
Combining All Pairs Shortest Paths and All
Pairs Bottleneck Paths Problems?

Tong-Wook Shinn and Tadao Takaoka

Department of Computer Science and Software Engineering
University of Canterbury

Christchurch, New Zealand

Abstract. We introduce a new problem that combines the well known
All Pairs Shortest Paths (APSP) problem and the All Pairs Bottleneck
Paths (APBP) problem to compute the shortest paths for all pairs of
vertices for all possible flow amounts. We call this new problem the
All Pairs Shortest Paths for All Flows (APSP-AF) problem. We firstly
solve the APSP-AF problem on directed graphs with unit edge costs
and real edge capacities in Õ(

√
tn(ω+9)/4) = Õ(

√
tn2.843) time, where

n is the number of vertices, t is the number of distinct edge capacities
(flow amounts) and O(nω) < O(n2.373) is the time taken to multiply
two n-by-n matrices over a ring. Secondly we extend the problem to
graphs with positive integer edge costs and present an algorithm with
Õ(
√
tc(ω+5)/4n(ω+9)/4) = Õ(

√
tc1.843n2.843) worst case time complexity,

where c is the upper bound on edge costs.

1 Introduction

Finding the shortest paths between pairs of vertices in a graph is one of the most
extensively studied problems in algorithms research. The shortest paths problem
is often categorized into the Single Source Shortest Paths (SSSP) problem, which
is to compute the shortest paths between one source vertex to all other vertices
in the graph, and the All Pairs Shortest Paths (APSP) problem, which is to
compute the shortest paths between all possible pairs of vertices on the graph.

Arguably the most famous algorithm for the APSP problem is Floyd’s al-
gorithm that runs in O(n3) time. There have been many attempts at providing
sub-cubic time bounds for solving the APSP problem on dense graphs with real
edge costs [7,4,13,17,9,3,10], all achieving time improvements by logarithmic fac-
tors. The current best time bound is O(n3 log log n/ log2 n) by Han and Takaoka
[10]. If the graph has integer edge costs, faster matrix multiplication over a ring
[11] can be utilized to achieve deeply sub-cubic time bounds. Alon, Galil and
Margalit achieved O(n(3+ω)/2) time bound for solving the APSP problem on
directed unweighted graphs, where O(nω) is the time bound on multiplying two
n-by-n matrices over a ring [2]. This time complexity translates to O(n2.687)

? This research was supported by the EU/NZ Joint Project, Optimization and its
Applications in Learning and Industry (OptALI).

ar
X

iv
:1

30
9.

56
87

v1
 [

cs
.D

S]
 2

3
Se

p
20

13

with ω < 2.373 [15]. The best time bound for this problem is currently O(n2.530)
by Zwick [16], thanks to Le Gall’s recent achievement in rectangular matrix
multiplication [8].

Another well studied problem in graph theory is finding the maximum bot-
tleneck between pairs of vertices. The bottleneck of a path is the minimum ca-
pacity of all edges on the path. The problem of finding the paths that give
the maximum bottlenecks for all pairs of vertices is formally known as the
All Pairs Bottleneck Paths (APBP) problem. Vassilevska, Williams and Yuster
achieved O(n2+ω/3) = O(n2.791) time bound for solving the APBP problem on
graphs with real edge capacities [14], and this has subsequently been improved
to O(n(ω+3)/2) = O(n2.687) by Duan and Pettie [5].

Let us consider a path that gives us the bottleneck value of b from vertex u
to vertex v. In other words, we can push flows of amounts up to b from u to v
using this path. If the flow demand from u to v is less than b, however, there
may be a shorter path. This information is useful if we wish to minimize the
path cost (distance) for varying flow demands. Thus we combine the two well
known APSP and APBP problems and compute the shortest paths for all pairs
for all possible flow demands. We call this new problem the All Pairs Shortest
Paths for All Flows (APSP-AF) problem. Note that this is different from the
All Pairs Bottleneck Shortest Paths (APBSP) problem [14], which is to compute
the bottlenecks of the shortest paths for all pairs. There are obvious practical
applications for the APSP-AF problem in any form of network analysis, such as
computer networks, transportation and logistics, etc.

In this paper we present two algorithms for solving the APSP-AF problem on
directed graphs with positive integer edge costs and real edge capacities. Firstly
we present an algorithm to solve the problem on graphs with unit edge costs in
O(
√
tn(ω+9)/4) = O(

√
tn2.843) time, where t is the number of distinct edge capac-

ities. We then extend this algorithm to solve the problem on graphs with positive
integer edge costs of at most c in O(

√
tc(ω+5)/4n(ω+9)/4) = O(

√
tc1.843n2.843)

time, which is reduced to the complexity of the first algorithm when c = 1.

2 Preliminaries

Let G = {V,E} be a directed graph with non-negative integer edge costs and
real edge capacities. Let n = |V | and m = |E|. Vertices (or nodes) are given
by integers such that {1, 2, 3, ..., n} ∈ V . Let (i, j) denote the edge from vertex
i to vertex j. Let cost(i, j) denote the cost and cap(i, j) denote the capacity of
the edge (i, j). Let t be the number of distinct cap(i, j), and let c be the upper
bound on cap(i, j). We define path length as the number of edges on the path,
irrespective of their costs or capacities. We define path cost or distance as the
sum of all edge costs on the path.

We represent G in a series of matrices. Let R` = {r`ij} be the reachability

matrix, for 0 < ` < n, where r`ij = 1 if j is reachable from i via some path

of length up to ` and r`ij = 0 otherwise. r`ii = 1 for all `. r1ij = 1 if an edge

exists from i to j, and 0 otherwise. R1 is called the adjacency matrix of G. Let

C` = {c`ij} be the capacity matrix, where c`ij represents the maximum possible

capacity (or bottleneck) from i to j via any paths of lengths up to `. c`ii =∞ for
all `. c1ij = cap(i, j) if there is an edge from i to j, and 0 otherwise. Let D` = {d`ij}
be the distance matrix, where d`ij represents the shortest possible distance from

i to j via any paths of lengths up to `. d`ii = 0 for all `. d1ij = cost(i, j) if there
is an edge from i to j, and ∞ otherwise.

Let X ∗ Y denote the (min,+)-product and X ? Y denote the (max,min)-
product of the two matrices X and Y , where:

X ∗ Y =
n

min
k=1
{xik + ykj} X ? Y =

n
max
k=1
{min{xik, ykj}}

Clearly the (min,+)-product is applicable to the distance matrix whereas the
(max,min)-product is applicable to the capacity matrix.

3 Review of the algorithm by Alon, Galil and Margalit

Our algorithm for solving the APSP-AF problem is largely based on the algo-
rithm given by Alon et al. [2]. Therefore we provide a review of this algorithm
using the same set of terminologies as an earlier review of the same algorithm
by Takaoka [12]. The algorithm under review computes the All Pairs Shortest
Distances (APSD) on directed graphs with unit edge costs. In summary this al-
gorithm achieves sub-cubic time bound by utilizing faster matrix multiplication
over a ring to perform Boolean matrix multiplication, and also using the novel
idea of Bridging Sets.

Algorithm 1 consists of two phases. We refer to the first part of the algorithm
as the acceleration phase, and the second part of the algorithm as the cruising
phase. The acceleration phase repeatedly performs Boolean matrix multiplica-
tion with the adjacency matrix to compute APSD for all pairs with distances
up to ` = r, where r is a constant such that 1 < r < n. Clearly this only works
on graphs with unit edge costs where the path length and the path cost are
equivalent. The algorithm then switches to the cruising phase where the ordi-
nary multiplication method is used with the help of bridging sets, Si, where Si
is a set of “via” vertices for all rows i of the distance matrix D. That is, when
computing d`ik+d`kj for the (min,+)-product, we inspect only the set of vertices
in Si for k rather than inspecting all O(n) elements. Alon et al. have shown that
with path lengths equal to r, the size of the bridging set Si for each row i is
bounded by O(n/r) [2]. Hence we start the cruising phase with |Si| = O(n/r)
for each row i.

The acceleration phase takes O(rnω) time, and the cruising phase performs
repeated squaring of the distance matrix in O(n2 · nr) time. Alon et al. chose
to increase the path length by a factor of 3

2 in each iteration of the cruising
phase. This factor of 3

2 is somewhat arbitrary, as any factor greater than 1 and
less than 2 can be used. Because the size of the bridging set decreases by a
constant factor in each iteration, we end up with a geometric series if we add up
the time complexities of each iteration, and hence the first squaring dominates

Algorithm 1 Algorithm by Alon, Galil and Margalit

/* Acceleration Phase*/
for ` = 2 to r do

R` ← R`−1 ×R1 /* Boolean matrix multiplication */
for i← 1 to n; j ← 1 to n do

if r`ij = 1 and d`−1
ij =∞ then d`ij ← `

if d`−1
ij < ` then d`ij ← d`−1

ij

/* Cruising Phase*/
while ` < n do

`′ ← d 3`
2
e

for i← 1 to n do
Scan ith row of D` with j and find the smallest set of equal d`ij such that
d`/2e ≤ d`ij ≤ ` and let the set of corresponding j be Si

for i← 1 to n; j ← 1 to n do
mij ← mink∈Si{d

`
ik + d`kj} /* Squaring D` with Si */

if d`ij ≤ ` then
d`

′
ij ← d`ij

else if mij ≤ `′ then
d`

′
ij ← mij

`← `′

the time complexity. The total time complexity of O(n(3+ω)/2) = O(n2.687) of
this algorithm comes from balancing the time complexities of the two phases to
retrieve the best value for r, that is, setting rnω = n2 · nr then solving for r.

4 APSP-AF on graphs with unit edge costs

We first consider solving the All Pairs Shortest Distances for All Flows (APSD-
AF) problem on directed graphs with unit edge costs, that is, computing only
the shortest distances rather than actual path. Path lengths and path distances
are used interchangeably in this section. To re-iterate the APSD-AF problem, for
each pair of vertices (i, j) for each possible flow amount, we want to compute the
shortest distance. Thus our aim here is to obtain a set of (d, f) pairs for all pairs
of vertices, where f is the maximum flow amount that can be pushed through
the shortest path whose length (distance) is d. We refer to the distinct capacity
values as maximal flows. i.e. there are t maximal flows. Assume that the maximal
flows are sorted in increasing order. If we wish to push f such that f1 < f < f2
for consecutive maximal flows f1 and f2, then clearly f is represented by f2.

Let U be a matrix such that uij is a set of (d, f) pairs as described above. Let
both (d, f) and (d′, f ′) be in uij such that d < d′. We keep (d′, f ′) iff f < f ′. In
other words, a longer path is only useful to us if it can accommodate a greater
flow. If d = d′, we keep the pair that provides the bigger flow. Since there can
only be n − 1 different values of d, each uij has at most n − 1 pairs of (d, f).

1

2

3

4

5

6

(2,9)

(1,3)

(1,7) (3,6)

(3,8)

(2,7)

(1,9)

(1,2)

(2,5)

Fig. 1. An example graph with n = 6, m = 9, t = 7 and c = 3. Numbers in the
parenthesis beside each edge shows the edge cost and capacity, respectively.

We assume the pairs are sorted in ascending order of d. We make an interesting
observation here that once all (d, f) pairs for all uij are computed (i.e. the APSP-
AF problem is solved), the first pairs for all uij is the solution to the APBSP
problem, and the last pairs for all uij is the solution to the APBP problem.

Example 1. If the graph in Figure 1 had unit edge costs instead of the varying
integer edge costs, solving APSD-AF on the graph would result in three (d, f)
pairs from vertex 1 to vertex 6, that is, u(1)(6) = {(3, 5), (4, 6), (5, 7)}.

We now introduce Algorithm 2 to solve the APSD-AF problem on directed
graphs with unit edge costs. Let P f be the approximate distance matrix for
shortest paths that can accommodate flows up to f . In the acceleration phase,
we compute the maximum bottleneck values for all possible path lengths up to
r for all pairs, where r is a constant such that 1 < r < n. Then from the results
gathered in the acceleration phase, we prepare a series of distance matrices, P f ,
one for each maximal flow value f , and move onto the cruising phase where we
compute the shortest distances for all pairs for all flows by repeatedly squaring
each P f .

Lemma 1. Algorithm 2 correctly solves APSD-AF on directed graphs with unit
edge costs.

Proof. In the acceleration phase, instead of performing Boolean matrix multipli-
cation as in Algorithm 1, we compute the (max,min)-product with the capacity
matrices C1 and C`−1. After each matrix multiplication, if a path of greater
capacity has been found for the vertex pair (i, j), we append the pair (`, c`ij)
to uij since we have found a longer path that can accommodate a greater flow.
Thus after the rth iteration of the acceleration phase, all relevant (d, f) pairs for
all uij are found such that d ≤ r.

After the acceleration phase we initialize the approximate distance matrices
P f from U , one matrix for each maximal flow f , in preparation for the cruising
phase. Note that if the (d, f) pair for a given flow value f does not exist in uij ,

we take the next pair (d′, f ′) in uij (if one exists) and let pfij = d′.

Algorithm 2 Solve APSD-AF on graphs with unit edge costs

/* Initialization for acceleration phase */
for i← 1 to n; j ← 1 to n do

uij ← φ /* φ is empty */

/* Acceleration phase */
for `← 2 to r do

C` ← C`−1 ? C1 /* (max,min) matrix multiplication */
for i← 1 to n; j ← 1 to n; i 6= j do

if c`ij > c`−1
ij then

Append (`, c`ij) to uij

/* Initialization for cruising phase */
P f ← I for all maximal flow f /* I has 0 diagonal elements and ∞ for others */
for i← 1 to n; j ← 1 to n; i 6= j do

Let uij = {(d1, f1), (d2, f2), ..., (ds, fs)} for some s /* We skip empty uij */
k ← 1 /* k iterates from 1 to s */
for all maximal flow f in increasing order do

if f > fk then
k ← k + 1 /* The next dk value is needed */

if k > s then
break /* We proceed to the next uij */

pfij ← dk

/* Cruising phase */
for all maximal flow f do

Perform cruising phase of Algorithm 1 on P f

/* Finalization */
for i← 1 to n; j ← 1 to n; i 6= j do

for all maximal flow f in increasing order do
d← pfij
Let the last pair of uij be x = (d′, f ′) /* If uij is empty, x = φ */
if x = φ or (f > f ′ and d <∞) then

if d = d′ /* This condition is false if x = φ */ then
Replace x with (d, f)

else
Append (d, f) to uij

At this stage, if pfij <∞, pfij is already the length of the shortest path from
i to j that can push flow f . Thus the actual aim of the cruising phase of this
algorithm is to compute the shortest distance for all other elements in P f such
that pfij = ∞ at the start of the cruising phase. Note that unless G is strongly

connected, some elements of P f will remain at∞ until the end of the algorithm.
The aim of the cruising phase is achieved by repeatedly squaring each P f with
the help of the bridging set, as proven in [2].

Retrieving sets of (d, f) pairs after the cruising phase from each resulting P f

is simply a reverse process of the initialization for the cruising phase, and thus
our search for all sets of (d, f) pairs for all (i, j) is complete after finalization. ut

Lemma 2. Algorithm 2 runs in O(
√
tn(ω+9)/4) = O(

√
tn2.843) worst case time.

Proof. For the acceleration phase we use the the current best known algorithm
to compute the (max,min)-product in each iteration, which gives us the time
bound ofO(rn(3+ω)/2) [5]. The time complexity for the cruising phase isO(tn3/r)
since there are a total of t maximal flows, each taking O(n3/r) time to finish
the computation of APSD. The time bound for the initialization for the cruising
phase and the finalization is O(tn2), which is absorbed by O(tn3/r) since n/r >
1. We balance the time complexities of the acceleration phase and the cruising
phase by setting r =

√
tn(3−ω)/4, and this gives us the total worst case time

complexity of O(
√
tn(ω+9)/4). ut

If t = O(n2), the value we choose for r may exceed n. In such a case, we simply
stay in the acceleration phase until r = n− 1. Thus a more accurate worst case
time complexity of Algorithm 2 is actually O(min {n(5+ω)/2,

√
tn(ω+9)/4}).

A straightforward method of solving the APSD-AF problem is to repeatedly
compute APSD for each maximal flow value f using only edges that have capaci-
ties greater than or equal to f . This method is equivalent to starting the cruising
phase at r = 1, giving us the time complexity of O(tn2.530) if we use Zwick’s
algorithm to solve APSD for each maximal flow value [16]. For t > n0.626, Al-
gorithm 2 is faster. Note that a simple decremental algorithm where edges are
removed in the reverse order of capacities while repeatedly solving APSD cannot
be used to solve the APSD-AF problem because edges with larger capacities may
later be required to provide shorter paths for a smaller maximal flow values.

Theorem 1. There exists an algorithm that can solve APSP-AF on directed
graphs with uni edge costs in Õ(

√
tn(ω+9)/4) worst case time.

Proof. As noted earlier there can be O(n) (d, f) pairs for each vertex pair (i, j).
Since the lengths of each path can be O(n), explicitly listing all paths takes O(n4)
time. We get around this by modifying Algorithm 2 to extend the (d, f) pair to
the (d, f, s) triplet, where s is the successor node, such that retrieving the actual
path from (d, f, s) can be performed by simply following the successor nodes. In
the acceleration phase witnesses for the (max,min)-product can be retrieved
with an extra polylog factor [5], and the successor nodes can be computed from
the witnesses in each iteration in O(n2) time [16]. In the cruising phase retrieving

the witnesses, and hence the successor nodes, is a simple exercise since ordinary
matrix multiplication is performed. Therefore extending (d, f) to (d, f, s) only
takes an additional polylog factor.

The explicit path for a given flow demand from i to j can be generated in
time linear to the path length as follows. Firstly we perform binary search for
the triplet (d, f, s) in uij with f as the key to find the minimum distance d such
that f is greater than or equal to the given flow requirement. We then traverse
the successor nodes s one by one, using d to look up each subsequent successor
node in O(1) time. ut

5 APSP-AF on graphs with integer edge costs

We now consider solving the APSD-AF problem on directed graphs with integer
edge costs and real edge capacities, where the edge cost is bounded by c. Note
that with integer edge costs we need to make a clear distinction between path
lengths and distances. One approach for solving this problem is to use the method
described in [2] to replace G with an expanded graph G′ such that all edges in
G′ have unit edge costs, then applying the algorithm on G′ to solve the problem
on G. G′ is created by attaching a chain of c − 1 artificial vertices to each real
vertex such that the artificial edges linking the artificial vertices in each chain
have unit edge costs and capacities of ∞. We then replace each real edge (i, j)
with an artificial edge with unit edge cost and capacity of cap(i, j) by choosing
one of the artificial vertices of i (or i itself) as the source vertex and the real
vertex j as the destination, such that there exists a path from i to j with length
equal to cost(i, j). See Figure 2 for an illustration of how a graph is expanded.
The expanded graph G′ has O(cn) vertices, and we can clearly solve APSD-AF
on G by solving APSD-AF on G′ in O(

√
t(cn)(9+ω)/4) time.

Example 2. Solving APSD-AF on the graph in Figure 1 results in a total of five
(d, f) pairs from vertex 1 to 6, that is, u(1)(6) = {(4, 2), (6, 3), (7, 5), (8, 6), (9, 7)}.

We can do better, however, with the key observation that only the accel-
eration phase of Algorithm 2 is restricted to graphs with unit edge costs. In
other words, we can complete the acceleration phase on the expanded graph G′,
gather the intermediate results, and then finish off the remaining computation
after contracting the graph back to G. We need care here, as the path lengths
in G′ are actually equivalent to the path costs in G, and the bridging sets in the
cruising phase are determined from the path lengths rather than the path costs.
Therefore we need to make substantial changes to Algorithm 2 to keep track
of both the path lengths and the path costs of G in the acceleration phase, as
well as modifying the cruising phase to correctly use the path lengths of G in
determining the bridging sets.

Firstly we extend the pair (d, f) to the triplet (h, d, f), where h is the path
length in G, d is the path cost in G (i.e. the path length in G′) and f is the
maximal flow. We introduce U ′ = {u′ij} where u′ij is a set of triplets (h, d, f)
for all pairs of vertices in G′. We omit the superscript ` that denotes the path

G G′

(4, 9)

(3, 7)

(2, 6)

i

j

k

i

j

k

(1,∞) (1,∞) (1,∞)

(1, 9)

Fig. 2. Expanding G to G′ with c = 4.

length in the following matrix definitions. Let C ′ = {c′ij} be the capacity matrix
of G′ and let W = {wij} be the witness matrix for the (max,min)-product.

Let Qf = {qfij} such that qfij is the length of the path that gives the path cost

(distance) of pfij , where P f = {pfij} is the distance matrix as defined in Section 4.

That is, pfij is the minimum path cost (distance) of all paths from i to j that can
push flow of amount f . Note that h in the triplet (h, d, f) is no longer required
once all Qf are initialized before the start of the cruising phase.

Lemma 3. Algorithm 3 correctly solves APSD-AF on directed graphs with non-
negative integer edge costs.

Proof. We start by creating G′ from G then proceed to the acceleration phase.
We only need to show that the actual path length h in the triplet (h, d, f) is
correctly determined, since we have already discussed the (d, f) pairs in Section
4. What is effectively happening in the acceleration phase of Algorithm 3 is that
the path length information is carried from one real vertex to the next real vertex
by the artificial vertices in between. Since we are multiplying by C ′(1) in each
iteration, the witness wij will always be the vertex that comes straight before
the destination vertex j on the path from i to j. That is, it is not possible for any
vertices (real or artificial) to exist between k = wij and j. Therefore we retrieve
the last (h, d, f) triplet from u′ik and increment the given h iff j is a real vertex.
Thus the correct path length in G is given by h at the end of the acceleration
phase since we are not counting the artificial vertices in the path.

The changes made to the cruising phase is to ensure that the bridging sets
Si is correctly determined from the path lengths rather than the path costs.
Note that in Algorithm 2 this distinction was unnecessary because we were only
considering graphs with unit edge costs. Clearly the correctness of the crusing
phase remains intact by keeping qf,`ij updated alongside pf,`ij . ut

Lemma 4. Algorithm 3 runs in Õ(
√
tc(ω+5)/4n(ω+9)/4) = Õ(

√
tc1.843n2.843)

worst case time.

Algorithm 3 Solve APSD-AF on directed graphs with non-negative integer
edge costs

/* Initialization for acceleration phase */
Create G′ from G /* G is expanded to G′ */
for i← 1 to cn; j ← 1 to cn do

u′ij ← φ

/* Acceleration phase */
for `← 2 to r do

C′(`) ← C′(`−1) ? C′1 /* Witnesses given as W = {wij} */
for i← 1 to cn; j ← 1 to cn; i 6= j do

if c
′(`)
ij > c

′(`−1)
ij then

Let k = wij , and (h, d, f)← last triplet in u′ik /* If empty, h = 0 */
if j ∈ G /* If j is a real vertex */ then

Append (h+ 1, `, c
′(`)
ij) to u′ij

else
Append (h, `, c

′(`)
ij) to u′ij

/* Initialization for cruising phase */
U ←rows and columns in U ′ for real vertices /* G′ is contracted back to G */
P f,`, Qf,` ← I for all maximal flow f
for i← 1 to n; j ← 1 to n; i 6= j do

Let uij = {(h1, d1, f1), ..., (hs, ds, fs)} for some s /* Skip empty uij */
k ← 1 /* k iterates from 1 to s */
for all maximal flow f in increasing order do

if f > fk then k ← k + 1 /* The next dk value is needed */
if k > s then break /* We proceed to the next uij */
pf,`ij ← dk; qf,`ij ← hk

/* Cruising phase */
for all maximal flow f do

while ` < n do
`′ ← d 3`

2
e

for i← 1 to n do
Scan ith row of Qf,` with j to find the smallest set of equal qf,`ij such that

d`/2e ≤ qf,`ij ≤ ` and let the set of corresponding j be Si

for i← 1 to n; j ← 1 to n do
mij ← mink∈Si{p

f,`
ik + pf,`kj }

k ← the vertex that gives above mij such that qf,`ik + qf,`kj is minimum

if mij < pf,`ij then

pf,`
′

ij ← mij ; q
f,`′

ij ← qf,`ik + qf,`kj

else
pf,`

′

ij ← pf,`ij ; qf,`
′

ij ← qf,`ij

`← `′

/* Finalization - same as Algorithm 2 */

Proof. The time complexity of the acceleration phase is Õ(r(cn)(3+ω)/2) since
there are O(cn) vertices in G′. After the rth iteration in the acceleration phase,
we have computed the bottleneck for all paths of lengths up to r, but this is path
lengths in the expanded graph G′, and not G. We divide r by c to retrieve the
lower bound on the path lengths in the original graph G after the acceleration
phase. Therefore the time complexity of the cruising phase is O(tcn3/r). Both
the time complexities for initialization for cruising phase and finalization are
again absorbed by the time complexity of the cruising phase. We balance the
time complexities of the acceleration phase and the cruising phase by setting
r =
√
tc(−1−ω)/4n(3−ω)/4, which gives us the total worst case time complexity of

Õ(
√
tc(ω+5)/4n(ω+9)/4). ut

Theorem 2. There exists an algorithm to solve the APSP-AF problem on di-
rected graphs with positive integer edge costs in Õ(

√
tc(ω+5)/4n(ω+9)/4) worst case

time complexity.

Proof. Clearly we can take a similar approach to the method described in the
proof of Theorem 1. We can still use the path cost (distance) to look up each
successor node in O(1) time. We note that the witnesses in the acceleration phase
can be artificial vertices, but the corresponding real vertices can be retrieved in
O(1) time simply by storing this information when G is expanded to G′. ut

If c = 1, Õ(
√
tc(ω+5)/4n(ω+9)/4) becomes Õ(

√
tn(ω+9)/4), hence we have suc-

cessfully generalized the APSP-AF problem from graphs with unit edge costs to
graphs with integer edge costs. To compare with the straightforward method of
repeatedly solving the APSP problem for each maximal flow value using Zwick’s
algorithm, we use the formula ω(1, r, 1) = 2 + (ω − 2)(r − α)/(1 − α) where
O(nω(1,r,1)) is the time taken to multiply an n-by-nr matrix with an nr-by-n
matrix, and α is a constant such that multiplying an n-by-nα matrix with an
nα-by-n remains within the O(n2) time bound. We let ω = 2.376 and α = 0.294
in this comparison [16]. The time complexity of the straightforward method be-
comes Õ(tn2+µ), where c = nx such that the equation ω(1, µ, 1) = 1 + 2µ− x is
satisfied. With t = O(n2), Algorithm 3 is faster for c < n0.629.

Finally we make a note that the idea of expanding the graph to G′ for the
acceleration phase then contracting it back to G for the cruising phase can
retrospectively be applied to Algorithm 1 to give a sharper time bound than
O((cn)(3+ω)/2), which is the time bound given by Alon et al. in their original
paper [2]. The time bound of O((cn)(3+ω)/2) is sub-cubic for c < n0.117. Using
our new approach of contracting the graph after the acceleration phase, the time
bound can be improved to O(c(1+ω)/2n(3+ω)/2), which is sub-cubic for c < n0.186.
For solving the same problem as Algorithm 1, however, other algorithms are
already known that remain sub-cubic for larger values of c [12,16].

5.1 Concluding remarks

The key achievements of this paper are: 1) the introduction of a new problem that
clearly has numerous practical applications in network analysis involving both

path costs and capacities, 2) non-trivial extension of Algorithm 1 to solve the new
problem that is more complex than the APSP problem, and 3) a better method
to utilize the artificial graph for integer edge costs resulting in an improved time
bound for not only our new algorithm, but also an existing algorithm for solving
the APSP problem.

Solving the new APSP-AF problem on other types of graphs (e.g. undirected,
real edge costs, etc) as well as finding efficient algorithms for the single source
version of the problem remain on the agenda for future research.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. N. Alon, Z. Galil and O. Margalit: On the Exponent of the All Pairs Shortest Path
Problem. Proc. 32nd FOCS (1991) pp. 569–575

3. T. Chan: More algorithms for all-pairs shortest paths in weighted graphs. Proc. 39th

STOC (2007) pp. 590–598
4. W. Dobosiewicz: A more efficient algorithm for the min-plus multiplication. Inter-

national Journal of Computer Mathematics 32 (1990) pp. 49–60
5. R. Duan and S. Pettie: Fast Algorithms for (max,min)-matrix multiplication and

bottleneck shortest paths. Proc. 19th SODA (2009) pp. 384–391
6. R. Floyd: Algorithm 97: Shortest Path. Communications of the ACM 5 (1962), pp.

345
7. M. Fredman: New bounds on the complexity of the shortest path problem. SIAM

Journal on Computing 5 (1976), pp. 83–89
8. F. Le Gall: Faster Algorithms for Rectangular Matrix Multiplication. Proc. 53rd

FOCS (2012) pp. 514–523
9. Y. Han: An O(n3(log log n/ logn)5/4) time algorithm for all pairs shortest paths.

Proc. 14th ESA (2006), pp. 411–417
10. Y. Han and T. Takaoka: An O(n3 log logn/ log2 n) Time Algorithm for All Pairs

Shortest Paths. Proc. 13th SWAT (2012), pp. 131–141
11. A. Schönhage and V. Strassen: Schnelle Multiplikation Groβer Zahlen. Computing

7 (1971) pp. 281–292
12. T. Takaoka: Sub-cubic Cost Algorithms for the All Pairs Shortest Path Problem.

Algorithmica 20 (1995) pp. 309–318
13. T. Takaoka A faster algorithm for the all-pairs shortest path problem and its

application. Proc. 10th COCOON (2004) pp. 278–289
14. V. Vassilevska, R. Williams, R. Yuster: All Pairs Bottleneck Paths and Max-Min

Matrix Products in Truly Subcubic Time. Journal of Theory of Computing 5 (2009)
pp. 173–189

15. V. Williams: Breaking the Coppersmith-Winograd barrier. Proc. 44th STOC (2012)
16. U. Zwick: All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix

Multiplication. Journal of the ACM 49 (2002) pp. 289–317
17. U. Zwick: A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest

Paths Problem with Real Edge Lengths. Algorithmica 46 (2006) pp. 278–289

	Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths Problems

