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Abstract. This paper explores the parallel programmability, perfor-
mance, and energy efficiency of a recently available Calxeda ARM-based
server as a potential energy-efficient platform for computationally inten-
sive applications. A novel OpenCL-based parallel programming model
for the Calxeda ARM server is achieved via the use of a higher level
STandarD Compute Layer (STDCL) application programming interface
and a remote procedure call (RPC) implementation. Empirical measure-
ments of the performance of the platform are obtained and presented
using an N-body code executed in various configurations. Furthermore,
an auto-tuning technique was developed and analyzed for optimization
of the N-body algorithm on a specific architecture.
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1 Introduction

Power consumption has arguably become the single most critical factor impact-
ing high performance computing (HPC) for architectures ranging from large-
scale supercomputers to data centers to mobile computing platforms [9,3,6]. It
is within this context that ARM processors, which dominate the mobile smart-
phone and tablet market, are being repurposed as an alternative to the x86
processors that have dominated HPC, desktops, and workstations, for well over
a decade. Whereas a modern x86 processor is based on a CISC architecture with
substantial per-core capability, ARM processors are based on a RISC architec-
ture designed for low-power operation [8].

Newly developed ARM-based servers, such as those from Calxeda, offer low-
energy usage, high-memory density, high-core density, and high-storage density–
all qualities that motivate using these servers for HPC applications. However, the
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relative core efficiency as compared with x86 CPUs in terms of cost and power
metrics remains an open question. The Calxeda ARM servers [5] represent the
most direct attempt to date aimed at bringing ARM processors into competition
with traditional x86 servers.

This paper reports on exploration into the parallel programmability, perfor-
mance, and energy efficiency of a Calxeda ARM server using an OpenCL-based
approach. OpenCL provides an explicit low-level programming model for co-
processor architectures that may also be used to exploit the parallelism of sys-
tems with multi-core CPUs treated as abstract OpenCL compute devices. The
OpenCL host node is treated normally, while the rest of the nodes are virtual-
ized and treated as OpenCL compute devices through a Remote Procedure Call
(RPC) OpenCL implementation. This specialized RPC-based OpenCL imple-
mentation permits existing multi-device OpenCL codes to execute across multi-
ple networked compute devices.

Section 2 describes the Calxeda server system used for evaluation. Section 3
investigates the use of existing software packages that leverage OpenCL to pro-
vide a novel parallel programming model for platforms like the Calxeda ARM
servers. Section 4 discusses the use of an N-body benchmark, including auto-
tuning parameterizations, to measure the performance of the Calxeda ARM
server. Section 5 provides the evaluation of the Calxeda ARM server. Section 6
presents related work on OpenCL performance. Finally, Sect. 7 closes with con-
clusions and future work.

2 The Calxeda ARM Server

The Calxeda ARM server experimented for this study was provided by Exxact
Corporation and accessible from a remote desktop allowing direct access to a
login node connected to the Calxeda system. It was configured with two Calxeda
EnergyCards, each containing four quad-core ARM Cortex-A9 system on chip
(SoC) devices, as shown in Fig. 1, acting as independent nodes (device nodes);
thus, a potential total core count of 2 × 4 × 4 = 32 cores. However, the server
that was provided had five device nodes, or 20 cores, configured and accessible
for use. Based on documentation, the ARM cores operate at a clock frequency in
the range of 1.1 GHz to 1.4 GHz and have access to 4GB DDR3 ECC memory
per device node. It is important to note that each SoC interacts exclusively over
the integrated network fabric and the quad-socket card is not a shared memory
platform like a conventional server motherboard.

Each quad-core node was accessible via Secure Shell (SSH) and presented itself
as a standalone node running its own operating system (OS) image, specifically,
Ubuntu 12.10. The environment is a typical Ubuntu OS system and included
standard development tools, e.g., GCC 4.7, along with most of the supporting
tools needed for compiling code. The platform included a baseboard management
controller (BMC) that allowed power measurements to be obtained for each
ARM device node.
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Fig. 1. Block diagram of the Calxeda EnergyCard showing the basic platform architec-
ture of the Calxeda ARM server. Each card contains four quad-core ARM Cortex-A9
SoCs with dedicated banks of 4GB DDR3 EEC memory. Each ARM SoC has an in-
tegrated fabric switch with five (5) 10Gb network links supporting a direct all-to-all
on-card topology and a total of eight (8) links exported to the main system board to
connect with additional cards.

3 Parallel Programming Approach

This investigation leverages freely available open-source software packages to
support an OpenCL-based parallel programming model for the Calxeda ARM
server. In particular, the CO-PRocessing THReads (COPRTHR) software devel-
opment kit (SDK) [1] was used to provide libraries and tools for the investiga-
tion, including an OpenCL implementation for the quad-core ARM processors,
an OpenCL RPC implementation for networked compute devices, and an imple-
mentation of STandarD Compute Layer (STDCL).

OpenCL is an industry standard application programming interface (API) for
parallel programming of heterogeneous computing platforms [15]. OpenCL pro-
vides a portable vendor- and device-independent low-level API for programming
parallel platforms. Since an OpenCL implementation for the ARM processor was
not available as part of the standard software stack on the Calxeda system, the
implementation provided by the COPRTHR SDK was selected to test the ARM
processor. In addition, the OpenCL RPC implementation provided by the CO-
PRTHR SDK, designated CLRPC, provided the ability to target multiple ARM
SoCs as networked compute devices on the Calxeda platform, which allowed the
investigation of inter-device parallelism within an OpenCL programming model.

The operation of CLRPC is outside of the OpenCL standard and warrants
discussion. The OpenCL compute capability of any networked device can be
exported using a CLRPC server (clrpcd) running on the host node of the device.
A clrpcd server will export all available OpenCL platforms on a given host
node. An application code running elsewhere can access all exported OpenCL
platforms through libocl.so by providing a list of the network addresses for known
servers in an ocl.conf file that replaces the standard OpenCL installable client
driver (ICD) enumeration.
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One drawback of OpenCL is that, in comparison to its closest vendor-
supported competitor, Compute Unified Device Architecture (CUDA), its direct
use in application development proves to be more tedious and complicated. For
this reason, STDCL is used here for host-side application programming. STDCL
is an API [4] that leverages OpenCL, but supports more natural programming
syntax and semantics for application development. STDCL provides support for
default compute contexts, conventional memory allocation of device-sharable
memory, event management, and a dynamic kernel loader that supports a more
traditional compilation model and an offline kernel compiler.

A particularly significant feature of STDCL used in this investigation is the
default context, stdnpu, that leverages CLRPC to provide a single compute
context containing all networked compute devices. This feature has no direct
equivalent in the OpenCL standard and creates a unique parallel programming
model for the Calxeda platform.

4 Auto-Tuning OpenCL N-Body Benchmark

The N-body algorithm is used to solve Newton’s laws of motion for N parti-
cles subject to an inter-particle force. The algorithm requires the update of all
particle positions and velocities based upon the distance of a given particle to
all others by calculating a distance-dependent force and then numerically inte-
grating the equations of motion using a fixed-time step. The N-body algorithm
provides an excellent benchmark[12] for the evaluation of a computing platform
for several reasons. First, the basic algorithm is representative of many real-world
computational kernels, and may serve as a proxy for their expected performance.
Second, the manner in which the simulation is performed is relatively clean with-
out superfluous computations that would complicate the interpretation of the
performance benchmarks. Third, the algorithm provides a simple mechanism of
sweeping a single parameter, the number of particles, to drive the system into a
compute bound regime because computation and data movement scale as O(N2)
and O(N), respectively. Finally, the simulation is commonly implemented on a
range of architectures and provides a convenient canonical algorithm for com-
parative benchmarking.

Although OpenCL software is portable across many devices, that does not im-
ply performance portability. This investigation included running an auto-tuning
OpenCL N-body benchmark that parameterized the kernel in ways that impact
performance across different architectures and compilers. The parameters are
used to auto-generate kernel source, as opposed to passing arguments, compiled
for each unique case. Similar brute force automatically tuning schemes have been
used to optimize linear algebra routines in the ATLAS and GATLAS packages
for particular architectures.

The kernel parameterization is described below. The parameter nmulti is the
number of particles updated per thread. This outer-loop multiplicity may allow
a compiler to automatically vectorize the computation. The parameter nunroll
defines the explicit unrolling within the inner loop over particle pair interactions.
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The parameter nblock is the number of particle positions cooperatively cached
by a work-group in local memory for calculating particle pair interactions. This
essentially replaces the inner loop over particles with a double loop over blocks
of nblock particles and a nested loop over the cached particle positions. The
parameter nthread determines the OpenCL work-group size.

5 Evaluation Study

5.1 Methodology

The software stack supporting an OpenCL-based parallel programming model
described in Sect. 3 had never been tested on the Calxeda ARM server ar-
chitecture. The simplest configuration used to obtain benchmarks involved the
execution of an OpenCL benchmark using the CPU OpenCL implementation
directly (OpenCL direct). This scenario involves running the host program on
the same device node that is also used to execute the OpenCL kernels on up to
four cores, and is the conventional model for OpenCL CPU implementations.

CLRPC enables a transparent client-server model to export an OpenCL com-
pute device to another node. Using this scenario (CLRPC remote), a clrpcd
server is run on a different device node from that which is used to execute the
host program. This configuration is still limited to using up to four cores for the
execution of OpenCL kernels.

A variation of the CLRPC remote configuration involves executing the host
program on the same device node used to run the clrpcd server, and in turn exe-
cute the OpenCL kernels (CLRPC local). The difference here between OpenCL
direct and CLRPC local is that in the latter case, the device must incur the
overhead of interacting with the local clrpcd server.

All of the above configurations are limited to using up to four cores for ex-
ecuting OpenCL kernels. The STDCL compute context stdnpu, that leverages
CLRPC to provide access to all networked compute devices, expands the par-
allel programmability of the platform by allowing multiple compute devices to
be used from a single compute context. This configuration (stdnpu) can be used
to study the scaling of the parallel programming model over the entire system
of networked ARM SoCs in a Calxeda server, aggregated into a single compute
context accessible from a host program running on any node.

Performance measurements reflect results for an OpenCL N-body benchmark
based on default code originally tuned for high-end GPUs. This code was modi-
fied to develop the auto-tuning benchmark described in Sect. 4. This benchmark
was used with different configurations and parameters to explore the Calxeda
ARM server platform and the OpenCL-based parallel programming model pre-
sented in Sect. 3.

The default benchmark was first used on a single device node with the conven-
tional OpenCL configuration involving a STDCL host programusing the OpenCL
platform implementation directly (OpenCL direct). The auto-tuning version of
the benchmark was then employed to identify the optimum parameters for the
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parameterized kernel, anticipating that the search would improve the measured
performance of the algorithm.

Performance measurements were obtained using CLRPC, which provides a
key component for expanding the parallel programmability of the platform be-
yond a single quad-core device. To address the issue of networking overhead,
measurements were taken by running the CLRPC server and STDCL host pro-
gram on the same device node (CLRPC local) and then repeated by running the
CLRPC server on a different device node (CLRPC remote).

Finally, the scaling of the benchmark for 4 to 16 ARM cores was studied using
stdnpu, the STDCL default context for all networked compute devices that, in
turn, leveraged CLRPC.

Power is measured using the BMC interface for more than the quad-core ARM
processor itself and includes other elements of the SoC like the network fabric,
global memory, etc. Power data consisted of measurements at idle and under
full load while running an N-body benchmark with 32,768 particles, so that the
device would be driven well into the compute regime and under full utilization.

5.2 Results

The results reported in this paper are for single-precision floating point compu-
tations. The default N-body benchmark was executed with 16,384 particles and
nthread=16 using the OpenCL direct configuration and exhibited 983 MFLOPS
(million floating point operations per second). With this number of particles, the
simulation is driven well into a compute bound regime on this architecture, as
discussed more thoroughly below. Examining CPU utilization using the Linux
top command showed nearly 400% utilization, indicating that all four ARM
cores were utilized at full load. The auto-tuning benchmark was run using the
same number of particles and identified an optimized kernel that exhibited 1,094
MFLOPS, a gain of 11.3% over the default benchmark.

Using the CLRPC local configuration, where the clrpcd server and STDCL
host program are run on the same device node, the identical default benchmark
exhibited 840 MFLOPS. Examining CPU utilization showed that the clrpcd
server was running at approximately 350% with the host program using the bal-
ance of approximately 50%. With this configuration, the clrpcd server executes
the computational load, and the host program drives the computation through
RPC client calls. The results provide an indication of the host program overhead
incurred when using CLRPC. The reduction in performance (15%) is consistent
with the reduction in utilization (13%).

Using the CLRPC remote configuration, where the clrpcd server and STDCL
host program are run on different device nodes, the identical benchmark achieved
980 MFLOPS and the clrpcd server showed nearly 400% utilization. This demon-
strates that the resource contention found with the CLRPC local configuration
can be entirely mitigated when the clrpcd server is run on a separate device node
and the CLRPC overhead remains with the host program.

Figure 2 portrays the results for different numbers of particles. Using the
OpenCL direct configuration, the benchmark reaches a pure compute regime
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at around 1,024 particles. For smaller numbers of particles, the performance is
negatively impacted by non-compute operations. This reduced performance for
small numbers of particles is observed on nearly all architectures and is expected.

Fig. 2. Performance results for BDT N-body on a single quad-core ARM device on a
Calxeda server. Comparison is between the OpenCL direct and CLRPC remote con-
figurations.

Results using the CLRPC remote configuration are also depicted in Fig. 2,
where it can be seen that a greater overhead is incurred for small numbers of
particles. Not only does the benchmark show that it reaches a compute regime
at a slightly larger number of particles by roughly a factor of two, there is a
greater decrease in performance as the number of particles is reduced.

Two factors are likely impacting the performance. First, the relative cost of
data movement and compute will decrease linearly with the number of particles,
being O(N) and O(N2), respectively. Second, there is is an overhead associated
with the CLRPC implementation that will become more pronounced as the
computational load is reduced. Nevertheless, the results show that CLRPC can
be used effectively for computationally intensive tasks.

The default STDCL context stdnpu containing all networked compute devices,
which leverages CLRPC, was used to demonstrate the parallel programmability
of the ARM server beyond a single quad-core processor. Figure 3 represents
the scaling of the OpenCL N-body benchmark using multiple ARM SoCs up
to 16 ARM cores for various system sizes. For the smallest system, scaling is
predictably poor because insufficient work is provided per core to mitigate the
overhead. However, with a sufficiently large system, the scaling is nearly linear
through 12 cores. The deviation from linear scaling at 16 cores is attributable to
the overhead described above for the CLRPC local configuration, since the 4th
ARM SoC is executing the host program.

Power measurements are displayed in Fig. 4 and indicate a power variance
between ARM SoCs that is significant, with a minimum (maximum) idle power
of 3.3 W (4.6 W). Under full load, the power increase is reasonably consistent
with a minimum (maximum) cost of an additional 0.85 W (1.2 W).
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Fig. 3. BDT N-body benchmark scaling up to 16 ARM cores using a single STDCL
compute context, stdnpu, containing four (4) networked ARM SoC compute devices.
STDCL uses CLRPC to access all of the ARM devices in the Calxeda platform.

Fig. 4. Calxeda power requirements at idle (blue) and under load (orange) while exe-
cuting N-body application. The difference between idle and load are indicated by the
green bar.

5.3 Analysis and Discussion

The Calxeda ARM server provides a platform that is functionally equivalent
to a small cluster of quad-core processors, each running a standard Linux OS.
Using an OpenCL N-body benchmark, the ARM processor yielded the computa-
tional performance of approximately 1 GFLOP. The ARM SoC device nodes used
3.3 W-4.6 W of power when idle and 4.35 W-5.65 W under full load. Therefore,
the power efficiency for this benchmark is approximately 1 GFLOPS/W in terms
of processor power and approximately 0.2 GFLOPS/W in terms of total node
power. By comparison, using the auto-tuning N-body benchmark on a system
with dual Intel Xeon X5650 CPUs (12 cores @ 2.66 GHz) resulted 83.7 GFLOPS
with a combined thermal design power of 190 W. Based on this limited scope
of power data, it remains difficult to assess the relative power efficiency of the
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quad-core ARM SoC device since the measured power includes components that
do not align with the power measurements of other architectures.

The Calxeda system supported the use of CLRPC to allow OpenCL applica-
tions to access any networked OpenCL devices. CLRPC performance shows some
overhead for workloads with lightweight kernels, and matches the performance
of using OpenCL directly for computationally intensive workloads.

6 Related Work

Others have developed test suites that cover combinations of OpenCL operations,
element types, and local sizes to test performance and numerical precision of
GPU systems in terms of OpenCL operations [10].

In comparative performance studies between CUDA and OpenCL versions of
the same applications, Fang et.al [7] and Komatsu et.al. [11], have shown that
performance can be comparable if the kernels are optimized by hand or by com-
piler optimizations. They also highlighted how automatic parameter tuning is
essential to enable a single OpenCL code to run efficiently on various GPUs,
motivating the need for auto-tuning for each system and for comparative per-
formance studies. Yao et.al. [16] studied the performance portability of OpenCL
across diverse architectures including NVIDIA GPU, Intel Ivy Bridge CPU,
and AMD Fusion APU, using three OpenCL benchmarks–SGEMM, SpMV,
and FFT. They found that performance portability requires tuning threads-
data mapping, data layout, tiling size, data caching, and operation-specific fac-
tors. Other studies of OpenCL performance include comparing against OpenMP
for multi-core CPUs [14]. Beyond CUDA and OpenCL, frameworks for GPU
programming with abstraction include Halide [13] and HIPAcc [2] for image
processing.

7 Conclusions and Future Work

To our knowledge, this is the first effort to investigate the use of OpenCL to
support a parallel programming model for a Calxeda ARM server. The initial
success of applying a novel OpenCL-based parallel programming model that
includes the use of a high-level abstraction for OpenCL and an RPC imple-
mentation of OpenCL to access networked compute devices demonstrates the
potential of this model for utilizing the large number of ARM cores available on
a fully configured Calxeda system. Empirical results are obtained for executing
an OpenCL N-body benchmark using various configurations and for a range of
parameters from which the power efficiency of the quad-core ARM processors
could be evaluated. An auto-tuning benchmark was developed that can be used
to optimize the computational kernel for a given architecture. Power efficiency
results are not sufficient to make a determination as to the energy efficiency
of an ARM-based server compared with competing architectures. Future work
includes scaling to a much larger number of cores.
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