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Abstract. Active data structures support operations that may affect
a large number of elements of an aggregate data structure. They are
well suited for extremely fine grain parallel systems, including circuit
parallelism. General purpose GPUs were designed to support regular
graphics algorithms, but their intermediate level of granularity makes
them potentially viable also for active data structures. We consider the
characteristics of active data structures and discuss the feasibility of im-
plementing them on GPGPUs. We describe the GPU implementations of
two such data structures, extensible sparse functional (ESF) arrays and
index intervals. We measure their performance and discuss the potential
of active data structures as an unconventional programming model that
can exploit the capabilities of emerging fine grain architectures such as
GPUs.
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1 Introduction

GPUs originated as parallel graphics processing units, but they have evolved
into general purpose parallel processors, sometimes called GPGPUs. A GPU
contains a moderately large number (∼ 103) of processing elements that execute
multiple threads concurrently. They have been applied successfully to a wide
range of scientific applications, which consist largely of data parallel iterations
over arrays.

It is important to discover how widely applicable GPUs are because they
fit well with current trends in computer architecture, and they provide a good
level of granularity. The density of transistors per chip continues to grow, but
individual processors are no longer becoming faster. Therefore computer archi-
tects are seeking effective ways to use additional transistors to support parallel
computing.

A current trend is to reduce the granularity of computation. The granularity
of a parallel system relates the size and number of processing elements. Multicore
systems have on the order of 10 to 100 processors and memories. GPGPUs have
a finer granularity, with a larger number of processing elements (thousands)
that are smaller and less powerful than CPUs [5]. Very fine grain SIMD parallel
systems, such as the Connection Machine [8], have large numbers of very small
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processors. FPGAs (field programmable gate arrays) and CGRA (coarse grain
reconfigurable architectures) allow even finer grain parallelism, but they are less
portable and harder to program than GPUs. In his Turing Award lecture, Backus
argues that finer grain parallel programming models can reduce the bottleneck
between a processor and a memory [2].

Applications for GPUs are often organised as a collection of tasks coordinated
by the CPU. A task that runs on the GPU is called a kernel, consisting of many
concurrent threads organised into several blocks that run on parallel processing
elements in the GPU. When all threads have completed, the kernel terminates.
A full application will typically perform many kernel launches and terminations.
This programming model supports regular parallelism across large and regular
data structures.

There is increasing interest in investigating the applicability of GPUs to a
broader range of applications. A general discussion of the limitations of GPUs
and how to overcome them is given in [7]. One approach is to provide MIMD
computations on a GPU, which is essentially SIMD, using interpretation [4]. A
cost model for GPU computation is presented in [17].

This paper investigates the application of GPUs to active data structures
[1], which cause a single operation to affect many elements of a data structure.
Examples of active data structures include associative memories and content
addressable parallel processors [6]. Active data structures are well suited for
“circuit parallelism”, such as FPGA or VLSI implementation. These platforms
are hard to use and nonportable, so it would be valuable to provide GPU im-
plementations of active data structures. However, there are many challenges in
doing so.

The contribution of this paper is an experimental investigation of the suit-
ability of GPUs for active data structures that exploit fine grain parallel compu-
tation. We discuss the characteristics of active data structures and the technical
challenges in implementing them on a GPU. We then describe the implemen-
tation and performance of two experimental case studies: index interval selec-
tion and extensible sparse functional arrays. The ESF array algorithm provides
operations that have extremely low variance in execution time, making them
especially useful for real time applications. To help make the programming tech-
niques more widely available, and to enable others to replicate our experiments,
the source code and further documentation are available on the web [13].

Section 2 introduces active data structures, and Section 3 discusses the ar-
chitectural capabilities needed to implement them. Section 4 describes several
active data structures and their experimental implementation on a GPU, and
gives performance results. Section 5 concludes.

2 Active Data Structures

An active data structure provides a set of high level operations, where each
operation may cause changes to many elements within the structure. This could
be simply a software abstraction layer, but it is also possible to use parallelism
to implement the operations.
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The earliest active data structures were associative memories [6]. A conven-
tional memory identifies each memory element by an address. The fetch and store
operations supply an address, and the memory hardware uses a tree of multi-
plexers or demultiplexers to access the data. Associative memory (also called
content-addressable memory) stores words that contain several fields: for exam-
ple each word might contain (x, y) where the components x and y are bit fields.
A memory access instruction provides the value of one of the bit fields (say
x = 147), and the hardware returns the corresponding value of the other field.

Associative memory can be implemented efficiently with circuit parallelism.
The memory contains a set of registers, each holding all the bit fields of an ele-
ment. A dedicated comparison circuit is attached to every register in the mem-
ory. When an access instruction provides a value of the x field, this is broadcast
(“fanned out”) to all the comparison circuits, which determine whether the cor-
responding element matches. These comparisons are performed in parallel; the
time to search n items is typically reduced by a factor of at least O(logn). Asso-
ciative memory can reduce communication costs for data intensive applications,
with organisation of the data into suitable chunks [10].

The basic idea behind associative memory—to add some logic to each word
in a memory, and also to add some logic to the address decoder tree—can be
extended further, to powerful “smart memories” that mix memory and com-
putation at a very fine grain. Many applications take this approach, including
hardware cache and translation lookaside buffers, database searches, and sig-
nal processing. The most efficient platform for such a system is a specialised
VLSI design, but the design cost is high and the result is inflexible. It would be
valuable to adapt GPUs to active data structures, because GPUs are more cost
effective, more portable, and more flexible than custom chips.

3 GPU Capabilities Required for Active Data Structures

GPUs were originally intended to accelerate graphics rendering, a specialised
class of algorithm. Because of their high performance and relatively low power
consumption, they have been applied to an increasingly wide range of applica-
tions, especially in scientific programming.

This does not mean, however, that GPUs are well suited for all kinds of
programs. They have several properties that can potentially limit their use for
some applications. GPUs offer better support for data parallelism than task
parallelism. They have a complex memory model, with limitations in sharing of
data and widely varying latency. Synchronisation among threads requires careful
programming and can introduce significant overheads.

Many GPU applications are organised as a set of tasks that are coordinated
by the CPU. Each task is a function (called a kernel) that is called by the CPU
and that runs on the GPU. When all threads in the kernel finish, the kernel
terminates and the CPU resumes its computation. Communication between the
CPU and the GPU takes place through global memory, which is shared by both
systems.
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The computation in a GPU takes place in a set of blocks; each block can
run a set of threads concurrently. Blocks use different processing elements, so
threads in different blocks run in parallel, but threads in the same block may
be implemented by receiving very short time slices (one clock cycle) on a single
processing element. This hides the latency of memory accesses: if a thread has
requested a memory fetch, it is more efficient to allow other threads to execute
for a clock cycle rather than stalling the entire system until the data has arrived
from the memory. Thus threads can provide parallelism in effect even though
they may not be truly parallel at the level of the processor clock.

GPUs have a complex memory model, with four or five different kinds of
memory. Global memory is accessible to all threads in all blocks, and also to
the CPU, but it has high latency. Shared memory is accessible to all the threads
within the same block, but not to other blocks or the CPU. Global memory
is more flexible but its latency is two orders of magnitude higher than shared
memory. Other types of GPU memory, such as constant and texture memory,
are not used in our algorithms.

Communication across blocks. The overhead of communication between threads
in different blocks is high, for two reasons: (1) threads across blocks must com-
municate via the slow global memory rather than shared memory; and (2) it
is more costly to implement a barrier synchronisation across blocks than across
threads within a block. To achieve fast execution, it is necessary to minimise the
use of costly communications across blocks, and to do this efficiently where it is
necessary.

Persistent shared memory. For efficient execution, it is important to keep active
data structures in shared memory. There are two problems with this: (1) threads
in different blocks cannot access each other’s shared memory, so they can commu-
nicate only using global memory, and (2) when the kernel (the function running
on the GPU) returns, the contents of shared memory is lost. When inter-block
communication is needed, the threads can write data out to global memory,
requiring synchronisation across blocks. To achieve persistence, it is necessary
to organise the kernel as a long running loop that performs many active data
structure operations. In effect, the kernel runs indefinitely. This prevents use of
the common program organisation of a sequence of kernel calls. Instead, it is
necessary to treat the GPU as a server, and to introduce a concurrent dialogue
between the CPU and the GPU (see below).

Synchronisation across blocks. The GPU system provides a primitive barrier
synchronisation for threads within a block, but not for threads in different blocks.
Active data structures often require multiple blocks, either to gain access to more
memory (there is a strict limit on fast shared memory for all the threads in a
block) or to increase parallelism.

A common approach for applications that need multiple blocks is to organise
the algorithm into sections; each section is initiated by the CPU with a kernel
call and runs independently in the blocks. When all the threads have terminated,
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the kernel terminates, returning control to the CPU. This effectively provides
a cross-block barrier synchronisation, and also allows the CPU to assist with
communication and any sequential computations that are required.

That common approach is not workable for many active data structure algo-
rithms: it prevents the use of persistent shared memory, it increases overhead,
and it introduces a sequential bottleneck. An alternative, which we use in the
ESFA system described below, is to use a barrier that operates across blocks
[16].

Dialogue between CPU and GPU. Many GPU applications are organised as
a sequence of calls from the CPU to a kernel running on the GPU. Data is
communicated between the CPU and GPU using global memory and functional
arguments and results. If persistent shared memory is required, however, then
the GPU needs to run a long-term server: the kernel is effectively an infinite loop
that terminates only when the server is shut down. We implement the interaction
by running the CPU and the kernel in parallel, with a concurrent protocol using
locks to coordinate the CPU and the GPU. First the CPU starts the kernel,
which initialises its state (kept in persistent shared memory). The CPU uses
a lock to signal that it has a request; the GPU waits on this lock, copies the
request, and signals that it has the data. A similar protocol is used by the GPU
to tell the CPU that it has a result.

4 Case Studies

We have implemented two active data structure systems on a GPGPU, in order
to assess the capabilities of the system and the performance, which are discussed
in the following subsections. The system used is running CUDA version 4 on an
NVidia GeForce GTX 590, with 512 CUDA cores (16 multiprocessors with 32
cores per mp), and a 1.22 GHz clock speed, with CUDA capability 2.0.

4.1 Index Intervals

Data structures based on index intervals [11] support a family of operations
on ordered data structures, including selection and sorting algorithms. The al-
gorithms on index intervals are related to quicksort. The idea is to represent
explicitly what is known about the location of a value x within the sorted array,
rather than using the physical memory address of the value to represent its or-
dering. Associative searches, rather than indexed addresses, are used to retrieve
the data.

Consider an unsorted array x0, x1, . . . , xn−1. For any data value xi, we repre-
sent the information that is known about its position in the (unknown) sorted
array as a pair (lo, hi), such that lo ≤ j ≤ hi , where j is the position of xi in
the fully sorted array. The (lo, hi) pairs state explicitly the partial information
that is known at any time about the data values. Initially nothing is known, so
every value has an index interval of (0, n − 1), but if the array is fully sorted,
then the element xj will have index interval (j, j).
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An operation improve takes an index interval, which defines a set Y of ele-
ments that have this interval, and refines the interval for every member of Y .
This is done in parallel and takes a small constant number of steps, where each
step operates in parallel on every value. First an element of Y , called the split-
ter, is selected. This is broadcast (in parallel) to every element. The elements are
then compared (in parallel) with the splitter, and a local flag is set indicating
the result. The numbers of elements that are less than (and also equal to) the
splitter are counted (using a parallel fold), and this enables each cell to refine its
index interval (using a parallel local computation). The entire improve operation
consists of two parallel folds and two parallel maps.

As shown in [11], index interval sorting has a slightly lower computational
complexity than conventional quicksort. Its larger significance, however, is the
ability to use the improve step just where needed.

4.2 GPU Implementation of Index Intervals

Each array element is stored in one “cell”, which is in effect a record of fields
operated on by one thread. Parallel fold is used to locate an imprecise index
interval, and a parallel map causes every cell to refine its index intervals. Table
1 shows the times for the local computations required by the improve algorithm.
This includes the comparisons and interval adjustments in the cells, but not the
parallel folds.

Table 1. Performance of improve step for refining index intervals. N is the number of
cells, T is the mean time in microseconds over 1000 measurements, and stdev is the
standard deviation.

N T stdev

1024 27.5 0.932189
2048 42.2 1.187385
4096 66.3 3.829351
8192 107.2 1.995101
10240 125.9 4.736220

4.3 ESF Arrays

Extensible sparse functional arrays (ESFA) [12] [14] are a complex data structure
with demanding computational requirements. It is possible to use imperative ar-
rays in a functional language [9] [3], and there are many algorithms for purely
functional data structures [15]. Imperative arrays provide access time of O(1),
and it is conjectured that this is impossible for functional arrays on a von Neu-
mann architecture. Nevertheless, ESFA achieves O(1) access time for functional
arrays (and several generalisations, including sparse and extensible arrays) using
circuit parallelism. Thus the ESFA algorithm is inherently massively parallel.

The algorithm is implemented as a layer of software that runs on a digital
circuit that implements a “smart memory”. A program can build a collection
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of ESFA using the update operation, which takes an array, index, and value,
and creates a new array which is identical to the old one except that it has the
specified value at the index. The essential point is that the update is purely
functional: update creates a new array but the old one is still available.

It is straightforward to implement functional arrays by building tree structures
in the heap, but this means that all operations require a number of steps which
is proportional to the tree height. In the best case this gives logarithmic time,
but many practical cases have array lookup time that is linear in the size of the
array. It is possible to rebalance the trees periodically, but that adds additional
significant overheads.

The ESFA system implements every operation in a small constant number of
steps. Each step runs on a digital circuit (which can be real or virtual) that has
the same topology as a conventional random access memory (RAM). The circuit
provides a set of registers for each memory cell, and a tree of logic gates providing
access to the cells from a controller. In a conventional RAM chip, the tree circuit
is a word multiplexer, while in the ESFA system the tree nodes perform parallel
fold calculations. Furthermore, each leaf cell in the ESFA circuit contains a small
amount of logic circuitry, enabling every cell to perform a simple calculation
on every clock cycle. Typical leaf cell calculations are to compare two natural
numbers and set a flag with the result, and to increment a natural number if a
flag is True.

ESFA is a powerful application of active data structures. It makes a challeng-
ing test case for GPU implementation because each ESFA operation performs
a small calculation (a comparison and increment) in every cell in the machine,
not just every cell in the data structure referenced by the operation.

4.4 GPU Implementation of ESF Arrays

The GPU implementation requires all of the techniques discussed above in Sec-
tion 3. We used the lock-free algorithm of Xiao and Feng [16] for synchronising
across blocks. We used our own parallel fold algorithm, which is more general
than many published algorithms and also makes efficient use of the shared and
global memories. We also developed a concurrent algorithm for controlling com-
munication and synchronisation between the CPU and the GPU. The kernel
needs to be organised carefully, especially to avoid race conditions and to min-
imise the scope of conditionals. The program is available on the web [13].

Table 2 shows the performance of the algorithm, as a function of the number
of ESFA cells. A number of observations can be made from this data. The total
execution time (the T column) grows slowly as a function of the log of the
number of cells. The fastest execution occurs with the smallest ESFA memory
size, but at the largest memory size (larger by a factor of 512) the execution
time is only three times higher. The execution is most efficient at the largest
size. Furthermore, the measurements are highly repeatable with low variance.

Table 3 compares the performance of the parallel GPU implementation of
ESFA with a sequential simulator. For small data, the overhead of parallelisation
makes the GPU slower than the sequential CPU. However, the sequential time
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Table 2. ESFA performance on GPU. Each line shows the configuration (k = tree
depth, b× t = blocks × threads, N = number of cells) and the total time T in millisec-
onds for a run consisting of 50,000 operations (including a mix of updates, lookups,
and deletes). For each configuration, the execution was repeated 25 times, and the
result of every operation was compared with the result calculated by an executable
specification. Thus 10 × 25 × 50, 000 = 12, 500, 000 major operations were performed
without error. stdv = standard deviation of T; d = max-min of T. The t column gives
the time per ESFA operation in microseconds, and the tc column gives the time in
microseconds per operation per cell.

k b× t N T (ms) stdv d t(µs/op) tc(µs/op/c)

4 4× 4 16 5,071.1 32.3 104.0 101.4 6.34
5 4× 8 32 5,374.3 30.9 99.9 107.5 3.36
6 4× 16 64 5,606.1 25.9 117.1 112.1 1.75
7 8× 16 128 6,447.8 26.0 123.7 128.9 1.01
8 16× 16 256 7,946.3 32.7 122.8 158.9 0.62
9 16× 32 512 7,994.0 14.0 65.7 159.9 0.31
10 16× 64 1,024 8,426.2 25.1 101.0 168.5 0.16
11 32× 64 2,048 12,144.0 35.9 125.0 242.9 0.12
12 32× 128 4,096 13,424.4 33.5 106.5 268.5 0.06
13 32× 256 8,192 15,037.2 44.7 183.1 300.7 0.03

Table 3. Parallel speedup, comparing execution time for performing 50,000 operations
on the sequential simulator and on the parallel GPU implementation of ESFA. The
CPU times were measured one time, the GPU times (taken from Table 2) are the
mean of 25 runs. The speedup is Tcpu/Tgpu; this is the speedup as a function of the
number of ESFA cells, not as a function of parallel processors in the GPU.

k Tcpu Tgpu Speedup

4 1,232 ms 5,071.1 ms 0.243
5 2,067 ms 5,374.3 ms 0.385
6 4,046 ms 5,606.1 ms 0.722
7 9,426 ms 6,447.8 ms 1.462
8 24,765 ms 7,946.3 ms 3.117
9 65,193 ms 7,994.0 ms 8.155
10 176,428 ms 8,426.2 ms 20.938
11 534,878 ms 12,144.0 ms 44.045
12 1,866,045 ms 13,424.4 ms 139.004
13 7,228,694 ms 15,037.2 ms 480.721

grows linearly with the size of the data structure because each operation acts on
every element, while the GPU time grows slowly.

These results demonstrate how effective GPUs can be for active data struc-
tures. Consider an ESFA machine with 8K cells. An efficient sequential algorithm
(not a simulator) using a tree structure may require an average of 13 RAM ac-
cesses to perform an ESFA operation, with additional overhead for loop control.



Active Data Structures on GPGPUs 883

With fast memory hardware, this would amount to around 0.1 to 1 microsecond.
However, if an array is long—say 5000 elements—and the tree is not balanced,
the access would require 50 to 500 microseconds. For comparison, ESFA running
on the GPU requires 300 microseconds. It is, of course, possible to rebalance
the trees periodically, but that introduces further overhead, requires more stor-
age, and increases the variance in execution time. The ESFA algorithm always
requires a time of 300 microseconds, without any extra overheads, making it valu-
able for real time applications where each operation must be completed within
a deadline.

5 Conclusion

Active data structure algorithms scale well to very large numbers of processors,
but they have several characteristics that make them challenging for implemen-
tation on GPUs. Key issues include communication and synchronisation across
blocks, persistent shared memory, and interaction protocols between the CPU
and GPU. We have identified algorithms that solve those key issues. One is a
lock-free block synchronisation algorithm by Xiao and Feng [16], and we have
developed others (a CPU/GPU dialogue, and efficient and general fold and scan
algorithms).

Using these algorithms, we have evaluated the effectiveness of a GPU for im-
plementing active data structures, using two case studies: a relatively straightfor-
ward index interval selection/sorting algorithm, and a very complex extensible
sparse functional array algorithm. The speedup results compared with sequential
versions of the active data structures are excellent, with a speedup factor of 480
on the ESFA algorithm.

There may be sequential algorithms using conventional data structures that
are faster on a sequential machine. The key question is: can GPUs provide good
enough performance for active data structures to compete well against the best
sequential algorithm? The results are encouraging. ESFA on a GPU is sometimes
slower than a sequential tree implementation of functional arrays, but in some
realistic cases it is significantly faster, unless extra time is taken to rebalance the
trees sequentially. Furthermore, the GPU ESFA algorithm has time complexity
of O(1) in the worst case as well as the average case. This makes it well suited for
real time applications, where predictability, low variance, and a good worst-case
time are more important than raw speed. Future research includes investigating
active data structures on other platforms with massive fine grain parallelism,
including coarse grain reconfigurable architectures (CGRA) and FPGAs.
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