch/~euretile/dalipse.

The remainder of the paper is structured as follows: The SCC is revised in
Section 2. In Section 3, the DAL MoC is presented. In Sections 4 and 5, the
runtime-system and program synthesis backend are described. Section 6 presents
experimental results and related work is reviewed in Section 7.

http://www.tik.ee.ethz.ch/~euretile/dalipse

792 L. Schor et al.

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

R R R R R R

R R R R R R

R R R R R R

R R R R R R

M
em

or
y
C
nt
r.

M
em

or
y
C
nt
r.

M
em

or
y
C
nt
r.

M
em

or
y
C
nt
r.

L2$1

L2$0

IA-32
Core 1

IA-32
Core 0

Router MPB

Fig. 1. Schematic outline of Intel’s SCC processor

2 Single-Chip Cloud Computer

The SCC processor [5], schematically outlined in Fig. 1, is a 48-core experimental
processor from Intel. It consists of 24 tiles that are organized into a 4 × 6 grid
and linked by a 2D mesh on-chip network. A tile contains a pair of P54C cores,
a router, and a 16 KB block of SRAM. Each core has an independent L1 and L2
cache. The on-tile SRAM block is also called “message passing buffer” (MPB)
as it enables the exchange of information between cores.

The most commonly used software platform for Intel’s SCC is to run a Linux
kernel on each core. For communication purpose, various message passing li-
braries have been developed including RCCE [14], iRCCE [1], and RCKMPI [2].
Instead of implementing our own software platform, we run our runtime-system
on top of the Linux kernel. This enables us to use the basic multi-threading
mechanisms provided by the Linux kernel.

3 DAL Model of Computation

The dynamic behavior of the workload is captured by a set of execution sce-
narios that form a finite state machine (FSM). Each state represents a set of
concurrently running applications and each state transition corresponds to an
application start or stop request. An example of a FSM is outlined in Fig. 2.

Applications are specified as KPNs [6]. More precisely, an application consists
of autonomous processes that can only communicate through unbounded point-
to-point FIFO channels, see Fig. 3 for an example. However, as channels with
unbounded capacity cannot be realized in real implementations, we use a KPN
semantics-preserving implementation with finite buffers that are accessed using
blocking read and write functions [4]. Blocking means that a process stalls if it
attempts to read data from an empty channel or write to a full channel.

state1

APP1

state2

APP1, APP2

state3 state4

APP2 APP2, APP3

start APP2

stop APP1
stop APP2
start APP1

stop APP1
start APP3

start APP3

stop APP2

Fig. 2. Example of a FSM specifying the
dynamic behavior of the workload

ne
tw

or
k

core 1

memory 1

core 2

memory 2

CW1P W2

Fig. 3. Application specified by the KPN
MoC together with its mapping

Reliable and Efficient Execution of Multiple Streaming Applications 793

Listing 1. Specification of a KPN with
two processes

01 <processnetwork>
02 <process name="prod">
03 <port type="output" name="out"/>
04 <src type="c" location="prod.c"/>
05 </process>
06 <process name="cons">
07 <port type="input" name="in"/>
08 <src type="c" location="cons.c"/>
09 </process>
10 <channel cap="8" name="channel">
11 <send process="prod" port="out"/>
12 <rec process="cons" port="in"/>
13 </channel>
14 </processnetwork>

Listing 2. Implementation of a KPN pro-
cess using the proposed API

01 procedure INIT(ProcessData *p)
02 initialize();
03 end procedure
04
05 procedure FIRE(ProcessData *p)
06 fifo−>READ(buf, size);
07 manipulate();
08 fifo−>WRITE(buf, size);
09 end procedure
10
11 procedure FINISH(ProcessData *p)
12 cleanup();
13 end procedure

The proposed API for KPNs is outlined in Listings 1 and 2. The topology,
i.e., the connections between processes by FIFOs, is specified in an XML for-
mat. The functionality of the individual processes is specified in C/C++ and is
composed of three procedures. The init procedure is executed once at startup
of the application. Afterwards, the execution of a process is split into individ-
ual executions of the fire procedure, which is repeatedly invoked by the system
scheduler. Finally, the finish procedure is called before an application is stopped.
Each process can read from its input and write to its output channels by calling
the high-level read and write procedures.

4 Runtime-System

Executing a workload specified according to the DAL MoC on Intel’s SCC proces-
sor requires a runtime-system and a program synthesis backend. The task of the
runtime-system is thereby to provide an implementation of the API, i.e., services
for inter-process communication, a mechanism to iteratively execute processes
by calling their fire procedure, and services to manage processes and channels
at runtime.

Inter-Process Communication. To be efficient, the runtime-system has to
differ between communication over shared and distributed memory, see Fig. 4.
While ring buffers in private memory are used for intra-core communication, an
advanced architecture-dependent FIFO implementation is required for efficient
inter-core communication.

In general, the FIFO channel might be implemented in private memory of
the sender or receiver, or in shared memory. We implemented the FIFO chan-
nels in the private memory of the receiver and used the RCKMPI library [2] for
inter-core communication. The RCKMPI library automatically takes the mem-
ory organization of the SCC into account and uses the MPB, if appropriate. As
no DMA controller is available on the SCC for inter-core communication, we
launch a listener thread on each core. The listener thread is responsible for

794 L. Schor et al.

ne
tw

or
k

core 1

memory 1

core 2

memory 2

CWP

MPI

R

Fig. 4. Example of intra- and inter-core
communication. Virtual FIFO and lis-
tener thread are illustrated in grey.

sender LISTENER receiver

write()
transfer data

LISTENER

read()

number of
consumed tokens

write
received
data into
local FIFO

update
virtual
FIFO

read tokens
from local

FIFO

transfer completed

other processes
might execute
meanwhile

SE
N

DE
R

CO
RE

RE
CE

IV
ER

 C
OR

E

Fig. 5. Inter-process communication pro-
tocol between processes located on differ-
ent cores

handling all incoming traffic and writing the data to the correct FIFO chan-
nel. To keep the listener thread lightweight, it uses the memory of the local
FIFO channel as receive buffer for the data transfer, thereby avoiding expensive
allocation and copy operations.

To avoid deadlocks, the listener thread must not be blocked at any time,
i.e., we have to ensure that a data transfer is only initialized if the receiver has
enough available space to store the data. This is ensured by a virtual FIFO at
the sender. The virtual FIFO has the same metadata (amount of free space) as
the actual FIFO, but if a process attempts to write, the data is either directly
transferred or the calling process is blocked as long as the receiver has not enough
space to store the data. The disadvantage of this approach is that the virtual
FIFO has to know when the receiver process has consumed data, which is ensured
by a signal. The inter-process communication protocol is sketched in Fig. 5.

Multi-processing. As our runtime-system runs on top of a Linux kernel, we
use the multi-processing features provided by the operating system (OS) to run
multiple processes in a quasi-parallel fashion on a single core. In particular,
processes are mapped onto POSIX threads and scheduled by the OS’ scheduler.
When a process is blocked due to empty input or full output channels, the
scheduler automatically selects a different process to execute.

Process and Channel Management. The FSM enables the programmer to
start and stop applications at runtime. We will show in the next section that
this dynamism is handled by a runtime-manager in the form of an additional
process network. The runtime-system has therefore to provide services to install,
uninstall, start, and stop processes, and to create and destroy FIFO channels.

The memory footprint of the system is reduced by storing the individual pro-
cesses as dynamic libraries that are loaded when the application is started. Thus,
installing a process involves loading and dynamically linking the corresponding
library, and then executing its init procedure. Similarly, uninstalling a process
involves executing the finish procedure and unloading the dynamic library. The
procedure to create a channel depends on the mapping of the sender and re-
ceiver. If both processes are mapped onto the same core, a local FIFO channel

Reliable and Efficient Execution of Multiple Streaming Applications 795

runtime-manager

FSM
(XML)

process networks
(XML)

slave processes
(C/C++)

mapping
(XML)

runtime-manager synthesis

process network synthesis

process wrappers
(C/C++)

master process
(C/C++)

processes
(C/C++)

Makefilemain
(for each core)

process network
(XML)

Fig. 6. Program synthesis flow generating
the source code of the runtime-manager
and the process wrappers

Rcore 0 core 1 Rcore 2 core 3

M
S S S

P C

1) install P
3) start P

2) create
 virtual FIFO

1) install C
3) start C

2) create
 local FIFO

(a) Process network setup.

Rcore 0 core 1 Rcore 2 core 3

M
S S S

P C

Z Z Z Z Z Z Z Z Z

(b) Process network execution.

Fig. 7. Structure of the proposed
runtime-manager. “M” and “S” represent
master and slave processes, respective.

is instantiated. Otherwise, a virtual FIFO channel is instantiated at the sender
and a local FIFO channel at the receiver. Afterwards, virtual and local FIFO
channels are registered at the corresponding listener thread. A FIFO channel
is destroyed by deregistering it at the listener thread and freeing the memory
buffer. Finally, a process is started by registering the thread at the scheduler, and
stopped by aborting the fire procedure and deregistering it from the scheduler.

5 Program Synthesis Backend

A program synthesis backend is the second component required to execute a
workload specified by the DAL MoC. It basically consists of creating the runtime-
manager, embedding each process into a POSIX thread, and creating a main
function for each core, see Fig. 6.

Runtime-Manager Synthesis. The task of the runtime-manager synthesis is
to automatically construct a runtime-manager that satisfies the given system
specification. The result of this step is a process network with one master pro-
cess and one slave process per core that uses the additional services provided
by the runtime-system to manage the processes and channels, see Fig. 7. The
runtime-manager monitors the system, starts and stops individual process net-
works depending on the requests of the user. The master process thereby man-
ages the dynamic execution of the system and the slave processes are responsible
for the management of the processes and FIFO channels. Thus, the master pro-
cess distributes the actual computation to the slave processes. Once the slave
processes performed their work, they go to sleep until the master process sends
them a new job making the proposed runtime-manager very lightweight in the
sense that it does not affect the execution of the process network.

796 L. Schor et al.

32 64 256 1024 4096 16384
10

0
10

1
10

2
10

3
10

4
10

5

token size [bytes]

da
ta

 r
at

e
[K

B
/s

]

(a) FIFO channel capacity of 16384 bytes.

32 64 256 1024 4096 16384
10

0
10

1
10

2
10

3
10

4
10

5

token size [bytes]

da
ta

 r
at

e
[K

B
/s

]

(b) FIFO channel capacity of 32768 bytes.
cores on the same tile 2 hopes distance 4 hopes distance

Fig. 8. Data transfer rate between two cores for three different hop distances

Process Network Synthesis. Finally, the process network synthesis step em-
beds each process into a POSIX thread and creates a main function for each
core. Embedding each process into a POSIX thread is achieved by a process
wrapper that repeatedly calls the fire procedure of the process. The process
definition is then stored together with the process wrapper as a dynamic library
in the file system so that it can be loaded on request of a slave process. The main
function has two tasks. First, it starts the listener thread. Then, it initializes
the processes and channels of the runtime-manager and turns the control of the
system over to the master.

6 Experimental Results

In this section, we provide experimental results characterizing the framework.

Experimental Setup. An Intel SCC processor running at 533 MHz for the cores
and 800 MHz for the routers and DDR3 RAM has been used for the experiments.
A Linux image with kernel 2.6.32 has been loaded on each core. RCKMPI has
been configured to use the default channel, i.e., the SCCMPB channel. The
ICC-8.1 compiler with optimization level -O2 is used for all experiments.

Data Transfer Rate. A synthetic application consisting of two processes and
one FIFO channel has been designed to measure the data transfer rate be-
tween two cores. The application executes 100000 iterations and in one iteration,
the source process writes one token to the FIFO channel and the sink process
reads the token from the FIFO channel. No other processes except the runtime-
manager are running on the SCC. Figure 8 shows the data transfer rate between
two cores whereby the token size is varied between 32 bytes and 16384 bytes. The
experiment has been repeated for two capacities of the FIFO channel and three
hop distances between the cores. The observed peak data rate is 11 Mbytes/s.
While hop distance and capacity have small influence on the data transfer rate,
the rate significantly increases with the size of a single token.

Reliable and Efficient Execution of Multiple Streaming Applications 797

split stream

decode frame

merge stream

decode frame

Fig. 9. KPN of the distributed MJPEG
decoder

1 2 3 4 5
0

20

40

60

"decode frame" processes per core

fr
am

es
 p

er
 s

ec
on

d

1 core 2 cores, same tile 2 cores, diff. tiles

Fig. 10. Decoded frames per second using
the MJPEG decoder

Runtime-System Overhead. As the runtime-manager sleeps after performed
work, the overhead of the runtime-system can mainly be assigned to the lis-
tener thread. To measure this overhead, we use a sequential implementation of
a motion JPEG (MJPEG) decoder. Decoding 5000 frames takes thereby about
162.0 s if the MJPEG decoder is executed in parallel to the listener thread
and 158.9 s if it is executed as an individual application. Thus, the measured
overhead is less than two percent.

Context Switching Overhead. To characterize the effect of multi-processing
on a single core, we consider a distributed implementation of the MJPEG de-
coder, see Fig. 9 for the process network. The network has multiple “decode
frame” processes decoding a complete frame in a single iteration. In Fig. 10,
the decoded frames per second using the MJPEG algorithm are compared for
implementations mapping a different number of “decode frame” processes onto
one core. Furthermore, the graph differs between three configurations. First,
only one core, then both cores of a tile, and finally two cores of different tiles
are used to execute the “decode frame” process. It shows that the frame rate
increases significantly if two processes are mapped onto a single core as com-
munication and computation can partially overlap. Furthermore, the frame rate
does not decrease even if five processes are mapped onto each core indicating a
low multi-processing overhead.

Speed-Up Due to Parallelism. Finally, we evaluate the speed-up due to avail-
able number of cores for four different applications. Besides the MJPEG decoder,
a MPEG-2 decoder, a ray-tracing, and a quicksort algorithm are studied. The
ray-tracing algorithm generates an image of 100 × 100 pixels and can concur-
rently analyze multiple rays. We map either one or two such processes onto one
core. The quicksort algorithm sorts an array with 5000 elements and can have
multiple instances of a “sort” process to concurrently sort multiple sub-arrays.
Two configurations with either four or eight “sort” processes are considered. The
MPEG-2 decoder concurrently decodes multiple macroblocks. We again map ei-
ther one or two such processes onto one core

In Fig. 11, the speed-up is compared for implementations running on a differ-
ent number of cores. The speed-up is calculated with respect to an implemen-
tation running on a single core. The maximum speed-up that can be achieved
is 20.7 for the MJPEG decoder application. As MJPEG is an intraframe-only

798 L. Schor et al.

1 2 4 8 16 24
0
5

10
15
20
25

number of cores

sp
ee

d−
up

 [
1]

1 process per core 2 proceses per core

(a) MJPEG decoder.

1 2 4 8 16 24
0

5

10

15

20

number of cores

sp
ee

d−
up

 [
1]

1 process per core 2 proceses per core

(b) Ray-tracing algorithm.

1 2 4 8 16
0

2

4

6

8

number of cores

sp
ee

d−
up

 [
1]

4 sorting processes 8 sorting processes

(c) Quicksort algorithm.

1 2 4 8 16 24
0
1
2
3
4
5

number of cores

sp
ee

d−
up

 [
1]

1 process per core 2 processes per core

(d) MPEG-2 decoder.

Fig. 11. Speed-ups of four benchmarks for a varying number of cores

compression scheme, the frames can be decoded in parallel on different cores. The
ray-tracing algorithm achieves a speed-up of almost 20 on 24 cores. As each ray
can individually be analyzed, the ray-tracing algorithm is well-suited for paral-
lelization. The speed-ups achieved with the quicksort algorithm are much smaller
than with the previous applications. This might be because additional time is
required to partition the input array into sub-arrays and then to collect the in-
termediate results. A maximum speed-up of 6.0 on 16 cores is achieved when
eight “sort” processes are running in parallel. Finally, due to data-dependencies
between the frames, the MPEG-2 application only achieves a speed-up of about
4.1. The speed-up increases linearly for a small number of cores before collecting
and distributing frames become the bottleneck for higher parallelization.

7 Related Work

To abstract low-level implementation details from the application designer, var-
ious high-level programming environments have been developed for Intel’s SCC
processor. For instance, a distributed Java virtual machine for Intel’s SCC pro-
cessor is proposed in [10]. In [9], Barrelfish OS is presented that provides the
user a single OS instance to manage the complete set of available computing
cores. The closest related work is presented in [13] by mapping distributed S-
Net streaming networks onto Intel’s SCC processor. Similar to our work, func-
tions are written in a standard programming language and then mapped onto
stream-processing components (so-called boxes). In contrast, our framework per-
mits stateful processes and interactions between applications. Furthermore, the
formal design approach enables high-level performance analysis and mapping op-
timization at design-time so that quality-of-service constraints can be provided.

Reliable and Efficient Execution of Multiple Streaming Applications 799

The KPN [6] model of computation has been the basis for many frameworks to
design multi/many-core systems including Daedalus [8], DOL [12], and SHIM [3].
Most of these frameworks support a wide-variety of target platforms and have
recently been extended to dynamic workload. Our approach, in contrast, uses a
formal specification of the dynamic behavior in the form of a FSM, which enables
an efficient analysis and execution of multiple dynamic KPN applications.

8 Conclusion

In this paper, we have presented a high-level programming framework that allows
to execute multiple applications specified as Kahn process networks on Intel’s
SCC processor. To abstract low-level implementation details from the application
designer, a high-level API has been proposed. The API does not only specify the
individual applications but also their interactions enabling dynamic behavior in
the sense that applications can start and stop at runtime. To efficiently execute
workload specified by the proposed API on the SCC, we presented a lightweight
runtime-system and an automated program synthesis backend. In particular, ef-
ficiency is obtained by a distributed runtime-manager that loads processes and
instantiates channels only when the application is actually started. The paper
has shown that the proposed program synthesis backend can be extended to
integrate high-level performance analysis and process-level mapping optimiza-
tion enabling quality of service guarantees. Finally, we applied the approach to
various streaming applications demonstrating the advantages of programming
applications with the proposed framework.

Acknowledgments. This work was supported by EU FP7 project EURETILE.
Lars Schor was also partially supported by an Intel PhD Fellowship.

References

1. Clauss, C., et al.: Evaluation and Improvements of Programming Models for the
Intel SCC Many-Core Processor. In: Proc. HPCS, pp. 525–532 (2011)

2. Comprés Ureña, I.A., Riepen, M., Konow, M.: RCKMPI – Lightweight MPI Imple-
mentation for Intel’s Single-chip Cloud Computer (SCC). In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp.
208–217. Springer, Heidelberg (2011)

3. Edwards, S.A., Tardieu, O.: SHIM: A Determinstic Model for Heterogeneous Em-
bedded Systems. IEEE Trans. VLSI Syst. 14(8), 854–867 (2006)

4. Geilen, M., Basten, T.: Requirements on the Execution of Kahn Process Networks.
In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 319–334. Springer, Heidel-
berg (2003)

5. Howard, J., et al.: A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm
CMOS. In: Proc. ISSCC, pp. 108–109 (2010)

6. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: Proc.
of the IFIP Congress, vol. 74, pp. 471–475 (1974)

800 L. Schor et al.

7. Kang, S.H., et al.: Multi-Objective Mapping Optimization via Problem Decompo-
sition for Many-Core Systems. In: Proc. ESTIMedia, pp. 28–37 (2012)

8. Nikolov, H., et al.: Systematic and Automated Multiprocessor System Design, Pro-
gramming, and Implementation. IEEE T. Comput. Aid. D. 27(3), 542–555 (2008)

9. Peter, S., et al.: Early Experience with the Barrelfish OS and the Single-chip Cloud
Computer. In: Proc. MARC, pp. 35–39 (2011)

10. Saballus, B., et al.: A Scalable and Robust Runtime Environment for SCC Clusters.
In: Proc. MARC, pp. 71–74 (2011)

11. Schor, L., et al.: Scenario-Based Design Flow for Mapping Streaming Applications
onto On-Chip Many-Core Systems. In: Proc. CASES, pp. 71–80 (2012)

12. Thiele, L., et al.: Mapping Applications to Tiled Multiprocessor Embedded Sys-
tems. In: Proc. ACSD, pp. 29–40 (2007)

13. Verstraaten, M., et al.: On Mapping Distributed S-Net to the 48-core Intel SCC
Processor. In: Proc. MARC, pp. 41–46 (2011)

14. van der Wijngaart, R.F., et al.: Light-weight Communications on Intel’s Single-chip
Cloud Computer Processor. SIGOPS Oper. Syst. Rev. 45(1), 73–83 (2011)

	Reliable and Efficient Execution of Multiple Streaming Applications on Intel’s SCC Processor
	1 Introduction
	2 Single-Chip Cloud Computer
	3 DAL Model of Computation
	4 Runtime-System
	5 Program Synthesis Backend
	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

