Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK
Jon M. Kleinberg, USA
Alfred Kobsa, USA
John C. Mitchell, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
Oscar Nierstrasz, Switzerland
C. Pandu Rangan, India

Bernhard Steffen, Germany
Doug Tygar, USA
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome 'La Sapienza', Italy
Vladimiro Sassone, University of Southampton, UK
Subline Advisory Board
Susanne Albers, University of Freiburg, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Alberto Pardo Alfredo Viola (Eds.)

LATIN 2014: Theoretical Informatics

11th Latin American Symposium
Montevideo, Uruguay, March 31 - April 4, 2014
Proceedings

(2) Springer

Volume Editors

Alberto Pardo
Universidad de la República
Facultad de Ingeniería
Instituto de Computación
Julio Herrera y Reissig 565
11300 Montevideo, Uruguay
E-mail: pardo@fing.edu.uy
Alfredo Viola
Universidad de la República
Facultad de Ingeniería
Instituto de Computación
Julio Herrera y Reissig 565
11300 Montevideo, Uruguay
E-mail: viola@fing.edu.uy

ISSN 0302-9743
e-ISSN 1611-3349
ISBN 978-3-642-54422-4
e-ISBN 978-3-642-54423-1
DOI 10.1007/978-3-642-54423-1
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2014931658

LNCS Sublibrary: SL 1 - Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in ist current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 11th Latin American Theoretical INformatics Symposium (LATIN 2014) held during March 31April 4, 2014 in Montevideo, Uruguay. Previous editions of LATIN took place in São Paulo, Brazil (1992), Valparaíso, Chile (1995), Campinas, Brazil (1998), Punta del Este, Uruguay (2000), Cancún, México (2002), Buenos Aires, Argentina (2004), Valdivia, Chile (2006), Buzios, Brazil (2008), Oaxaca, México (2010) and Arequipa, Perú (2012).

The conference received 192 submissions from 42 countries. Each submission was reviewed by at least three Program Committee members, and carefully evaluated on quality, originality, and relevance to the conference. Overall, the Committee members wrote 588 reviews with the help of 254 external referees. Based on an extensive electronic discussion, the Committee selected 65 papers, leading to an acceptance rate of 34%. In addition to the accepted contributions, the symposium featured distinguished lectures by Ronitt Rubinfeld (Massachusetts Institute of Technology and Tel Aviv University), Robert Sedgewick (Princeton University), Gilles Barthe (IMDEA Software Institute), Gonzalo Navarro (Universidad de Chile), and J. Ian Munro (University of Waterloo).

The Imre Simon Test-of-Time Award started in 2012 and it is given to the authors of the LATIN paper deemed to be most influential among all those published at least ten years prior to the current edition of the conference. Papers published in the LATIN proceedings up to and including 2004 were eligible for the 2014 award. This year's winners were Graham Cormode and Sethu Muthu Muthukrishnan for their paper " An improved data stream summary: The countmin sketch and its applications", which appeared in LATIN 2004.

Many people helped to make LATIN 2014 possible. First, I would like to recognize the outstanding work of the members of the Program Committee. Their commitment contributed to a very detailed discussion on each of the submitted papers. The LATIN Steering Committee offered valuable advice and feedback; the conference benefitted immensely from their knowledge and experience. I would also like to recognize J. Ian Munro, Yoshiharu Kohayakawa and Michael Bender for their work in the Imre Simon Test-of-Time Award Committee.

Our industrial sponsors, Yahoo! Labs and Google provided much-needed funding. In particular, Yahoo! provided funds for the Imre Simon Award and Google for student grants. I thank Ricardo Baeza-Yates, Ravi Kumar and Prabhakar Raghavan for serving as contacts to those institutions.

The Centro Latinoamericano de Estudios en Informática (CLEI), the Comisión Sectorial de Investigaciones Científicas de la Universidad de la República (CSIC), the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) and the Agencia Nacional de Investigación e Innovación (ANII) also provided important seed
funding. The Universidad ORT supported all the graphic design for the conference.

At the Universidad de la República, Alberto Pardo chaired the Local Arrangements Committee. His outstanding commitment in the most difficult moments of the organization was key to the success of LATIN. Guillermo Calderón administered the conference web site. The rest of the Local Arragements Committee, Javier Molina, Laura Molina and Alfonsina Pastori ably handled the innumerable logistical details that had to be resolved along the way. Finally, I thank my wife Graciela Pastori for the encouragement she offered during the year and a half that it took to make LATIN 2014 a reality.

January 2014
Alfredo Viola

Organization

Program Committee

Ricardo Baeza-Yates
Jérémy Barbay
Michael Bender
Joan Boyar
Vida Dujmovic
Leah Epstein
Cristina Fernandes
Maribel Fernandez
Joachim von zur Gathen
Gaston Gonnet
Marcos Kiwi
Yoshiharu Kohayakawa
Evangelos Kranakis
Ravi Kumar
Anna Lubiw
Conrado Martínez
Elvira Mayordomo
Marco Molinaro
Regina Motz
Lucia Moura
Daniel Panario
Sergio Rajsbaum
Tamara Rezk
Andrea Richa
Jacques Sakarovitch
Nicolas Schabanel

Rodrigo Silveira
Jose A. Soto
Martin Strauss
Vilmar Trevisan
Jorge Urrutia
Tarmo Uustalu
Brigitte Vallée
Alfredo Viola (Chair)
Santiago Zanella-Béguelin

Yahoo! Labs, Spain
Universidad de Chile, Chile
Stony Brook University, USA
University of Southern Denmark, Denmark
McGill University, Canada
University of Haifa, Israel
Universidade de São Paulo, Brazil
KCL London, England
University of Bonn, Germany
ETH Zurich, Switzerland
Universidad de Chile, Chile
University of São Paulo, Brazil
Carleton University, Canada
Google, USA
University of Waterloo, Canada
Universitat Politècnica de Catalunya, Spain
Universidad de Zaragoza, Spain
Carnegie Mellon University, USA
Universidad de la República, Uruguay
University of Ottawa, Canada
Carleton University, Canada
Universidad Nacional Autonoma de México, Mexico
Inria, France
Arizona State University, USA
CNRS / ENST Paris, France
CNRS - Université Paris Diderot (Paris 7), France

Universitat Politècnica de Catalunya, Spain
Universidad de Chile, Chile
University of Michigan, USA
UFRGS, Brazil
Universidad Nacional Autonoma de México, Mexico
Tallinn University of Technology, Estonia
CNRS/University of Caen, France
Universidad de la República, Uruguay
Microsoft Research, England

Local Arrangements Committee

Guillermo Calderón
Javier Molina
Laura Molina

Alfonsina Pastori
Alberto Pardo (chair)

Steering Committee

David Fernández-Baca
Eduardo Sany Laber
Alejandro López-Ortiz
Gonzalo Navarro
Marie-France Sagot
Yoshiko Wakabayashi

Iowa State University, USA
PUC- Rio, Brazil
University of Waterloo, Canada
Universidad de Chile, Chile
Inria Grenoble Rhône-Alpes and Université
Claude Bernard (Lyon 1), France
Universidade de São Paulo, Brazil

Imre Simon Test-of-Time Award Committee

Michael Bender
Yoshiharu Kohayakawa
J. Ian Munro (Chair)

Stony Brook University, USA
Universidade de São Paulo, Brazil
University of Waterloo, Canada

Sponsors

ANII (Agencia Nacional de Investigación e Innovación), Uruguay
CLEI (Centro Latinoamericano de Estudios en Informática)
CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República), Uruguay
Google, USA
PEDECIBA Informática (Programa de Desarrollo de las Ciencias Básicas), Uruguay
Universidad ORT, Uruguay
Yahoo! Labs, Spain

Additional Reviewers

Abdessalem, Talel
Addario-Berry, Louigi
Afshani, Peyman
Akhavi, Ali
Angelini, Patrizio
Antoniadis, Antonios
Ayala-Rincon, Mauricio
Aziz, Haris

Bacher, Axel
Bampas, Evangelos
Barba, Luis
Barcelo, Pablo
Bauer, Andrej
Bazgan, Cristina
Bernardi, Olivier
Bodini, Olivier

Bonomo, Flavia
Bose, Prosenjit
Brandstadt, Andreas
Brewster, Rick
Brizuela, Carlos
Buchbinder, Niv
Buchin, Maike
Bulteau, Laurent
Buratti, Marco
Buriol, Luciana
Cai, Leizhen
Calinescu, Gruia
Camarão, Carlos
Campos, Victor
Castaneda, Armando
Castelli Aleardi, Luca
Chalermsook, Parinya
Chalopin, Jérémie
Chapelle, Mathieu
Chen, Yuxin
Chierichetti, Flavio
Christodoulakis, Manolis
Clément, Julien
Corteel, Sylvie
Costello, Kevin
Couillec, Yoann
Courcelle, Bruno
Csirmaz, Laszlo
Damian, Mirela
Dantas, Simone
Daudé, Hervé
David, Julien
de Carli Silva, Marcel
De La Clergerie, Eric
de Pina, José Coelho
de Rezende, Pedro J.
de Vries, Fer-Jan
Delgado, Jordi
Delporte-Gallet, Carole
Devismes, Stéphane
Dobrev, Stefan
Doerr, Benjamin
Dourado, Mitre
Drmota, Michael
Duchon, Philippe

Duffy, Chris
Duncan, Christian
Elizalde, Sergi
Eppstein, David
Esfandiari, Hossein
Fabrikant, Alex
Fagerberg, Rolf
Faliszewski, Piotr
Fauconnier, Hugues
Favrholdt, Lene Monrad
Feige, Uriel
Fertin, Guillaume
Fiala, Jiri
Find, Magnus
Flocchini, Paola
Fomin, Fedor
Fonseca, Guilherme
Fournier, Hervé
Fragoso Santos, Jose
Frati, Fabrizio
Ganapathi, Pramod
Gao, Jie
Gao, Shuhong
Gao, Zhicheng
Garg, Vijay
Gargano, Luisa
Gaspers, Serge
Georgiou, Konstantinos
Geremia, Ezequiel
Gittenberger, Bernhard
Green, Oded
Grossi, Roberto
Guha, Sudipto
Gutin, Gregory
Harutyunyan, Anna
Havet, Frederic
He, Meng
Hernandez, Cecilia
Hoppen, Carlos
Horak, Peter
Huang, Chien-Chung
Hwang, Hsien-Kuei
Hüffner, Falk
Ilcinkas, David
Iljazović, Zvonko

Im, Sungjin
Jansen, Bart
Jansen, Klaus
Jeż, Artur
Jimenez, Andrea
Josuat-Verges, Matthieu
Jungnickel, Dieter
Kanagal, Bhargav
Kiazyk, Stephen
King, James
Klostermeyer, Chip
Kniesburges, Sebastian
Kobourov, Stephen
Kononov, Alexander
Korman, Matias
Kosowski, Adrian
Kratochvil, Jan
Krivelevich, Michael
Krumke, Sven
Kuhn, Daniela
Kuznetsov, Petr
Labarre, Anthony
Lamb, Luis
Langerman, Stefan
Larsen, Kim S.
Lattanzi, Silvio
Lecroq, Thierry
Lee, Sang June
Lefmann, Hanno
Leme, Renato
Levin, Asaf
Lhote, Loick
Li, Minming
Loebenberger, Daniel
Lozano, Antoni
Lozin, Vadim
Lugosi, Gabor
Lumbroso, Jérémie
Löffler, Maarten
MacQuarrie, Fraser
Mahdian, Mohammad
Makowsky, Johann
Mandel, Arnaldo
Mansour, Toufik
Margalit, Oded

Markou, Euripides
Martin, Russell
Martinez-Moro, Edgar
Martins, Enide
Martín, Álvaro
McCauley, Samuel
Meer, Klaus
Milani, Alessia
Milanič, Martin
Molinero, Xavier
Morales Ponce, Oscar
Moseley, Benjamin
Mota, Guilherme O.
Moura, Arnaldo
Mucha, Marcin
Mueller, Moritz
Musicante, Martin
Nagarajan, Viswanath
Nantes, Daniele
Navarro, Gonzalo
Nesmachnow, Sergio
Nilsson, Bengt
Nüsken, Michael
Ollinger, Nicolas
Ott, Sebastian
Pacheco, Eduardo
Pagourtzis, Aris
Pajak, Dominik
Panagiotou, Konstantinos
Pathak, Vinayak
Paulusma, Daniel
Perez, Anthony
Perret, Ludovic
Pighizzini, Giovanni
Pilz, Alexander
Ponty, Yann
Popa, Alex
Pott, Alexander
Pruhs, Kirk
Pérez-Lantero, Pablo
Rad, Nader Jafari
Radke, Klaus
Raekow, Yona
Rahman, M. Sohel
Reyes, Nora

Richmond, Bruce
Rojas, Javiel
Saket, Rishi
Salinger, Alejandro
Salvy, Bruno
Sam, Sethserey
Sampaio, Rudini
Sato, Cristiane M.
Saumell, Maria
Saurabh, Saket
Sawada, Joe
Schaudt, Oliver
Schmid, Stefan
Schouery, Rafael
Schwartz, Roy
Seara, Carlos
Sereni, Jean-Sébastien
Serpette, Bernard
Shah, Rahul
Shirazipourazad, Shahrzad
Singer, Yaron
Sitchinava, Nodari
Soria, Michele
Sotelo, David
Stein, Maya
Stewart, Lorna
Stiller, Sebastian
Sviridenko, Maxim
Swenson, Krister

Tamir, Arie
Tannier, Eric
Telha, Claudio
Thraves, Christopher
Toft, Bjarne
Tomkins, Andrew
Tran, Huong
Travers, Corentin
Tsichlas, Kostas
Uchizawa, Kei
Umboh, Seeun
V. Silva, Pedro
van Leeuwen, Erik Jan
van Stee, Rob
Vassilvitskii, Sergei
Vee, Erik
Venkatasubramanian, Suresh
Verdonschot, Sander
Viera, Marcos
Vigneron, Antoine
Villard, Gilles
Wakabayashi, Yoshiko
Weber, Ken
Xia, Donglin
Yamamura, Akihiro
Yen, Hsu-Chun
Ziegler, Konstantin
Ziegler, Martin
Zito, Michele

Abstracts

Something for Almost Nothing: Advances in Sub-linear Time Algorithms

Ronitt Rubinfeld
CSAIL, MIT, Cambridge MA 02139
Blavatnik School of Computer Science, Tel Aviv University
ronitt@csail.mit.edu

Abstract

Linear-time algorithms have long been considered the gold standard of computational endciency. Indeed, it is hard to imagine doing better than that, since for a nontrivial problem, any algorithm must consider all of the input in order to make a decision. However, as extremely large data sets are pervasive, it is natural to wonder what one can do in sub-linear time. Over the past two decades, several surprising advances have been made on designing such algorithms. We will give a non-exhaustive survey of this emerging area, highlighting recent progress and directions for further research.

Computer-Aided Cryptographic Proofs

Gilles Barthe
IMDEA Software Institute
gilles.barthe@imdea.org

EasyCrypt [6] is a computer-assisted framework for reasoning about the security of cryptographic constructions, using the methods and tools of provable security, and more specifically of the game-based techniques. The core of EasyCrypt is a relational program logic for a core probabilistic programming language with sequential composition, conditionals, loops, procedure calls, assignments and sampling from discrete distributions. The relational program logic is key to capture reductionist arguments that arise in cryptographic proofs. It is complemented by a (standard, non-relational) program logic that allows to reason about the probability of events in the execution of probabilistic programs; this program logic allows for instance to upper bound the probability of failure events, that are pervasive in game-based cryptographic proofs. In combination, these logics capture general reasoning principles in cryptography and have been used to verify the security of emblematic constructions, including the Full-Domain Hash signature [8], the Optimal Asymmetric Encryption Padding (OAEP) [7], hash function designs [3] and zero-knowledge protocols [5, 1]. Yet, these logics can only capture instances of general principles, and lack mechanisms for stating and proving these general principles once and for all, and then for instantiating them as needed. To overcome this limitation, we have recently extended EasyCrypt with programming language mechanisms such as modules and type classes. Modules provide support for composition of cryptographic proofs, and for formalizing hybrid arguments, whereas type classes are convenient to model and reason about algebraic structures. Together, these extensions significantly expand the class of examples that can be addressed with EasyCrypt. For instance, we have used the latest version of EasyCrypt to verify the security of a class of authenticated key exchange protocols, and of a secure function evaluation protocol based on garbled circuits and oblivious transfer.

Our current work explores two complementary directions. On the one hand, we are extending the EasyCrypt infrastructure in order to derive security guarantees about implementations of cryptographic constructions. Indeed, practical attacks often target specific implementations and exploit some characteristics that are not considered in typical provable security proofs; as a consequence, several widely used implementations of provably secure schemes are vulnerable to attacks. In order to narrow the gap between provable security and implementations, we are extending EasyCrypt with support to reason about C-like implementations, and use the CompCert verified C compiler (http://compcert. inria.fr/) to carry the security guarantees down to executable implementations [2]. On the other hand, we are developing specialized formalisms to reason
about the security of particular classes of constructions. For instance, we have recently developed the ZooCrypt framework [4], which supports automated analysis of chosen-plaintext and chosen ciphertext-security for public-key encryption schemes built from (partial-domain) one-way trapdoor permutations and random oracles. Using ZooCrypt, we have analyzed over a million (automatically generated) schemes, including many schemes from the literature. For chosen-plaintext security, ZooCrypt is able to report in nearly 99% of the cases a proof of security with a concrete security bound, or an attack. We are currently extending our approach to reason about encryption schemes based on Diffie-Hellmann groups and bilinear pairings, both in the random oracle and in the standard models.

More information about the project is available from the project web page

> http://www.easycrypt.info

References

1. Almeida, J.B., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Zanella-Béguelin, S.: Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols. In: 19th ACM Conference on Computer and Communications Security. ACM (2012)
2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided cryptography: efficient provably secure machine code from high-level implementations. In: ACM Conference on Computer and Communications Security. ACM (2013)
3. Backes, M., Barthe, G., Berg, M., Grégoire, B., Skoruppa, M., Zanella-Béguelin, S.: Verified security of Merkle-Damgård. In: IEEE Computer Security Foundations. ACM (2012)
4. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B., Zanella-Béguelin, S.: Automated analysis and synthesis of padding-based encryption schemes. In: ACM Conference on Computer and Communications Security. ACM (2013)
5. Barthe, G., Grégoire, B., Hedin, D., Heraud, S., Zanella-Béguelin, S.: A MachineChecked Formalization of Sigma-Protocols. In: IEEE Computer Security Foundations. ACM (2010)
6. Barthe, G., Grégoire, B., Heraud, S., Zanella-Béguelin, S.: Computer-aided security proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71-90. Springer, Heidelberg (2011)
7. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella-Béguelin, S.: Beyond Provable Security Verifiable IND-CCA Security of OAEP. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 180-196. Springer, Heidelberg (2011)
8. Zanella-Béguelin, S., Barthe, G., Grégoire, B., Olmedo, F.: Formally certifying the security of digital signature schemes. In: IEEE Symposium on Security and Privacy. IEEE Computer Society (2009)

"If You Can Specify It, You Can Analyze It" —The Lasting Legacy of Philippe Flajolet

Robert Sedgewick
Department of Computer Science, Princeton University
rs@cs.princeton.edu

Abstract

The "Flajolet School" of the analysis of algorithms and combinatorial structures is centered on an effective calculus, known as analytic combinatorics, for the development of mathematical models that are sufficiently accurate and precise that they can be validated through scientific experimentation. It is based on the generating function as the central object of study, first as a formal object that can translate a specification into mathematical equations, then as an analytic object whose properties as a function in the complex plane yield the desired quantitative results. Universal laws of sweeping generality can be proven within the framework, and easily applied. Standing on the shoulders of Cauchy, Polya, de Bruijn, Knuth, and many others, Philippe Flajolet and scores of collaborators developed this theory and demonstrated its effectiveness in a broad range of scientific applications. Flajolet's legacy is a vibrant field of research that holds the key not just to understanding the properties of algorithms and data structures, but also to understanding the properties of discrete structures that arise as models in all fields of science. This talk will survey Flajolet's story and its implications for future research.

"A man ... endowed with an an exuberance of imagination which puts it in his power to establish and populate a universe of his own creation".

Encoding Data Structures

Gonzalo Navarro ${ }^{*}$
Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Classical data structures can be regarded as additional information that is stored on top of the raw data in order to speed up some kind of queries. Some examples are the suffix tree to support pattern matching in a text, the extra structures to support lowest common ancestor queries on a tree, or precomputed shortest path information on a graph.

Some data structures, however, can operate without accessing the raw data. These are called encodings. Encodings are relevant when they do not contain enough information to reproduce the raw data, but just what is necessary to answer the desired queries (otherwise, any data structure could be seen as an encoding, by storing a copy of the raw data inside the structure).

Encodings are interesting because they can occupy much less space than the raw data. In some cases the data itself is not interesting, only the answers to the queries on it, and thus we can simply discard the raw data and retain the encoding. In other cases, the data is used only sporadically and can be maintained in secondary storage, while the encoding is maintained in main memory, thus speeding up the most relevant queries.

When the raw data is available, any computable query on it can be answered with sufficient time. With encodings, instead, one faces a novel fundamental question: what is the effective entropy of the data with respect to a set of queries? That is, what is the minimum size of an encoding that can answer those queries without accessing the data? This question is related to Information Theory, but in a way inextricably associated to the data structure: the point is not how much information the data contains, but how much information is conveyed by the queries. In addition, as usual, there is the issue of how efficiently can be the queries answered depending on how much space is used.

In this talk I will survey some classical and new encodings, generally about preprocessing arrays $A[1, n]$ so as to answer queries on array intervals $[i, j]$ given at query time. I will start with the classical range minimum queries (which is the minimum value in $A[i, j]$?) which has a long history that culminated a few years ago in an asymptotically space-optimal encoding of $2 n+o(n)$ bits answering queries in constant time. Then I will describe more recent (and partly open)

[^0]problems such as finding the second minimum in $A[i, j]$, the k smallest values in $A[i, j]$, the k th smallest value in $A[i, j]$, the elements that appear more than a fraction τ of the times in $A[i, j]$, etc. All these queries appear recurrently within other algorithmic problems, and they have also direct application in data mining.

Succinct Data Structures ... Not Just for Graphs

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
imunro@uwaterloo.ca

Abstract

Succinct data structures are data representations that use the (nearly) the information theoretic minimum space, for the combinatorial object they represent, while performing the necessary query operations in constant (or nearly constant) time. So, for example, we can represent a binary tree on n nodes in $2 n+o(n)$ bits, rather than the "obvious" $5 n$ or so words, i.e. $5 n \lg n$ bits. Such a difference in memory requirements can easily translate to major differences in runtime as a consequence of the level of memory in which most of the data resides. The field developed to a large extent because of applications in text indexing, so there has been a major emphasis on trees and a secondary emphasis on graphs in general; but in this talk we will draw attention to a much broader collection of combinatorial structures for which succinct structures have been developed. These will include sets, permutations, functions, partial orders and groups, and yes, a bit on graphs.

Table of Contents

Complexity 1

Conjugacy in Baumslag's Group, Generic Case Complexity, and Division in Power Circuits 1
Volker Diekert, Alexei G. Myasnikov, and Armin Weiß
Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs Having Cliques of Size at Least 3 13
Helio B. Macêdo Filho, Raphael C.S. Machado, and Celina M.H. Figueiredo
The Computational Complexity of the Game of Set and Its Theoretical Applications 24
Michael Lampis and Valia Mitsou
Complexity 2
Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line 35
José R. Correa, Laurent Feuilloley, and José A. Soto
Approximating Vector Scheduling: Almost Matching Upper and Lower Bounds 47
Nikhil Bansal, Tjark Vredeveld, and Ruben van der Zwaan
False-Name Manipulation in Weighted Voting Games Is Hard for Probabilistic Polynomial Time 60
Anja Rey and Jörg Rothe
A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 72
Martin Fürer
Computational Geometry 1
Optimal Algorithms for Constrained 1-Center Problems 84
Luis Barba, Prosenjit Bose, and Stefan Langerman
A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters 96
Panagiotis Cheilaris, Elena Khramtcova, Stefan Langerman, and Evanthia Papadopoulou
Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 108
Prosenjit Bose and André van Renssen
Computing the L_{1} Geodesic Diameter and Center of a Simple Polygon in Linear Time 120
Sang Won Bae, Matias Korman, Yoshio Okamoto, and Haitao Wang
Graph Drawing
The Planar Slope Number of Subcubic Graphs 132
Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani
Smooth Orthogonal Drawings of Planar Graphs 144
Muhammad Jawaherul Alam, Michael A. Bekos, Michael Kaufmann, Philipp Kindermann, Stephen G. Kobourov, and Alexander Wolff
Drawing $H V$-Restricted Planar Graphs 156
Stephane Durocher, Stefan Felsner, Saeed Mehrabi, and Debajyoti Mondal
Periodic Planar Straight-Frame Drawings with Polynomial Resolution 168
Luca Castelli Aleardi, Éric Fusy, and Anatolii Kostrygin
Automata
A Characterization of Those Automata That Structurally Generate Finite Groups 180
Ines Klimann and Matthieu Picantin
Linear Grammars with One-Sided Contexts and Their Automaton Representation 190
Mikhail Barash and Alexander Okhotin
Computability
On the Computability of Relations on λ-Terms and Rice's Theorem - The Case of the Expansion Problem for Explicit Substitutions 202
Edward Hermann Haeusler and Mauricio Ayala-Rincón
Computing in the Presence of Concurrent Solo Executions 214
Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and Julien Stainer
Algorithms on Graphs
Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems 226
Tong-Wook Shinn and Tadao Takaoka
(Total) Vector Domination for Graphs with Bounded Branchwidth 238
Toshimasa Ishii, Hirotaka Ono, and Yushi Uno
Computing the Degeneracy of Large Graphs 250
Martín Farach-Colton and Meng-Tsung Tsai
Computational Geometry 2
Approximation Algorithms for the Geometric Firefighter and Budget Fence Problems 261
Rolf Klein, Christos Levcopoulos, and Andrzej Lingas
An Improved Data Stream Algorithm for Clustering 273
Sang-Sub Kim and Hee-Kap Ahn
Approximation Algorithms for the Gromov Hyperbolicity of Discrete Metric Spaces 285
Ran Duan
A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras 294
Stephane Durocher, Omrit Filtser, Robert Fraser, Ali D. Mehrabi, and Saeed Mehrabi
Algorithms
Helly-Type Theorems in Property Testing 306
Sourav Chakraborty, Rameshwar Pratap, Sasanka Roy, and Shubhangi Saraf
New Bounds for Online Packing LPs 318
Matthias Englert, Nicolaos Matsakis, and Marcin Mucha
Improved Minmax Regret 1-Center Algorithms for Cactus Networks with c Cycles 330
Binay Bhattacharya, Tsunehiko Kameda, and Zhao Song
Collision-Free Network Exploration 342
Jurek Czyzowicz, Dariusz Dereniowski, Leszek Gasieniec, Ralf Klasing, Adrian Kosowski, and Dominik Pajak
Random Structures
Powers of Hamilton Cycles in Pseudorandom Graphs 355
Peter Allen, Julia Böttcher, Hiệp Hàn, Yoshiharu Kohayakawa, and Yury Person
Local Update Algorithms for Random Graphs 367
Philippe Duchon and Romaric Duvignau
Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 379
Felipe De Campos Mesquita, Letícia Rodrigues Bueno, and Rodrigo De Alencar Hausen
Relatively Bridge-Addable Classes of Graphs 391
Colin McDiarmid and Kerstin Weller
Complexity on Graphs 1
$O(n)$ Time Algorithms for Dominating Induced Matching Problems 399
Min Chih Lin, Michel J. Mizrahi, and Jayme L. Szwarcfiter
Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation 409
Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai
Convexity in Partial Cubes: The Hull Number 421
Marie Albenque and Kolja Knauer
Connected Greedy Colourings 433
Fabrício Benevides, Victor Campos, Mitre Dourado, Simon Griffiths, Robert Morris, Leonardo Sampaio, and Ana Silva
Analytic Combinatorics
On the Number of Prefix and Border Tables 442
Julien Clément and Laura Giambruno
Probabilities of 2-Xor Functions 454
Élie de Panafieu, Danièle Gardy, Bernhard Gittenberger, and Markus Kuba
Equivalence Classes of Random Boolean Trees and Application to the Catalan Satisfiability Problem 466
Antoine Genitrini and Cécile Mailler

Analytic and Enumerative Combinatorics

The Flip Diameter of Rectangulations and Convex Subdivisions 478
Eyal Ackerman, Michelle M. Allen, Gill Barequet, Maarten Löffler, Joshua Mermelstein, Diane L. Souvaine, and Csaba D. Tóth
Weighted Staircase Tableaux, Asymmetric Exclusion Process, and Eulerian Type Recurrences 490
Pawet Hitczenko and Svante Janson
Counting and Generating Permutations Using Timed Languages 502
Nicolas Basset
Complexity on Graphs 2
Semantic Word Cloud Representations: Hardness and Approximation Algorithms 514
Lukas Barth, Sara Irina Fabrikant, Stephen G. Kobourov, Anna Lubiw, Martin Nöllenburg, Yoshio Okamoto, Sergey Pupyrev, Claudio Squarcella, Torsten Ueckerdt, and Alexander Wolff
The Complexity of Homomorphisms of Signed Graphs and Signed Constraint Satisfaction 526
Florent Foucaud and Reza Naserasr
Complexity of Coloring Graphs without Paths and Cycles 538
Pavol Hell and Shenwei Huang
Approximation Algorithms
Approximating Real-Time Scheduling on Identical Machines 550
Nikhil Bansal, Cyriel Rutten, Suzanne van der Ster, Tjark Vredeveld, and Ruben van der Zwaan
Integrated Supply Chain Management via Randomized Rounding 562
Lehilton L.C. Pedrosa and Maxim Sviridenko
The Online Connected Facility Location Problem 574
Mário César San Felice, David P. Williamson, and Orlando Lee
Multiply Balanced k-Partitioning 586
Amihood Amir, Jessica Ficler, Robert Krauthgamer, Liam Roditty, and Oren Sar Shalom
On Some Recent Approximation Algorithms for MAX SAT 598
Matthias Poloczek, David P. Williamson, and Anke van Zuylen

Analysis of Algorithms

Packet Forwarding Algorithms in a Line Network 610
Antonios Antoniadis, Neal Barcelo, Daniel Cole, Kyle Fox, Benjamin Moseley, Michael Nugent, and Kirk Pruhs
Survivability of Swarms of Bouncing Robots 622
Jurek Czyzowicz, Stefan Dobrev, Evangelos Kranakis, and Eduardo Pacheco
Emergence of Wave Patterns on Kadanoff Sandpiles 634
Kévin Perrot and Éric Rémila
Computational Algebra
A Divide and Conquer Method to Compute Binomial Ideals 648
Deepanjan Kesh and Shashank K. Mehta
How Fast Can We Multiply Large Integers on an Actual Computer? 660
Martin Fürer
Aplications to Bioinformatics
Sorting Permutations by Prefix and Suffix Versions of Reversals and Transpositions 671
Carla Negri Lintzmayer and Zanoni Dias
Algorithmic and Hardness Results for the Colorful Components Problems 683
Anna Adamaszek and Alexandru Popa
Budget Problems
On the Stability of Generalized Second Price Auctions with Budgets 695
Josep Díaz, Ioannis Giotis, Lefteris Kirousis, Evangelos Markakis, and Maria Serna
Approximation Algorithms for the Max-Buying Problem with Limited Supply 707
Cristina G. Fernandes and Rafael C.S. Schouery
Budget Feasible Mechanisms for Experimental Design 719
Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan

Algorithms and Data Structures

LZ77-Based Self-indexing with Faster Pattern Matching 731
Travis Gagie, Pawet Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi
Quad-K-d Trees 743
Nikolett Bereczky, Amalia Duch, Krisztián Németh, and Salvador Roura
Biased Predecessor Search 755
Prosenjit Bose, Rolf Fagerberg, John Howat, and Pat Morin
Author Index 765

[^0]: * Funded in part by Millennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F, Chile.

