(Total) Vector Domination for Graphs with Bounded Branchwidth

Toshimasa Ishii ${ }^{1}$, Hirotaka Ono^{2}, and Yushi Uno ${ }^{3}$
${ }^{1}$ Graduate School of Economics and Business Administration, Hokkaido University, Sapporo 060-0809, Japan
${ }^{2}$ Department of Economic Engineering, Faculty of Economics, Kyushu University, Fukuoka 812-8581, Japan
${ }^{3}$ Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan

Abstract

Given a graph $G=(V, E)$ of order n and an n-dimensional non-negative vector $d=(d(1), d(2), \ldots, d(n))$, called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum $S \subseteq V$ such that every vertex v in $V \backslash S$ (resp., in V) has at least $d(v)$ neighbors in S. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the k-tuple dominating set problem (this k is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respect to k, where k is the size of solution.

1 Introduction

Given a graph $G=(V, E)$ of order n and an n-dimensional non-negative vector $d=(d(1), d(2), \ldots, d(n))$, called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum $S \subseteq V$ such that every vertex v in $V \backslash S$ (resp., in V) has at least $d(v)$ neighbors in S. These problems were introduced by [19], and they contain many existing problems, such as the minimum dominating set and the k-tuple dominating set problem (this k is different from the solution size) [20|21, and so on. Indeed, by setting $d=(1, \ldots, 1)$, the vector domination becomes the minimum dominating set forms, and by setting $d=(k, \ldots, k)$, the total vector dominating set becomes the k-tuple dominating set. If in the definition of total vector domination, we replace open neighborhoods with closed ones, we get the multiple domination. In this paper, we sometimes refer to these problems just as domination problems. Table 1 of [9] summarizes how related problems are represented in the scheme of domination problems. Many variants of the basic concepts of domination and their applications have appeared in 21|22].

Since the vector or multiple domination includes the setting of the ordinary dominating set problem, it is obviously NP-hard, and further it is NPhard to approximate within $(c \log n)$-factor, where c is a positive constant, e.g., $0.2267[1 / 24$. As for the approximability, since the domination problems are special cases of a set-cover type integer problem, it is known that the polynomialtime greedy algorithm achieves an $O(\log n)$-approximation factor [15]; it is already optimal in terms of order. We can see further analyses of the approximability and inapproximability in 89 .

In this paper, we focus on another aspect of designing algorithms for domination problems, that is, the polynomial-time solvability of the domination problems for graphs of bounded treewidth or branchwidth. In [3], it is shown that the vector domination problem is $W[1]$-hard with respect to treewidth. This result and Courcelle's meta-theorem about MSOL [10] imply that the vector domination is unlikely expressible in MSOL; it is not obvious to obtain a polynomial time algorithm.

In this paper, we present a polynomial-time algorithm for the domination problems of graphs with bounded branchwidth. The branchwidth is a measure of the "global connectivity" of a graph, and is known to be a counterpart of treewidth. It is known that

$$
\max \{b w(G), 2\} \leq t w(G)+1 \leq \max \{3 b w(G) / 2,2\}
$$

where $b w(G)$ and $t w(G)$ denote the branchwidth and treewidth of graph G, respectively 26. Due to the linear relation of these two measures, polynomial-time solvability of a problem for graphs with bounded treewidth implies polynomialtime solvability of a problem for graphs with bounded branchwidth, and vice versa. Hence, our results imply that the domination problems (i.e., vector domination, total vector domination and multiple domination) can be solved in polynomial time for graphs with bounded treewidth; the polynomial-time solvability for all the problems (except the dominating set problem) in Table 1 of [9] is newly shown. Also, they answer the question by [8] about the complexity status of the domination problems of graphs with bounded treewidth.

Furthermore, by using the polynomial-time algorithms for graphs of bounded treewidth, we can show that these problems for a planar graph are subexponential fixed-parameter tractable with respect to the size of the solution k, that is, there is an algorithm whose running time is $2^{O(\sqrt{k} \log k)} n^{O(1)}$. To our best knowledge, these are the first fixed-parameter algorithms for the total vector domination and multiple domination, whereas the vector domination for planar graphs has been shown to be FPT [25]. For the latter case, our algorithm greatly improves the running time.

Note that the polynomial-time solvability of the vector domination problem for graphs of bounded treewidth has been independently shown very recently [7]. They considered a further generalization of the vector domination problem, and gave a polynomial-time algorithm for graphs of bounded clique-width. Since $c w(G) \leq 2^{t w(G)+1}+1$ holds where $c w(G)$ denotes the clique-width of graph G ([11), their polynomial-time algorithm implies the polynomial-time solvability
of the vector domination problem for graphs of bounded treewidth and bounded branchwidth.

1.1 Related Work

The dominating set problem itself is one of the most fundamental graph optimization problems, and it has been intensively and extensively studied from many points of view. In the sense that the vector or multiple domination contains the setting of not only the ordinary dominating set problem but also many variants, there are an enormous number of related studies. Here we pick some representatives up.

As a research of the domination problems from the viewpoint of the algorithm design, Cicalese, Milanic and Vaccaro gave detailed analyses of the approximability and inapproximability [8]. They also provided some exact polynomial-time algorithms for special classes of graphs, such as complete graphs, trees, P_{4}-free graphs, and threshold graphs.

For graphs with bounded treewidth (or branchwidth), the ordinary domination problems can be solved in polynomial time. As for the fixed-parameter tractability, it is known that even the ordinary dominating set problem is W [2]complete with respect to solution size k; it is unlikely to be fixed-parameter tractable [16]. In contrast, it can be solved in $O\left(2^{15.13 \sqrt{k}}+n^{3}\right)$ time for planar graphs, that is, it is subexponential fixed-parameter tractable 18. The subexponent part comes from the inequality $b w(G) \leq 12 \sqrt{k}+9$, where k is the size of a dominating set of G. Behind the inequality, there is a unified property of parameters, called bidimensionality [14]. Namely, the subexponential fixed-parameter algorithm of the dominating set for planar graphs (more precisely, H-minor-free graphs [13]) is based on the bidimensionality.

A maximization version of the ordinary dominating set is also considered. Partial Dominating Set is the problem of maximizing the number of vertices to be dominated by using a given number k of vertices. In [2], it was shown that partial dominating set problem is FPT with respect to k for H-minor-free graphs. Later, 17] gives a subexponential FPT with respect to k for apex-minorfree graphs, also a super class of planar graphs. Although partial dominating set is an example of problems to which the bidimensionality theory cannot be applied, they develop a technique to reduce an input graph so that its treewidth becomes $O(\sqrt{k})$.

For the vector domination, a polynomial-time algorithm for graphs of bounded treewidth has been proposed very recently [7, as mentioned before. In [25], it is shown that the vector domination for ρ-degenerated graphs can be solved in $k^{O\left(\rho k^{2}\right)} n^{O(1)}$ time, if $d(v)>0$ holds for $\forall v \in V$ (positive constraint). Since any planar graph is 5 -degenerated, the vector domination for planar graphs is fixedparameter tractable with respect to solution size, under the positive constraint. Furthermore, the case where $d(v)$ could be 0 for some v can be easily reduced to the positive case by using the transformation discussed in [3], with increasing the degeneracy only 1 . It follows that the vector domination for planar graphs
is FPT with respect to solution size k. However, for the total vector domination and multiple domination, neither polynomial time algorithm for graphs of bounded treewidth nor fixed-parameter algorithm for planar graphs has been known.

Other than these, several generalized versions of the dominating set problem are also studied. (k, r)-center problem is the one that asks the existence of set S of k vertices satisfying that for every vertex $v \in V$ there exists a vertex $u \in S$ such that the distance between u and v is at most $r ;(k, 1)$-center corresponds to the ordinary dominating set. The (k, r)-center for planar graphs is shown to be fixedparameter tractable with respect to k and r [12]. For $\sigma, \rho \subseteq\{0,1,2, \ldots\}$ and a positive integer $k, \exists[\sigma, \rho]$-dominating set is the problem that asks the existence of set S of k vertices satisfying that $|N(v) \cap S| \in \sigma$ holds for $\forall v \in S$ and $|N(v) \cap S| \in$ ρ for $\forall v \in V \backslash S$, where $N(v)$ denotes the open neighborhood of v. If $\sigma=$ $\{0,1, \ldots\}$ and $\rho=\{1,2, \ldots\}, \exists[\sigma, \rho]$-dominating set is the ordinary dominating set problem, and if $\sigma=\{0\}$ and $\rho=\{0,1,2, \ldots\}$, it is the independent set. In [6], the parameterized complexity of $\exists[\sigma, \rho]$-dominating set with respect to treewidth is also considered.

1.2 Our Results

Our results are summarized as follows:

- We present a polynomial-time algorithm for the vector domination of graph $G=(V, E)$ with bounded branchwidth. The running time is roughly $O\left(n^{6 b w(G)+2}\right)$.
- We present polynomial-time algorithms for the total vector domination and multiple domination of graph G with bounded branchwidth. The running time is roughly $O\left(2^{9 b w(G) / 2} n^{6 b w(G)+2}\right)$.
- Let G be a planar graph. Then, we can check in $O\left(n^{4}+\min \left\{k, d^{*}\right\}^{40 \sqrt{k}+34} n\right)$ time whether G has a vector dominating set with cardinality at most k or not, where $d^{*}=\max \{d(v) \mid v \in V\}$.
- Let G be a planar graph. Then, we can check in $O\left(n^{4}+2^{30 \sqrt{k}+51 / 2} \min \left\{k, d^{*}\right\}^{40 \sqrt{k}+34} n\right)$ time whether G has a total vector dominating set and a multiple dominating set with cardinality at most k or not.

It should be noted that it is actually possible to design directly polynomial time algorithms for graphs with bounded treewidth, but they are slower than the ones for graphs with bounded branchwidth; this is the reason why we adopt the branchwidth instead of the treewidth.

As far as the authors know, the second and fourth results give the first polynomial time algorithms and the first fixed-parameter algorithm for the total vector domination and multiple domination of graphs with bounded branchwidth (or treewidth) and planar graphs, respectively. As for the vector domination, we give an $O\left(n^{6 b w(G)+2}\right)$-time algorithm, whose running time is $O\left(n^{6(t w(G)+1)+2}\right)$ in terms of the treewidth, whereas the recent paper [7] gives an $O(c w(G)|\sigma|(n+$ $1)^{5 c w(G)}$)-time algorithm, where $|\sigma|$ is the encoding length of k-expression used in the algorithm, and is bounded by a polynomial in the input size for fixed k.

Since $c w(G) \leq 2^{t w(G)+1}+1$ holds, this is an $O\left(2^{t w(G)+1}|\sigma|(n+1)^{\left.5 \cdot 2^{t w(G)+1}\right) \text {-time }}\right.$ algorithm.

Also, the third result shows that the vector domination of planar graphs is subexponential FPT with respect to k, and it greatly improves the running time of existing $k^{O\left(k^{2}\right)} n^{O(1)}$-time algorithm ([25]). It was shown in [5] that for the ordinary dominating set problem (equivalently, the vector domination (or multiple domination) with $d=(1,1, \ldots, 1)$) in planar graphs, there is no $2^{o(\sqrt{k})} n^{O(1)}$ time algorithm unless the Exponential Time Hypothesis (i.e., the assumption that there is no $2^{o(n)}$-time algorithm for n-variable 3SAT [23]) fails. Hence, in this sense, our algorithm in third result (or the fourth results for the multiple domination) is optimal if d^{*} is a constant.

The third and fourth results give subexponential fixed-parameter algorithms of the domination problems for planar graphs. It should be noted that the domination problems themselves do not have the bidimensionality, mentioned in the previous subsection, due to the existence of the vertices with demand 0 . Instead, by reducing irrelevant vertices, we obtain a similar inequality about the branchwidth and the solution size of the domination problems, which leads to the subexponential fixed-parameter algorithms.

The remainder of the paper is organized as follows. In Section 2, we introduce some basic notations and then explain the branch decomposition. Section 3 is the main part of the paper, and presents our dynamic programming based algorithms for the considered problems. Section 4 explains how we extend the algorithms of Section 3 to fixed-parameter algorithms for planar graphs.

2 Preliminaries

A graph G is an ordered pair of its vertex set $V(G)$ and edge set $E(G)$ and is denoted by $G=(V(G), E(G))$. Let $n=|V(G)|$ and $m=|E(G)|$. We assume throughout this paper that all graphs are undirected, and simple, unless otherwise stated. Therefore, an edge $e \in E(G)$ is an unordered pair of vertices u and v, and we often denote it by $e=(u, v)$. Two vertices u and v are adjacent if $(u, v) \in E(G)$. For a graph G, the (open) neighborhood of a vertex $v \in V(G)$ is the set $N_{G}(v)=\{u \in V(G) \mid(u, v) \in E(G)\}$, and the closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$.

For a graph $G=(V, E)$, let $d=(d(v) \mid v \in V)$ be an n-dimensional nonnegative vector. Then, we call a set $S \subseteq V$ of vertices a d-vector dominating set (resp., d-total vector dominating set) if $\left|N_{G}(v) \cap S\right| \geq d(v)$ holds for every vertex $v \in V-S$ (resp., $v \in V$). We call a set $S \subseteq V$ of vertices a d-multiple dominating set if $\left|N_{G}[v] \cap S\right| \geq d(v)$ holds for every vertex $v \in V$. We may drop d in these notations if there are no confusions.

2.1 Branch decomposition

A branch decomposition of a graph $G=(V, E)$ is defined as a pair $(T=$ $\left.\left(V_{T}, E_{T}\right), \tau\right)$ such that (a) T is a tree with $|E|$ leaves in which every non-leaf
node has degree 3, and (b) τ is a bijection from E to the set of leaves of T. Throughout the paper, we shall use node to denote an element in V_{T} for distinguishing it from an element in V.

For an edge f in T, let T_{f} and $T-T_{f}$ be two trees obtained from T by removing f, and E_{f} and $E-E_{f}$ be two sets of edges in E such that $e \in E_{f}$ if and only if $\tau(e)$ is included in T_{f}. The order function $w: E(T) \rightarrow 2^{V}$ is defined as follows: for an edge f in T, a vertex $v \in V$ belongs to $w(f)$ if and only if there exist an edge in E_{f} and an edge in $E-E_{f}$ which are both incident to v. The width of a branch decomposition (T, τ) is $\max \left\{|w(f)| \mid f \in E_{T}\right\}$, and the branchwidth of G, denoted by $b w(G)$, is the minimum width over all branch decompositions of G.

In general, computing the branchwidth of a given graph is NP-hard 28]. On the other hand, Bodlaender and Thilikos [4] gave a linear time algorithm which checks in linear time whether the branchwidth of a given graph is at most k or not, and if so, outputs a branch decomposition of minimum width, for any fixed k. Also, as shown in the following lemma, it is known that for planar graphs, it can be done in polynomial time for any given k, where a graph is called planar if it can be drawn in the plane without generating a crossing by two edges.

Lemma 1. ([28]) Let G be a planar graph. Then, it can be checked in $O\left(n^{2}\right)$ time whether $b w(G) \leq k$ or not for a given integer k. Also, we can construct a branch decomposition of G with width $b w(G)$ in $O\left(n^{4}\right)$ time.

Here, we introduce the following basic properties about branch decompositions, which will be utilized in the subsequent sections.

Lemma 2. Let (T, τ) be a branch decomposition of G.
(i) For a tree T, let x be a non-leaf node and $f_{i}=\left(x, x_{i}\right), i=1,2,3$, be an edge incident to x (note that the degree of x is three). Then, $w\left(f_{i}\right)-w\left(f_{j}\right)-w\left(f_{k}\right)=\emptyset$ for every $\{i, j, k\}=\{1,2,3\}$. Hence, $w\left(f_{i}\right) \subseteq w\left(f_{j}\right) \cup w\left(f_{k}\right)$.
(ii) Let f be an edge of T, V_{1} be the set of all end-vertices of edges in E_{f}, and V_{2} be the set of all end-vertices of edges in $E-E_{f}$. Then, $\left(V_{1}-w(f)\right) \cap\left(V_{2}-w(f)\right)=$ \emptyset holds. Also, there is no edge in E connecting a vertex in $V_{1}-w(f)$ and a vertex in $V_{2}-w(f)$.

Proof. (i) Without loss of generality, assume that $E_{f_{1}} \cap E_{f_{2}}=\emptyset, E_{f_{2}} \cap E_{f_{3}}=\emptyset$, $E_{f_{3}} \cap E_{f_{1}}=\emptyset$, and $E_{f_{1}} \cup E_{f_{2}} \cup E_{f_{3}}=E$. Let $v \in w\left(f_{1}\right)$ be a vertex. From the definition of $w\left(f_{1}\right)$, there exist two edges $e \in E_{f_{1}}$ and $e^{\prime} \in E-E_{f_{1}}$ such that both of e and e^{\prime} are incident to v. If $e^{\prime} \in E_{f_{2}}$ (resp., $e^{\prime} \in E_{f_{3}}$), then $v \in w\left(f_{2}\right)$ (resp., $\left.v \in w\left(f_{3}\right)\right)$ also holds. Thus, we can observe that there is no vertex in $w\left(f_{i}\right)-w\left(f_{j}\right)-w\left(f_{k}\right)$ for every $\{i, j, k\}=\{1,2,3\}$.
(ii) Assume by contradiction that there exists a vertex $v \in\left(V_{1}-w(f)\right) \cap$ $\left(V_{2}-w(f)\right)$. From definition of V_{1} and V_{2}, then there exists an edge $e_{1} \in E_{f}$ and an edge $e_{2} \in E-E_{f}$ such that both of e_{1} and e_{2} are incident to v. From the existence of e_{1} and e_{2} and the definition of $w(f)$, it follows that $w(f)$ also contains v, which contradicts $v \notin w(f)$.

Assume by contradiction that there exists an edge $e=\left(u_{1}, u_{2}\right) \in E$ such that $u_{1} \in V_{1}-w(f)$ and $u_{2} \in V_{2}-w(f)$. If we assume that $e \in E_{f}$ without loss of generality, then $u_{2} \in V_{1}-w(f)$ also holds, which contradicts $\left(V_{1}-w(f)\right) \cap\left(V_{2}-\right.$ $w(f))=\emptyset$.

3 Domination problems in graphs of bounded branchwidth

In this section, we propose dynamic programming algorithms for the vector domination problem, the total vector domination problem, and the multiple domination problem, by utilizing a branch decomposition of a given graph. The techniques are based on the one developed by Fomin and Thilikos for solving the dominating set problem with bounded branchwidth [18. Throughout this section, for a given graph $G=(V, E)$, the demand of each vertex $v \in V$ is denoted by $d(v)$, and let $d^{*}=\max \{d(v) \mid v \in V\}$.

3.1 Vector domination

In this subsection, we consider the vector domination problem, and show the following theorem.

Theorem 1. If a branch decomposition of G with width b is given, a minimum vector dominating set in G can be found in $O\left(\left(d^{*}+2\right)^{b}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{b / 2} m\right)$ time.

Due to the assumption of the above theorem, we need to consider how we obtain a branch decomposition of G for the completeness of an algorithm of the vector domination problem. For a branch decomposition, there exists an $O\left(2^{b \lg 27} n^{2}\right)$ time algorithm that given a graph G, reports $b w(G) \geq b$, or outputs a branch decomposition of G with width at most $3 b$ [27|13]. Thus, the time to find a branch decomposition with width at most $3 b w(G)$ is $O\left(\log b w(G) 2^{b w(G) \lg 27} n^{2}\right)$ (smaller than the time complexity below), and we have the following corollary.

Corollary 1. A minimum vector dominating set in G can be found in $O\left(\left(d^{*}+\right.\right.$ $\left.2)^{3 b w(G)}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{3 b w(G) / 2} n^{2}\right)$ time.

Below, for proving this theorem, we will give a dynamic programming algorithm for finding a minimum vector dominating set in G in $O\left(\left(d^{*}+2\right)^{b}\left\{\left(d^{*}+\right.\right.\right.$ $\left.1)^{2}+1\right\}^{b / 2} m$) time, based on a branch decomposition of G.

Let $\left(T^{\prime}, \tau\right)$ be a branch decomposition of $G=(V, E)$ with b, and $w^{\prime}: E\left(T^{\prime}\right) \rightarrow$ 2^{V} be the corresponding order function. Let T be the tree from T^{\prime} by inserting two nodes r_{1} and r_{2}, deleting one arbitrarily chosen edge $\left(x_{1}, x_{2}\right) \in E\left(T^{\prime}\right)$, adding three new edges $\left(r_{1}, r_{2}\right)$, $\left(x_{1}, r_{2}\right)$, and $\left(x_{2}, r_{2}\right)$; namely, $T=\left(V\left(T^{\prime}\right) \cup\right.$ $\left.\left\{r_{1}, r_{2}\right\}, E\left(T^{\prime}\right) \cup\left\{\left(r_{1}, r_{2}\right),\left(x_{1}, r_{2}\right),\left(x_{2}, r_{2}\right)\right\}-\left\{\left(x_{1}, x_{2}\right)\right\}\right)$. Here, we regard T with a rooted tree by choosing r_{1} as a root. Let $w(f)=w^{\prime}(f)$ for every $f \in E(T) \cap$ $E\left(T^{\prime}\right), w\left(x_{1}, r_{2}\right)=w\left(x_{2}, r_{2}\right)=w^{\prime}\left(x_{1}, x_{2}\right)$, and $w\left(r_{1}, r_{2}\right)=\emptyset$.

Let $f=\left(y_{1}, y_{2}\right) \in E$ be an edge in T such that y_{1} is the parent of y_{2}. Let $T\left(y_{2}\right)$ be the subtree of T rooted at $y_{2}, E_{f}=\left\{e \in E \mid \tau(e) \in V\left(T\left(y_{2}\right)\right)\right\}$, and G_{f} be the subgraph of G induced by E_{f}. Note that $w(f) \subseteq V\left(G_{f}\right)$ holds, since each vertex in $w(f)$ is an end-vertex of some edge in E_{f} by definition of the order function w. In the following, each vertex $v \in w(f)$ will be assigned one of the following $d(v)+2$ colors

$$
\{\top, 0,1,2, \ldots, d(v)\} .
$$

The meaning of the color of a vertex v is as follows: for a vertex set (possibly, a vector dominating set) D,

$$
\begin{aligned}
& \text { - } \top \text { means that } v \in D . \\
& -i \in\{0,1, \ldots, d(v)\} \text { means that } v \notin D \text { and }\left|N_{G_{f}}(v) \cap D\right| \geq d(v)-i .
\end{aligned}
$$

Notice that a vertex colored by $i>0$ may need to be dominated by some vertices in $V-V\left(G_{f}\right)$ for the feasibility. Given a coloring $c \in\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$, let $D_{f}(c) \subseteq V\left(G_{f}\right)$ be a vertex set with the minimum cardinality satisfying the following (1)-(3), where $c(v)$ denotes the color assigned to a vertex $v \in V$:

$$
\begin{align*}
& c(v)=\top \text { if and only if } v \in D_{f}(c) \cap w(f) . \tag{1}\\
& \text { If } c(v)=i \text {, then } v \in w(f)-D_{f}(c) \text { and }\left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq d(v)-i \tag{2}\\
& \left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq d(v) \text { holds for every vertex } v \in V\left(G_{f}\right)-w(f)-D_{f}(c) .(3 \tag{3}
\end{align*}
$$

Intuitively, $D_{f}(c)$ is a minimum vector dominating set in G_{f} under the assumption that the color for every vertex in $w(f)$ is restricted to c. Note that a vertex in $w(f)$ is allowed not to meet its demand in G_{f}, because it can be dominated by some vertices in $V-V\left(G_{f}\right)$. Also note that every vertex in $V\left(G_{f}\right)-w(f)$ is not adjacent to any vertex in $V-V\left(G_{f}\right)$ by Lemma 2 (ii), and it needs to be dominated by vertices only in $V\left(G_{f}\right)$ for the feasibility. We define $A_{f}(c)$ as $A_{f}(c)=\left|D_{f}(c)\right|$ if $D_{f}(c)$ exists and $A_{f}(c)=\infty$ otherwise.

Our dynamic programming algorithm proceeds bottom-up in T, while computing $A_{f}(c)$ for all $c \in\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$ for each edge f in T. We remark that $A_{\left(r_{1}, r_{2}\right)}(c)$ is the cardinality of a minimum vector dominating set, because $w\left(r_{1}, r_{2}\right)=\emptyset$ and $G_{\left(r_{1}, r_{2}\right)}=G$. The algorithm consists of two types of procedures: one is for leaf edges and the other is for non-leaf edges, where a leaf edge denotes an edge incident to a leaf of T.
Procedure for leaf edges: In the first step of the algorithm, we compute $A_{f}(c)$ for each edge f incident to a leaf of T. Then, for all colorings $c \in$ $\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$, let $A_{f}(c)$ be the number of vertices colored by \top if G_{f} and c satisfy (1) - (3), and $A_{f}(c)=\infty$ otherwise.

For a fixed c, we need to check if (11) - (3) hold. This can be done in $O(|w(f)|)$ time. Hence, this step takes $O\left(\left(d^{*}+2\right)^{|w(f)|}|w(f)|\right)$ time.

Procedure for non-leaf edges: After the above initialization step, we visit non-leaf edges of T from leaves to the root of T. Let $f=\left(y_{1}, y_{2}\right)$ be a non-leaf edge of T such that y_{1} is the parent of y_{2}, y_{3} and y_{4} are the children of y_{2}, and
$f_{1}=\left(y_{2}, y_{3}\right)$ and $f_{2}=\left(y_{2}, y_{4}\right)$. Now we have already obtained $A_{f_{j}}\left(c^{\prime}\right)$ for all $c^{\prime} \in$ $\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{\left|w\left(f_{j}\right)\right|}, j=1,2$. By Lemma2(i), we have $w(f) \subseteq w\left(f_{1}\right) \cup w\left(f_{2}\right)$, $w\left(f_{1}\right) \subseteq w\left(f_{2}\right) \cup w(f)$, and $w\left(f_{2}\right) \subseteq w(f) \cup w\left(f_{1}\right)$; let $X_{1}=w(f)-w\left(f_{2}\right)$, $X_{2}=w(f)-w\left(f_{1}\right), X_{3}=w(f) \cap w\left(f_{1}\right) \cap w\left(f_{2}\right)$, and $X_{4}=w\left(f_{1}\right)-w(f)(=$ $\left.w\left(f_{2}\right)-w(f)\right)$.

We say that a coloring $c \in\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$ of $w(f)$ is formed from a coloring c_{1} of $w\left(f_{1}\right)$ and a coloring c_{2} of $w\left(f_{2}\right)$ if the following (P1)-(P5) hold.
(P1) For every $v \in X_{1} \cup X_{2} \cup X_{3}$ with $c(v)=\top$,
(a) If $v \in X_{1} \cup X_{3}$, then $c_{1}(v)=\mathrm{T}$.
(b) If $v \in X_{2} \cup X_{3}$, then $c_{2}(v)=\top$.
(P2) For every $v \in X_{4}, c_{1}(v)=\top$ if and only if $c_{2}(v)=\top$.
(P3) For every $v \in X_{j}-D_{c_{1}, c_{2}}$ where $\left\{j, j^{\prime}\right\}=\{1,2\}$ and $D_{c_{1}, c_{2}}=\left\{v \in X_{1} \cup\right.$ $X_{2} \cup X_{3} \cup X_{4} \mid c_{1}(v)=\top$ or $\left.c_{2}(v)=\top\right\}$,

If $c(v)=i$, then $c_{j}(v)=\min \left\{d(v), i+\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{j^{\prime}}\right|\right\}$.
(Intuitively, if $v \in X_{j}-D_{c_{1}, c_{2}}$ needs to be dominated by at least $d(v)-i$ vertices in G_{f}, then at least $\max \left\{0, d(v)-i-\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{j^{\prime}}\right|\right\}$ vertices from $V\left(G_{f_{j}}\right)$ are necessary.)
(P4) For every $v \in X_{3}-D_{c_{1}, c_{2}}$,
If $c(v)=i$, then $c_{1}(v)=\min \left\{d(v), i+\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{2}\right|+i_{1}\right\}$ and $c_{2}(v)=\min \left\{d(v), i+\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{1}\right|+i_{2}\right\}$ for some nonnegative integers i_{1}, i_{2} with $i_{1}+i_{2}=\max \left\{0, d(v)-i-\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v)\right|\right\}$.
(Intuitively, if $v \in X_{3}-D_{c_{1}, c_{2}}$ needs to be dominated by at least $d(v)-i$ vertices in G_{f}, then at least $\max \left\{0, d(v)-i-\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v)\right|\right\}$ vertices from $\left(V\left(G_{f_{1}}\right)-w\left(f_{1}\right)\right) \cup\left(V\left(G_{f_{2}}\right)-w\left(f_{2}\right)\right)$ are necessary for dominating v. If i_{1} (resp., i_{2}) vertices among those vertices belong to $V\left(G_{f_{2}}\right)-w\left(f_{2}\right)$ (resp., $\left.V\left(G_{f_{1}}\right)-w\left(f_{1}\right)\right)$, then at least $\max \left\{0, d(v)-i-\mid D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap\right.$ $\left.X_{j^{\prime}} \mid-i_{j}\right\}$ vertices from $V\left(G_{f_{j}}\right)$ are necessary for $\left\{j, j^{\prime}\right\}=\{1,2\}$.)
(P5) For every $v \in X_{4}-D_{c_{1}, c_{2}}$,

$$
c_{1}(v)=\min \left\{d(v),\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{2}\right|+i_{1}\right\} \text { and } c_{2}(v)=\min \left\{d(v), \mid D_{c_{1}, c_{2}} \cap\right.
$$ $\left.N_{G_{f}}(v) \cap X_{1} \mid+i_{2}\right\}$ for some nonnegative integers i_{1}, i_{2} with $i_{1}+i_{2}=$ $\max \left\{0, d(v)-\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v)\right|\right\}$.

(This case can be treated in a similar way to (P4).)
As we will show in Lemmas 3 and 4 there exist a coloring c_{1} of $w\left(f_{1}\right)$ and a coloring c_{2} of $w\left(f_{2}\right)$ forming c such that $D_{f_{1}}\left(c_{1}\right) \cup D_{f_{2}}\left(c_{2}\right)$ satisfies (1)-(3) and $\left|D_{f_{1}}\left(c_{1}\right) \cup D_{f_{2}}\left(c_{2}\right)\right|=A_{f}(c)$. Namely, we have

$$
A_{f}(c)=\min \left\{\left|A_{f_{1}}\left(c_{1}\right)\right|+\left|A_{f_{2}}\left(c_{2}\right)\right|-\left|D_{c_{1}, c_{2}} \cap\left(X_{3} \cup X_{4}\right)\right| \mid c_{1}, c_{2} \text { forms } c\right\} .
$$

Thus, for all colorings $c \in\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$, we can compute $A_{f}(c)$ from the information of f_{1} and f_{2}. By repeating these procedure bottom-up in T, we can find a minimum vector dominating set in G.

Here, for a fixed c, we analyze the time complexity for computing $A_{f}(c)$. Let $D_{c}=\{v \in w(f) \mid c(v)=\top\}, x_{j}=\left|X_{j}\right|$ for $j=1,2,3,4, z_{3}=\left|X_{3}-D_{c}\right|$, and z_{4} be the number of vertices in X_{4} not colored by \top. The number of pairs of a coloring c_{1} of $w\left(f_{1}\right)$ and a coloring c_{2} of $w\left(f_{2}\right)$ forming c is at most

$$
\left(d^{*}+1\right)^{z_{3}} \sum_{z_{4}=0}^{x_{4}}\binom{x_{4}}{z_{4}}\left(d^{*}+1\right)^{z_{4}}\left(d^{*}+1\right)^{z_{4}}
$$

since the number of pairs $\left(i_{1}, i_{2}\right)$ in (P4) or (P5) is at most $d^{*}+1$ for each vertex in $X_{3}-D_{c}$ or each vertex in X_{4} not colored by T.

Hence, for an edge f, the number of pairs forming c is at most

$$
\begin{aligned}
& \left(d^{*}+2\right)^{x_{1}+x_{2}} \sum_{z_{3}=0}^{x_{3}}\binom{x_{3}}{z_{3}}\left(d^{*}+1\right)^{z_{3}}\left(d^{*}+1\right)^{z_{3}} \sum_{z_{4}=0}^{x_{4}}\binom{x_{4}}{z_{4}}\left(d^{*}+1\right)^{z_{4}}\left(d^{*}+1\right)^{z_{4}} \\
& =\left(d^{*}+2\right)^{x_{1}+x_{2}}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{x_{3}+x_{4}}
\end{aligned}
$$

in total. Now we have $x_{1}+x_{2}+x_{3} \leq b, x_{1}+x_{3}+x_{4} \leq b$, and $x_{2}+x_{3}+x_{4} \leq b$ (recall that b is the width of $\left(T^{\prime}, \tau\right)$). By considering a linear programming problem which maximizes $\left(x_{1}+x_{2}\right) \log \left(d^{*}+2\right)+\left(x_{3}+x_{4}\right) \log \left\{\left(d^{*}+1\right)^{2}+1\right\}$ subject to these inequalities, we can observe that $\left(d^{*}+2\right)^{x_{1}+x_{2}}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{x_{3}+x_{4}}$ attains the maximum when $x_{1}=x_{2}=x_{4}=b / 2$ and $x_{3}=0$. Thus, it takes in $O\left(\left(d^{*}+2\right)^{b}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{b / 2}\right)$ time to compute $A_{f}(c)$ for all colorings c of $w(f)$.

Since $|E(T)|=O(m)$ and the initialization step takes $O\left(\left(d^{*}+2\right)^{b} m\right)$ time in total, we can obtain $A_{\left(r_{1}, r_{2}\right)}(c)$ in $O\left(\left(\left(d^{*}+2\right)^{b}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{b / 2} m\right)\right.$ time.

Lemma 3. Let $c \in\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$ be a coloring of $w(f)$. If a coloring c_{1} of $w\left(f_{1}\right)$ and a coloring c_{2} of $w\left(f_{2}\right)$ forms c, then $D_{f_{1}}\left(c_{1}\right) \cup D_{f_{2}}\left(c_{2}\right)$ satisfies (11) -(3) for f.

Proof. We denote $D_{f_{1}}\left(c_{1}\right) \cup D_{f_{2}}\left(c_{2}\right)$ by D^{\prime}, and $D^{\prime} \cap\left(X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right)$ by $D_{c_{1}, c_{2}}^{\prime}$. Clearly, (11) holds, since $v \in D^{\prime} \cap w(f)$ if and only if $c(v)=\top$ by the above (P1).

We next show that D^{\prime} satisfies (2). Let v be a vertex in $X_{1}-D^{\prime}=X_{1}-D_{c_{1}, c_{2}}^{\prime}$. From the above (P3), we have $\left|N_{G_{f_{1}}}(v) \cap D^{\prime}\right| \geq d(v)-i-\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v) \cap X_{2}\right|$. It follows that $\left|N_{G_{f}}(v) \cap D^{\prime}\right| \geq\left|N_{G_{f_{1}}}(v) \cap D^{\prime}\right|+\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v) \cap X_{2}\right| \geq d(v)-i$. Also, the case of $v \in X_{2}-D^{\prime}$ can be treated similarly.

Let v be a vertex in $X_{3}-D^{\prime}=X_{3}-D_{c_{1}, c_{2}}^{\prime}$. Since $\left|N_{G_{f}}(v) \cap D^{\prime}\right| \geq \mid N_{G_{f}}(v) \cap$ $D_{c_{1}, c_{2}}^{\prime} \mid$ clearly holds, then we have only to consider the case of $\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime}\right|<$ $d(v)-i$. From (P4), we have $\left|N_{G_{f_{1}}}(v) \cap D^{\prime}\right| \geq \max \left\{0, d(v)-i-\mid D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v) \cap\right.$ $\left.X_{2} \mid-i_{1}\right\}$ and $\left|N_{G_{f_{2}}}(v) \cap D^{\prime}\right| \geq \max \left\{0, d(v)-i-\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v) \cap X_{1}\right|-i_{2}\right\}$ where $i_{1}+i_{2}=d(v)-i-\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v)\right|$ (note that $i_{1}+i_{2}>0$ from the assumption of this case). Notice that $\left(V\left(G_{f_{1}}\right)-w\left(f_{1}\right)\right) \cap\left(V\left(G_{f_{2}}\right)-w\left(f_{2}\right)\right)=\emptyset$ by Lemmar2(ii). It follows that $\left|N_{G_{f}}(v) \cap D^{\prime}\right| \geq\left|N_{G_{f_{1}}}(v) \cap D^{\prime}\right|+\left|N_{G_{f_{2}}}(v) \cap D^{\prime}\right|$ $-\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime} \cap\left(X_{3} \cup X_{4}\right)\right| \geq 2(d(v)-i)-\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime}\right|-i_{1}-i_{2}=d(v)-i$.

We finally show that D^{\prime} satisfies (3). Let v be a vertex in $X_{4}-D^{\prime}$. Since $\left|N_{G_{f}}(v) \cap D^{\prime}\right| \geq\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime}\right|$ clearly holds, then we have only to consider the case of $\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime}\right|<d(v)$. From (P5), we have $\left|N_{G_{f_{1}}}(v) \cap D^{\prime}\right| \geq$
$\max \left\{0, d(v)-\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v) \cap X_{2}\right|-i_{1}\right\}$ and $\left|N_{G_{f_{2}}}(v) \cap D^{\prime}\right| \geq \max \{0, d(v)-$ $\left.\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v) \cap X_{1}\right|-i_{2}\right\}$ where $i_{1}+i_{2}=d(v)-\left|D_{c_{1}, c_{2}}^{\prime} \cap N_{G_{f}}(v)\right|>0$. Hence, we have $\left|N_{G_{f}}(v) \cap D^{\prime}\right| \geq\left|N_{G_{f_{1}}}(v) \cap D^{\prime}\right|+\left|N_{G_{f_{2}}}(v) \cap D^{\prime}\right|-\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime} \cap\left(X_{3} \cup X_{4}\right)\right|$ $=2 d(v)-\left|N_{G_{f}}(v) \cap D_{c_{1}, c_{2}}^{\prime}\right|-i_{1}-i_{2}=d(v)$. Also, it follows from the definition of $D_{f_{j}}\left(c_{j}\right)$ that $v \in V\left(G_{f_{j}}\right)-w\left(f_{j}\right)$ satisfies (3) for $j=1,2$.

Lemma 4. Let $c \in\left\{\top, 0,1,2, \ldots, d^{*}\right\}^{|w(f)|}$ be a coloring of $w(f)$. There exist a coloring c_{1} of $w\left(f_{1}\right)$ and a coloring c_{2} of $w\left(f_{2}\right)$ forming c such that $\mid D_{f_{1}}\left(c_{1}\right) \cup$ $D_{f_{2}}\left(c_{2}\right) \mid \leq A_{f}(c)$.
Proof. For each vertex $v \in w\left(f_{j}\right), j=1,2$, let
$c_{j}(v)= \begin{cases}\top & \text { if } v \in D_{f}(c), \\ \min \left\{d(v), c(v)+\left|N_{G_{f}}(v) \cap D_{f}(c)-V\left(G_{f_{j}}\right)\right|\right\} & \text { if } v \in X_{j}-D_{f}(c), \\ \max \left\{0, d(v)-\left|N_{G_{f_{j}}}(v) \cap D_{f}(c)\right|\right\} & \text { if } v \in X_{3} \cup X_{4}-D_{f}(c) .\end{cases}$
For $v \in X_{j}-D_{f}(c)$, we have $\left|N_{G_{f}}(v) \cap D_{f}(c)\right|=\left|N_{G_{f_{j}}}(v) \cap D_{f}(c)\right|+\mid N_{G_{f}}(v) \cap$ $D_{f}(c)-V\left(G_{f_{j}}\right) \mid \geq d(v)-c(v)$, since $D_{f}(c)$ satisfies (2). Hence, $\mid N_{G_{f_{j}}}(v) \cap$ $D_{f}(c) \mid \geq \max \left\{0, d(v)-c(v)-\left|N_{G_{f}}(v) \cap D_{f}(c)-V\left(G_{f_{j}}\right)\right|\right\}=d(v)-c_{j}(v)$ for all $v \in w\left(f_{j}\right)-D_{f}(c)$. It follows from that the minimality of $A_{f_{j}}\left(c_{j}\right)$ implies that $\left|D_{f}(c) \cap V\left(G_{f_{j}}\right)\right| \geq A_{f_{j}}\left(c_{j}\right)$; hence, $A_{f}(c) \geq\left|D_{f_{1}}\left(c_{1}\right) \cup D_{f_{2}}\left(c_{2}\right)\right|$. On the other hand, c_{1} and c_{2} does not necessarily form c. Below, we show that there exist a coloring c_{1}^{\prime} of $w\left(f_{1}\right)$ and a coloring c_{2}^{\prime} of $w\left(f_{2}\right)$ forming c such that $c_{j}^{\prime}(v) \geq c_{j}(v)$ for every $v \in w\left(f_{j}\right)-D_{f}(c)$ for $j=1,2$. Note that $D_{f_{j}}\left(c_{j}\right)$ satisfies (11)-(3) also for c_{j}^{\prime}, since $\left|N_{G_{f_{j}}}(v) \cap D_{f_{j}}(c)\right| \geq d(v)-c_{j}(v) \geq d(v)-c_{j}^{\prime}(v)$ for every $v \in w\left(f_{j}\right)-D_{f}(c)$. Hence, from the minimality of $\left|D_{f_{j}}\left(c_{j}^{\prime}\right)\right|$, we have $A_{f}(c) \geq\left|D_{f_{1}}\left(c_{1}\right) \cup D_{f_{2}}\left(c_{2}\right)\right| \geq\left|D_{f_{1}}\left(c_{1}^{\prime}\right) \cup D_{f_{2}}\left(c_{2}^{\prime}\right)\right|$, which proves this lemma.

We can construct such $c_{1}^{\prime}, c_{2}^{\prime}$ as follows. First let $c_{j}^{\prime}(v)=c_{j}(v)$ for all $v \in$ $X_{1} \cup X_{2} \cup D_{f}(c) ; c_{1}^{\prime}$ and c_{2}^{\prime} satisfy (P1) and (P2) in the definition of a coloring c formed by c_{1} and c_{2}. By Lemma2(ii), every $v \in X_{j}$ satisfies $N_{G_{f}}(v) \cap D_{f}(c)-$ $V\left(G_{f_{j}}\right)=N_{G_{f}}(v) \cap D_{f}(c) \cap X_{j^{\prime}}$ for $\left\{j, j^{\prime}\right\}=\{1,2\}$. Hence, $c_{j}^{\prime}(v)\left(=c_{j}(v)\right)$ for $v \in X_{j}-D_{f}(c), j=1,2$ satisfies (P3).

Let $v \in X_{3}-D_{f}(c)$. Since $D_{f}(c)$ satisfies (2), we have $\left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq$ $d(v)-c(v)$. Now from construction of c_{1} and c_{2}, the value i_{1}^{\prime} (resp., i_{2}^{\prime}) corresponding to i_{1} (resp., i_{2}) in (P4) in the definition of c formed by c_{1} and c_{2} is $\max \left\{0, d(v)-\left|N_{G_{f_{1}}}(v) \cap D_{f}(c)\right|-c(v)-\left|N_{G_{f}}(v) \cap X_{2} \cap D_{f}(c)\right|\right\}$ (resp., $\left.\max \left\{0, d(v)-\left|N_{G_{f_{2}}}(v) \cap D_{f}(c)\right|-c(v)-\left|N_{G_{f}}(v) \cap X_{1} \cap D_{f}(c)\right|\right\}\right)$. It follows that $i_{1}^{\prime}+i_{2}^{\prime} \leq \max \left\{0, d(v)-c(v)-\left|N_{G_{f}}(v) \cap D_{f}(c) \cap\left(X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right)\right|\right\}$ (note that the final inequality follows from $\left.\left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq d(v)-c(v)\right)$.

Let $v \in X_{4}-D_{f}(c)$. Since $D_{f}(c)$ satisfies (2), we have $\left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq d(v)$. From construction of c_{1} and c_{2}, the value i_{1}^{\prime} (resp., i_{2}^{\prime}) corresponding to i_{1} (resp., i_{2}) in (P5) in the definition of c formed by c_{1} and c_{2} is $\max \left\{0, d(v)-\mid N_{G_{f_{1}}}(v) \cap\right.$ $D_{f}(c)\left|-\left|N_{G_{f}}(v) \cap X_{2} \cap D_{f}(c)\right|\right\}\left(\right.$ resp., $\max \left\{d(v)-\left|N_{G_{f_{2}}}(v) \cap D_{f}(c)\right|-\mid N_{G_{f}}(v) \cap\right.$ $\left.\left.X_{1} \cap D_{f}(c) \mid\right\}\right)$. It follows that $i_{1}^{\prime}+i_{2}^{\prime} \leq \max \left\{0, d(v)-\mid N_{G_{f}}(v) \cap D_{f}(c) \cap\left(X_{1} \cup\right.\right.$ $\left.\left.X_{2} \cup X_{3} \cup X_{4}\right) \mid\right\}$.

Consequently, we can construct a coloring c_{1}^{\prime} of $w\left(f_{1}\right)$ and a coloring c_{2}^{\prime} of $w\left(f_{2}\right)$ forming c such that $c_{j}^{\prime}(v) \geq c_{j}(v)$ for every $v \in X_{3} \cup X_{4}-D_{f}(c)$
and $c_{j}^{\prime}(v)=c_{j}(v)$ for every $v \in D_{f}(c) \cup X_{1} \cup X_{2}$ for $j=1,2$ by increasing i_{1}^{\prime} or i_{2}^{\prime} for each vertex $v \in X_{3} \cup X_{4}-D_{f}(c)$ so that $i_{1}^{\prime}+i_{2}^{\prime}$ becomes equal to $\max \left\{0, d(v)-c(v)-\left|N_{G_{f}}(v) \cap D_{f}(c) \cap\left(X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right)\right|\right\}($ resp., $\max \{0, d(v)-$ $\left.\left.\left|N_{G_{f}}(v) \cap D_{f}(c) \cap\left(X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right)\right|\right\}\right)$ if $v \in X_{3}$ (resp., $v \in X_{4}$).

Summarizing the arguments given so far, we have shown Theorem 1 ,

3.2 Total vector domination and multiple domination

We consider the total vector domination problem. The difference between the total vector domination and the vector domination is that each vertex selected as a member in a dominating set needs to be dominated or not. Hence, we will modify the following parts (I)-(III) in the algorithm for vector domination given in the previous subsection so that each vertex selected as a member in a dominating set also satisfies its demand.
(I) Color assignments: Let $f \in E(T)$ be an edge in a branch decomposition T of G. We will assign to each vertex $v \in w(f)$ an ordered pair (ℓ, i) of colors, $\ell \in\{\top, \perp\}, i \in\{0,1, \ldots, d(v)\}$, where \top means that v belongs to the dominating set, \perp means that v does not belong to the dominating set, and and i means that v is dominated by at least $d(v)-i$ vertices in G_{f}.
(II) Conditions for $D_{f}(c)$: For a coloring $c \in\left(\{\top, \perp\} \times\left\{0,1,2, \ldots, d^{*}\right\}\right)^{|w(f)|}$, we modify (11)-(3) as follows, where let $c(v)=\left(c^{1}(v), c^{2}(v)\right)$:
$c^{1}(v)=\top$ if and only if $v \in D_{f}(c) \cap w(f)$.
If $c^{2}(v)=i$, then $\left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq d(v)-i$.
$\left|N_{G_{f}}(v) \cap D_{f}(c)\right| \geq d(v)$ holds for every vertex $v \in V\left(G_{f}\right)-w(f)$.
(III) Definition of a coloring c formed by c_{1} and c_{2} : For a coloring $c \in$ $\left(\{\top, \perp\} \times\left\{0,1,2, \ldots, d^{*}\right\}\right)^{|w(f)|}$, we modify (P1)-(P5) as follows:
$\left(\mathrm{P} 1^{\prime}\right)$ For every $v \in X_{1} \cup X_{2} \cup X_{3}$ with $c^{1}(v)=\top\left(\right.$ resp., $\left.c^{1}(v)=\perp\right)$,
(a) If $v \in X_{1} \cup X_{3}$, then $c_{1}^{1}(v)=\top$ (resp., $c_{1}^{1}(v)=\perp$).
(b) If $v \in X_{2} \cup X_{3}$, then $c_{2}^{1}(v)=\top$ (resp., $\left.c_{2}^{1}(v)=\perp\right)$.
(P2') For every $v \in X_{4}, c_{1}^{1}(v)=\top\left(\right.$ resp., $\left.c_{1}^{1}(v)=\perp\right)$ if and only if $c_{2}^{1}(v)=\top$ (resp., $c_{2}^{1}(v)=\perp$).
(P3') For every $v \in X_{j}$ where $\left\{j, j^{\prime}\right\}=\{1,2\}$ and $D_{c_{1}, c_{2}}=\left\{v \in X_{1} \cup X_{2} \cup X_{3} \cup\right.$ $X_{4} \mid c_{1}^{1}(v)=\top$ or $\left.c_{2}^{1}(v)=\top\right\}$,

If $c^{2}(v)=i$, then $c_{j}^{2}(v)=\min \left\{d(v), i+\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{j^{\prime}}\right|\right\}$.
($\mathrm{P} 4^{\prime}$) For every $v \in X_{3}$,
If $c^{2}(v)=i$, then $c_{1}^{2}(v)=\min \left\{d(v), i+\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{2}\right|+i_{1}\right\}$ and $c_{2}^{2}(v)=\min \left\{d(v), i+\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{1}\right|+i_{2}\right\}$ for some nonnegative integers i_{1}, i_{2} with $i_{1}+i_{2}=\max \left\{0, d(v)-i-\mid D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap\left(X_{1} \cup\right.\right.$ $\left.\left.X_{2} \cup X_{3} \cup X_{4}\right) \mid\right\}$.
(P5') For every $v \in X_{4}$,

$$
c_{1}^{2}(v)=\min \left\{d(v),\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap X_{2}\right|+i_{1}\right\} \text { and } c_{2}^{2}(v)=\min \left\{d(v), \mid D_{c_{1}, c_{2}} \cap\right.
$$

$$
\left.N_{G_{f}}(v) \cap X_{1} \mid+i_{2}\right\} \text { for some nonnegative integers } i_{1}, i_{2} \text { with } i_{1}+i_{2}=
$$ $\max \left\{0, d(v)-\left|D_{c_{1}, c_{2}} \cap N_{G_{f}}(v) \cap\left(X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right)\right|\right\}$.

We analyze the time complexity of this modified algorithm. Similarly to the case of the vector domination, the total running time is dominated by total complexity for computing $A_{f}(c)$ for non-leaf edges f.

Let f be a non-leaf edge of T and $x_{i}, i=1,2,3,4$ and z_{4} be defined as the previous subsection. The number of pairs of a coloring c_{1} of $w\left(f_{1}\right)$ and a coloring c_{2} of $w\left(f_{2}\right)$ forming c is at most

$$
\left(d^{*}+1\right)^{x_{3}} \sum_{z_{4}=0}^{x_{4}}\binom{x_{4}}{z_{4}}\left(d^{*}+1\right)^{x_{4}}\left(d^{*}+1\right)^{x_{4}}
$$

since the number of pairs $\left(i_{1}, i_{2}\right)$ in ($\mathrm{P} 4^{\prime}$) or ($\mathrm{P} 5^{\prime}$) is at most $d^{*}+1$ for each vertex in $X_{3} \cup X_{4}$. Hence, for an edge f, the number of pairs forming c is at most
$\left\{2\left(d^{*}+1\right)\right\}^{x_{1}+x_{2}} \sum_{z_{3}=0}^{x_{3}}\binom{x_{3}}{z_{3}}\left(d^{*}+1\right)^{x_{3}}\left(d^{*}+1\right)^{x_{3}} \sum_{z_{4}=0}^{x_{4}}\binom{x_{4}}{z_{4}}\left(d^{*}+1\right)^{x_{4}}\left(d^{*}+1\right)^{x_{4}}$ $=\left\{2\left(d^{*}+1\right)\right\}^{x_{1}+x_{2}}\left\{2\left(d^{*}+1\right)^{2}\right\}^{x_{3}+x_{4}}$
in total. Since $x_{1}+x_{2}+x_{3} \leq b, x_{1}+x_{3}+x_{4} \leq b$, and $x_{2}+x_{3}+x_{4} \leq b$, it follows that $\left(x_{1}+x_{2}\right) \log \left(2 d^{*}+2\right)+\left(x_{3}+x_{4}\right) \log \left\{2\left(d^{*}+1\right)^{2}\right\}$ attains the maximum when $x_{1}=x_{2}=x_{4}=b / 2$ and $x_{3}=0$. Thus, it takes in $O\left(2^{3 b / 2}\left(d^{*}+1\right)^{2 b}\right)$ time to compute $A_{f}(c)$ for all colorings c of $w(f)$. Namely, we obtain the following theorem.

Theorem 2. If a branch decomposition of G with width b is given, a minimum total vector dominating set in G can be found in $O\left(2^{3 b / 2}\left(d^{*}+1\right)^{2 b} m\right)$ time.

Also, by replacing $N_{G}()$ with $N_{G}[]$ in the modification for total vector domination, we can obtain the following theorem for the multiple domination problems.

Theorem 3. If a branch decomposition of G with width b is given, a minimum multiple dominating set in G can be found in $O\left(2^{3 b / 2}\left(d^{*}+1\right)^{2 b} m\right)$ time.

4 Subexponential fixed parameter algorithm for planar graphs

We consider the problem of checking whether a given graph G has a d-vector dominating set with cardinality at most k. As mentioned in Subsection 1.1 if G is ρ-degenerated, then the problem can be solved in $k^{O\left(\rho k^{2}\right)} n^{O(1)}$ time. Since a planar graph is 5 -degenerated, it follows that the problem with a planar graph can be solved in $k^{O\left(k^{2}\right)} n^{O(1)}$ time. In this section, we give a subexponential fixedparameter algorithm, parameterized by k, for a planar graph; namely, we will show the following theorem.

Theorem 4. If G is a planar graph, then we can check in $O\left(n^{4}+\left(\min \left\{d^{*}, k\right\}+\right.\right.$ $\left.2)^{b^{*}}\left\{\left(\min \left\{d^{*}, k\right\}+1\right)^{2}+1\right\}^{b^{*} / 2} n\right)$ time whether G has a d-vector dominating set with cardinality at most k or not, where $b^{*}=\min \{12 \sqrt{k+z}+9,20 \sqrt{k}+17\}$ and $z=|\{v \in V \mid d(v)=0\}|$.

This time complexity is roughly $O\left(n^{4}+2^{O(\sqrt{k} \log k)} n\right)$, which is subexponential with respect to k; this improves the running time of the previous fixed-parameter algorithm.

Let $V_{0}=\{v \in V \mid d(v)=0\}$ and $z=\left|V_{0}\right|$. In [18, Lemma 2.2], it was shown that if a planar graph G^{\prime} has an ordinary dominating set (i.e., a $(1,1, \ldots, 1)$-vector dominating set) with cardinality at most k, then $b w\left(G^{\prime}\right) \leq 12 \sqrt{k}+9$. This bounds is based on the bidimensionality [14], and was used to design the subexponential fixed-parameter algorithm with respect to k for the ordinary dominating set problem. In the case of our domination problems, however, it is difficult to say that they have the bidimensionality, due to the existence of V_{0} vertices. Instead, we give a similar bound on the branchwidth not w.r.t k but w.r.t $k+z$ as follows: For any (total, multiple) d-vector dominating set D of $G(|D| \leq k), D \cup V_{0}$ is an ordinary dominating set of G, and this yields $b w(G) \leq 12 \sqrt{k+z}+9$.

Actually, it is also possible to exclude z from the parameters, though the coefficient of the exponent becomes larger. To this end, we use the notion of $(k, 2)$-center. Recall that a (k, r)-center of G^{\prime} is a set W of vertices of G^{\prime} with size k such that any vertex in G^{\prime} is within distance r from a vertex of W. For a (k, r)-center, a similar bound on the branchwidth is known: if a planar graph G^{\prime} has a (k, r)-center, then $b w\left(G^{\prime}\right) \leq 4(2 r+1) \sqrt{k}+8 r+1$ ([12, Theorem 3.2]). Here, we use this bound. We can assume that for $v \in V_{0}, N_{G}(v) \nsubseteq V_{0}$ holds, because $v \in V_{0}$ satisfying $N_{G}(v) \subseteq V_{0}$ is never selected as a member of any optimal solution; it is irrelevant, and we can remove it. That is, every vertex in V_{0} has at least one neighbor from $V-V_{0}$. Then, for any (total, multiple) d-vector dominating set D of $G(|D| \leq k), D$ is a $(k, 2)$-center of G. This is because any vertex in $V-V_{0}$ is adjacent to a vertex in D and any vertex in V_{0} is adjacent to a vertex in $V-V_{0}$. Thus, we have $b w(G) \leq 20 \sqrt{k}+17$.

In summary, we have the following lemma.

Lemma 5. Assume that G is a planar graph without irrelevant vertices, i.e., $N_{G}(v) \nsubseteq V_{0}$ holds for each $v \in V_{0}$. Then, if G has a (total, multiple) vector dominating set with cardinality at most k, then we have $b w(G) \leq \min \{12 \sqrt{k+z}+$ $9,20 \sqrt{k}+17\}$.

Combining this lemma with the algorithm in Subsection 3.1, we can check whether a given graph has a vector dominating set with cardinality at most k according to the following steps 1 and 2 :
Step 1: Let $b^{*}=\min \{12 \sqrt{k+z}+9,20 \sqrt{k}+17\}$. Check whether the branchwidth of G is at most b^{*}. If so, then go to Step 2, and otherwise halt after outputting ' NO '.

Step 2: Construct a branch decomposition with width at most b^{*}, and apply the dynamic programming algorithm in Subsection 3.1 to find a minimum vector dominating set for G.

By Lemma 1. Theorem 1 and the fact that any planar graph G^{\prime} satisfies $\left|E\left(G^{\prime}\right)\right|=O\left(\left|V\left(G^{\prime}\right)\right|\right)$, it follows that the running time of this procedure is $O\left(n^{4}+\left(d^{*}+2\right)^{b^{*}}\left\{\left(d^{*}+1\right)^{2}+1\right\}^{b^{*} / 2} n\right)$. Hence, in the case of $d^{*} \leq k$, Theorem 4 has been proved.

The case of $d^{*}>k$ can be reduced to the case of $d^{*} \leq k$ by the following standard kernelization method, which proves Theorem 4. Assume that $d^{*}>k$. Let $V_{\max }(d)$ be the set of vertices v with $d(v)=d^{*}$. For the feasibility, we need to select each vertex $v \in V_{\max }(d)$ as a member in a vector dominating set. Hence, if $\left|V_{\max }(d)\right|>k$, then it turns out that G has no vector dominating set with cardinality at most k. Assume that $\left|V_{\max }(d)\right| \leq k$. Then, it is not difficult to see that we can reduce an instance $I(G, d, k)$ with G, d, and k to an instance $I\left(G^{\prime}, d^{\prime}, k^{\prime}\right)$ such that $G^{\prime}=G-V_{\max }(d)$ (i.e., G^{\prime} is the graph obtained from G by deleting $\left.V_{\max }(d)\right), d^{\prime}(v)=\max \left\{0, d(v)-\left|N_{G}(v) \cap V_{\max }(d)\right|\right\}$ for all vertices $v \in V\left(G^{\prime}\right)$, and $k^{\prime}=\max \left\{0, k-\left|V_{\max }(d)\right|\right\}$. Based on this observation, we can reduce $I(G, d, k)$ to an instance $I\left(G^{\prime \prime}, d^{\prime \prime}, k^{\prime \prime}\right)$ with $\max \left\{d^{\prime \prime}(v) \mid v \in V\left(G^{\prime \prime}\right)\right\} \leq$ $k^{\prime \prime} \leq k$ or output 'YES' or 'NO' in the following manner:
(a) After setting $G^{\prime}:=G, d^{\prime}:=d$, and $k^{\prime}:=k$, repeat the procedures (b1)-(b3) while $k^{\prime}<d^{\prime *}\left(=\max \left\{d^{\prime}(v) \mid v \in V\left(G^{\prime}\right)\right\}\right)$.
(b1) If $k^{\prime}<\left|V_{\max }\left(d^{\prime}\right)\right|$, then halt after outputting 'NO.'
(b2) If $k^{\prime} \geq\left|V_{\max }\left(d^{\prime}\right)\right|$ and $V\left(G^{\prime}\right)=V_{\max }\left(d^{\prime}\right)$, then halt after outputting 'YES.'
(b3) Otherwise after setting $G^{\prime \prime}:=G^{\prime}-V_{\max }\left(d^{\prime}\right), d^{\prime \prime}(v):=\max \left\{0, d^{\prime}(v)-\right.$ $\left.\left|N_{G^{\prime}}(v) \cap V_{\max }\left(d^{\prime}\right)\right|\right\}$ for each $v \in V\left(G^{\prime \prime}\right)$, and $k^{\prime \prime}:=\max \left\{0, k^{\prime}-\left|V_{\max }\left(d^{\prime}\right)\right|\right\}$, redefine $G^{\prime \prime}, d^{\prime \prime}$, and $k^{\prime \prime}$ as G^{\prime}, d^{\prime}, and k^{\prime}, respectively.

Next, we consider the total vector domination problem and the multiple domination problem. For these problems, since all vertices $v \in V$ need to be dominated by $d(v)$ vertices, the condition that $d^{*} \leq k$ is necessary for the feasibility. Similarly, we have the following theorem by Theorems 2 and 3 .

Theorem 5. Assume that a given graph G is planar, and let $b^{*}=\min \{12 \sqrt{k+z}+$ $9,20 \sqrt{k}+17\}$.
(i) We can check in $O\left(n^{4}+2^{3 b^{*} / 2}\left(\min \left\{d^{*}, k\right\}+2\right)^{2 b^{*}} n\right)$ time whether G has a total vector dominating set with cardinality at most k or not.
(ii) We can check in $O\left(n^{4}+2^{3 b^{*} / 2}\left(\min \left\{d^{*}, k\right\}+2\right)^{2 b^{*}} n\right)$ time whether G has a multiple dominating set with cardinality at most k or not.

Before concluding this section, we mention that the above result can be extended to apex-minor-free graphs, a superclass of planar graphs. For apex-minor-free graphs, the following lemma is known.

Lemma 6. ([17, Lemma 2]) Let G be an apex-minor-free graph. If G has a (k, r)-center, then the treewidth of G is $O(r \sqrt{k})$.

From this lemma, the linear relation of treewidth and branchwidth, and the $2^{O(b w(G))} n^{2}$-time algorithm for computing a branch decomposition with width $O(b w(G))$ (mentioned after Theorem 1), we obtain the following corollary.

Corollary 2. Let G be an apex-minor-free graph. We can check in $2^{O(\sqrt{k} \log k)} n^{O(1)}$ time whether G has a (total, multiple) vector dominating set with cardinality at most k or not.

References

1. N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k restrictions. ACM Transactions on Algorithms (TALG), 2(2):153-177, 2006.
2. O. Amini, F. V. Fomin, and S. Saurabh. Implicit branching and parameterized partial cover problems. Journal of Computer and System Sciences, 77(6):11591171, 2011.
3. N. Betzler, R. Bredereck, R. Niedermeier, and J. Uhlmann. On bounded-degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1):5360, 2012.
4. H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth. In Automata, Languages and Programming, volume 1256 of Lecture Notes in Computer Science, pages 627-637. Springer, 1997.
5. L. Cai and D. Juedes. On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences, 67(4):789-807, 2003.
6. M. Chapelle. Parameterized complexity of generalized domination problems on bounded tree-width graphs. arXiv preprint arXiv:1004.2642, 2010.
7. F. Cicalese, G. Cordasco, L. Gargano, M. Milanič, and U. Vaccaro. Latencybounded target set selection in social networks. In The Nature of Computation. Logic, Algorithms, Applications, pages 65-77. Springer, 2013.
8. F. Cicalese, M. Milanic, and U. Vaccaro. Hardness, approximability, and exact algorithms for vector domination and total vector domination in graphs. In Fundamentals of Computation Theory, volume 6914 of Lecture Notes in Computer Science, pages 288-297. Springer Berlin Heidelberg, 2011.
9. F. Cicalese, M. Milanic, and U. Vaccaro. On the approximability and exact algorithms for vector domination and related problems in graphs. Discrete Applied Mathematics, 161(6):750-767, 2013.
10. B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Information and computation, 85(1):12-75, 1990.
11. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1):77-114, 2000.
12. E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms (TALG), 1(1):33-47, 2005.
13. E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM), 52(6):866-893, 2005.
14. E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic applications. The Computer Journal, 51(3):292-302, 2008.
15. G. Dobson. Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Mathematics of Operations Research, 7(4):515-531, 1982.
16. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness. Cornell University, Mathematical Sciences Institute, 1992.
17. F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algorithms for partial cover problems. Information Processing Letters, 111(16):814-818, 2011.
18. F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM Journal on Computing, 36(2):281-309, 2006.
19. J. Harant, A. Pruchnewski, and M. Voigt. On dominating sets and independent sets of graphs. Combinatorics, Probability and Computing, 8:547-553, 101999.
20. F. Harary and T. W. Haynes. Double domination in graphs. Ars Combinatoria, 55:201-214, 2000.
21. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in graphs: advanced topics, volume 40. Marcel Dekker New York, 1998.
22. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in graphs. Marcel Dekker, 1998.
23. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.
24. C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM (JACM), 41(5):960-981, 1994.
25. V. Raman, S. Saurabh, and S. Srihari. Parameterized algorithms for generalized domination. In Combinatorial Optimization and Applications, pages 116-126. Springer, 2008.
26. N. Robertson and P. D. Seymour. Graph minors. X. obstructions to treedecomposition. Journal of Combinatorial Theory, Series B, 52(2):153-190, 1991.
27. N. Robertson and P. D. Seymour. Graph minors. XIII. the disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65-110, 1995.
28. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994.
