New Bounds for Online Packing LPs*

Matthias Englert!, Nicolaos Matsakis!, and Marcin Mucha?

! DIMAP and Dept. of Computer Science, University of Warwick,
{M.Englert,N.Matsakis}@warwick.ac.uk.
2 Institute of Informatics, University of Warsaw, mucha@mimuw.edu.pl

Abstract. Solving linear programs online has been an active area of
research in recent years and was used with great success to develop new
online algorithms for a variety of problems. We study the setting in-
troduced by Ochel et al. as an abstraction of lifetime optimization of
wireless sensor networks.

In this setting, the online algorithm is given a packing LP and has to
monotonically increase LP variables in order to maximize the objective
function. However, at any point in time, the adversary only provides an
a-approximation of the remaining slack for each constraint. This is de-
signed to model scenarios in which only estimates of remaining capacities
(e.g. of batteries) are known, and they get more and more accurate as
the remaining capacities approach 0.

Ochel et al. (ICALP’12) gave a O(ln a/a)-competitive online algorithm
for this online packing LP problem and showed an upper bound on the
competitive ratio of any online algorithm, even randomized, of O(1/v/).
We significantly improve the upper bound and show that any determin-
istic online algorithm for LPs with d variables is at most O(d*a!/?/a)-
competitive. For randomized online algorithms we show an upper bound
of O(m?a!/™/a) for LPs with m™ ™ variables. For LPs with suffi-
ciently many variables, these bounds are O(In? /), nearly matching
the known lower bound.

On the other hand, we also show that the known lower bound can be sig-
nificantly improved if the number of variables in the LP is small. Specif-
ically, we give a deterministic ©(1/+/a)-competitive online algorithm for
packing LPs with two variables. This is tight, since the previously known
upper bound of O(1/+/a) still holds for 2-dimensional LPs.

1 Introduction

In recent years, there has been great interest in methods for solving linear pro-
grams online, mainly to facilitate the development of new online algorithms with
improved competitive guarantees. Buchbinder and Naor [3] give a general on-
line primal-dual approach to (approximately) solve the following type of packing
(and the dual covering version) linear program online.

* The first and second author are supported by the Centre for Discrete Math-
ematics and its Applications (DIMAP), University of Warwick, EPSRC award
EP/D063191/1. The third author is supported by NCN grant N N206 567940.

2 Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

The underlying packing LP is of the form

max bixzy + ...+ bgxyg
1 c1
subject to Al | <
Zq Cm
T1,...,84 >0,

where A is matrix with non-negative entries, and all b; and ¢; are positive.

In the online version, an online algorithm plays against an adversary which
only reveals entries of b and A online. More specifically, the online algorithm
is only allowed to increase variables, not decrease them. The algorithm also
must guarantee that all LP constraints are satisfied. The vector c is given to
the algorithm upfront, but b and A are initially hidden. The adversary then
successively reveals all coefficients of a variable x; at a time of its choosing, i.e.,
in round j, b; and, for all ¢, A;; are revealed to the online algorithm. The goal
is to maximize the objective function b7 .

The primal-dual technique by Buchbinder and Naor and their extensions have
been applied with great success to develop new improved online algorithms for a
variety of online problems, among them the k-server problem [2] and generalized
caching [1].

Ochel, Radke, and Vocking [5] introduce a related model in which b and A are
initially given to the online algorithm and instead c is only gradually revealed.
At each point in time, the adversary reveals a vector ¢¢, which can be seen as
the current right hand side values of the LP, and the online algorithm responds
by increasing variables x;. The algorithm may never decrease a variable and has
to ensure that the constraint Az < ¢! is satisfied. This is not possible without
imposing further restrictions on £!. Therefore we require that

1. The revealed ¢! are (component wise) lower bounds on ¢, i.e., ¢! < c.

2. If z is the current online solution, the next revealed vector ¢! has to satisfy
(c— Az) < a(lt — Az).

In other words, the remaining slacks of constraints, if £ is taken as the right
hand side, are an a-approximation of the remaining slacks with respect to the
true right hand side c¢. We call ¢! — Az the revealed remaining slacks and ¢ — Ax
the true remaining slacks and study the performance of online algorithms in
dependence of the problem parameter c.

Ochel et al. [5] give the problem of lifetime optimization in wireless sensor
networks as a motivating application (see, e.g., [4]). There, the right hand sides
of the constraints correspond to battery lifetimes of sensors. We only know the
lower bounds on the remaining lifetimes, but the true values are always within
a fixed factor of the revealed values. Given this information, we need to choose
among a set of broadcasting scenarios in a way that maximizes the number of
broadcasts performed before empty batteries prevent any further broadcasts.

New Bounds for Online Packing LPs 3

1.1 Our results

Ochel et al. [5] give a O(In a/a)-competitive online algorithm for their online
packing LP problem and show an upper bound on the competitive ratio of any
online algorithm, even randomized, of O(1/+y/a).

We significantly improve the upper bound. For LPs involving d or more
variables we show an upper bound of O(d?a'/?/a) on the competitive ratio of
any deterministic algorithm. At the cost of increasing the number of variables,
we obtain a similar bound on the competitive ratio of any randomized algorithm
against an oblivious adversary. With m!™ ™l or more variables we construct
an upper bound of O(m2?a/™ /).

For d = 2(In) in the case of deterministic algorithms and d = 2(a™®" in
the case of randomized algorithms, this results in an upper bound of O(In? a/cv),
which nearly matches the known lower bound by Ochel et al.

However, we also demonstrate that the achievable competitive ratio crucially
depends on the number of variables d in the LP. We give a simple ©(1//a)-
competitive deterministic online algorithm that beats the general upper bound
of O(In® /) for LPs only involving two variables. This is tight, since the pre-
viously known general upper bound of O(1/y/a) still holds for 2-dimensional
LPs.

The paper is organized as follows. In Section 2 we give the upper-bound
on the competitive ratio achievable by deterministic algorithms. The techniques
developed in the process are then extended in Section 3 to handle randomized
algorithms. In Section 4 we describe and analyze an O(1/y/a)-competitive al-
gorithm for 2-dimensional LPs. We end with conclusions and open problems in
Section 5.

2 Deterministic upper bound

In this section, we describe our upper bound construction and prove the following
theorem.

Theorem 1. The competitive ratio of any deterministic online algorithm is at
most O(d*a*/?/a), for LPs involving d or more variables.

Note that the bound in the claim above is minimized for d = ©(ln «). Using this
value, gives us the following corollary.

Corollary 1. The competitive ratio of any deterministic online algorithm is at
most O(In* a/a).

We proceed with the construction of the adversary to prove Theorem 1.
The construction will use exactly d variables. The theorem follows since any
additional variables z441,Z4+2,- .. can be made irrelevant by adding constraints
of the form z441 < 0,2442 <0, ...

The basic idea behind our construction is to present an LP to the online
algorithm that is completely symmetric. Once the online algorithm has increased

4 Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

some variable x; so much that the revealed remaining slacks of some constraints
become small, the adversary decides that these are exactly the constraints for
which the revealed right hand sides were already quite close to the true right
hand sides. As a consequence, z; cannot be increased much further in the future
and the online algorithm is, more or less, left with a similarly constructed input
for the remaining d — 1 variables.

The initial linear program presented to the online algorithm is

d—1
max x;
i=0
d—1
V permutations 7 : at/t. Tr(s) S @
i=0
Loy XL1ye-yLd—1 Z 0 .

The adversary maintains a set of active constraints and a set of active vari-
ables. Initially all d! constraints and all d variables are active.

The adversary proceeds in d rounds numbered d — 1,d — 2,...,0. Round r
ends in the first step in which there exists an active constraint with a revealed
remaining slack of at most o’/?¢. At the end of a round, the adversary does the
following:

— Determine the index k, of an active variable of maximum value among the
active variables.

— Increase the right hand side of all active constraints that do not correspond
to permutations with 7(r) = &, to a-a’/%. Note that this is possible, i.e., this
does not violate the condition that revealed remaining slacks always have to
be an a-approximation of the true remaining slacks, since before this point
in time, all constraints have a revealed remaining slack of at least a//?.

— Remove all these constraints from the set of active constraints.

— Remove the variable with index k, from the set of active variables.

Remark 1. It might happen that the online algorithm ends its execution before
all rounds are completed. In this case, the adversary still executes the steps
above (without waiting for slacks of constraints to trigger the next round).

We start our proof with two easy observations. At the end of round r, we
remove all constraints with 7(r) # k, from the set of active constraints. Since
round numbers are decreasing, we have the first observation.

Observation 2 A permutation 7 corresponds to a constraint active in round r
iff m(s) = ks for all s > r.

Let z} be the value of the variable z; at the end of round r, for i,r €
{0,...,d — 1}. Since for non-negative numbers a; > as > ... and non-negative
numbers b;, > a; - br(i) is maximized if by(1) > br2) > ... we get the second
observation.

New Bounds for Online Packing LPs 5

Observation 3 Let r = 0,...,d — 1 be a round. Also, let w be a permutation
corresponding to a constraint active in round v and such that

Tr(r) 2 Tr(ro1) 2 -+ 2 Tr(0):

Note that such a permutation exists due to Observation 2. Then, the constraint
corresponding to ™ has the smallest revealed remaining slack among all permu-
tations active in round r.

For any r = 0,...,d — 1, let m,. be the permutation corresponding to the
constraint that causes round r to end. Due to Observation 3,

T (1) Z Trp(r-1) 2 -+ 2 T (0)
and therefore, we may assume without loss of generality that m.(r) = k.

Lemma 1. For any round r < d — 1 we have

r r+1
Trn(@) Z Lo (4)

foranyi=0,...,d—1

Proof. Due to Observation 2, we have 7, (i) = m,41(¢) = k; for i > r+1 since the
constraints corresponding to 7, and 7,1 are both active in rounds d—1, ..., r+1.
Since (i) is also active in round r and 7w,41(r + 1) = ky11, we also have
7 (i) = mr41(8) = k; for i = r + 1. Variables can only increase, this implies for

1 >r+1, xfwﬂ(i) =}, > m;fl = x::jl(i).

It remains to prove the lemma for ¢ < r. Again because 7, (i) = m,41(i) = k;
for i > r + 1, the sequence mp11(r + 1), mpy1(r),...,m41(0) is a permuta-
tion of the sequence m.(r + 1), 7.(r), ..., m-(0). Therefore, the sets of variables
{Tr i rg1)s o Ty 0)) @d {T7 (rg1)s -+ T (0)} are identical. Hence, since

variables can only increase, the sequence

Tt 1) 2 L) 2+ 2 T2 (0)

is obtained from
r+1 r+1 r+1
L pa (r41) = Lt (r) Z 2 L1 (0)
by increasing the values of some variables and rearranging the sequence so that
it is sorted. The claim follows. O

We can now show the key lemma.
Lemma 2. For anyr € {0,...,d—1} and i <7, we have x_) < (d — r)al/d,

Proof. We use downward induction on r. The claim is clear for » = d — 1, since
during round d — 1 all constraints still have right hand sides equal to « and for

any variable x; there is a constraint that contains this variable with a coefficient
of a*~1/4,

6 Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

Consider now any round r < d — 1. We have

d—1 d—1 d—1
i/d v _ i/d r+1 i/d | r _ o+l
Z R MO Z T G T Z @ (%m “"mm) :
i=0 i=0 i=0
The first sum is lower bounded by a — "1/ by the definition of 7. More-
over, by Lemma 1 we have x;T(i) > x;tll(i) for any i =0,...,d — 1. Therefore
d—1 d—1
i/d .r _ (r+1)/d i/d r _ o+l
Z Q xﬂ,'\(i) Za—« + Z « ('x‘m\(i) wa+1(i)) :
i=0 i=0

with all the terms in the right sum being non-negative. Since the constraint
corresponding to 7, is active and feasible in round r, the left hand side is upper-
bounded by «. By ignoring all terms except the one corresponding to ¢ = r in
the sum of the right hand side we obtain

r T+ alrth/ r+1 1/d 1/d
‘Tﬂ'r(T) < wa+1(T) + W = IWT+1(T) +« < (d — ’I“)oz ,
where the last inequality follows from induction.
The claim for T) with ¢ < r follows as well, since o) S Sh S

(d—r)at/? 0

Lemma 3. After the online algorithm terminates we have x; = O(dal/d) for
alli=0,...,d—1.

Proof. Let r be the last round that is fully performed. Consider any permutation
7 corresponding to a constraint that is active when the algorithm ends. From
Observation 2 we know that these are exactly the constraints satisfying m(¢) = k;
for all t > r. Choose one such 7 so that it also satisfies

Lr(r—1) > Lr(r—2) > 2 Lr(0)>

where x; is the final value of a variable.

We will first prove the claim for variables that are not active when the algo-
rithm ends. Any such variable has index k; = m(t) = m(¢) for some ¢t > r. We
have

d—1

i/d t t/d
>t za—alt,
1=0

and similarly to the reasoning in the the proof of Lemma 2 we can argue that

t/d

< (d—t)at/? 4 1.

t
Tk Sxkt"’W—

Consider now the variables that are still active when the algorithm ends, i.e.
Tr(;) for i < r. It is enough to prove the claim for x(,._1), since it is the largest

one. We have
d—1

Zai/d~xT ()ZOéfOér/d,

7 (1

New Bounds for Online Packing LPs 7
and again using the reasoning from the proof of Lemma 2 we get that

ar/d
Lr(r—1) <

N sy yr (d—r)at+ o= (d—-r+1)a/? O

It remains to show a lower bound on the profit an optimal offline strategy
can achieve.

Lemma 4. An optimal offline algorithm can obtain a profit of a.

Proof. An offline algorithm can set zj, to o and all other variables to 0. This
solution is feasible.

For any ¢ > 1, consider any of the (d — 1)! constraints in which zg, has a
coefficient of o/?. In other words, a constraint corresponding to a permutation
with 7(7) = ko. Such a constraint becomes inactive by the end of round 4 the
latest, since 7(i) = ko # k;. Due to the adversary’s strategy this means that,
once the constraint becomes inactive, the right hand side increases to at least
a - o/ and therefore the constraint is satisfied.

Constraints in which the coefficient of xy, is 1 are clearly satisfied as well,
since the right hand side of all constraints is at least «. O

By combining Lemma 3 and Lemma 4 we obtain Theorem 1.

3 Randomized upper bound

The upper bound on the competitive ratio of randomized online algorithms
against oblivious adversaries is based on the construction from the previous
section and uses a technique that is, at least implicitly, also used by Ochel et
al. [5]. Recall that each round ends when the slack of at least one active con-
straint drops below a certain threshold value. The adversary then identifies the
offending (i.e. largest) active variable and renders all constraints, except for those
in which this variable appears with a certain coefficient, irrelevant. This is done
by increasing the right hand side of these constraints sufficiently. The offending
variable becomes inactive and cannot be further increased by much anymore.

To obtain our upper bound on randomized algorithms, we use the stan-
dard approach based on Yao’s min-max principle; instead of proving bounds
for randomized algorithms, we construct a distribution on the inputs that (in
expectation) foils any deterministic algorithm.

Technical issues. Our previous problem description involves a constant interac-
tion between the online algorithm and an adversary; each increase of LP vari-
ables by the algorithm is followed by an update of the right hand sides of the
LP constraints by the adversary.

In order to define oblivious adversaries, we need to remove this interaction
and allow the adversary to specify its complete behavior upfront. For this, the
input consists, as before, of a packing LP whose constraints are given by Ax <
c. Additionally, for each constraint i, an adversary specifies a monotonically

8 Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

increasing function £;()\;) of the left hand side of the constraint \; := (Ax);.
This function models the right hand side of the constraint in dependence of the
current value of the left hand side. The function has to satisfy ¢;()\;) = ¢; for
N > and ¢ — N\ < a(&()\z) —)\1) for \; < ¢;.

If \; is the current value of the left hand side of the i-th constraint, the online
algorithm does know all values of ¢;(z) for z < A; but does not know any values
for z > \;.

Note that we only need basic threshold functions to construct the deter-
ministic upper bound from the previous section. Define functions f;()), for

j€0,d—1], as
N e A< a—alld
1) = alFild N> o — qild

The LP is the same as the one in the previous section. The monotonically
increasing function assigned to a constraint that corresponds to permutation m,
is f, if r is the largest integer such that 7(r) # k. (Recall that k, is the index
of the largest active variable at the end of round r.) If no such integer exist, fq
is assigned to the constraint.

This way we can achieve the same upper bound as in the previous section,
but with an explicit, predefined behavior of the adversary. Two things need to
be noted here. First of all, in order to actually foil an online algorithm with a
fixed adversary one needs to know the k, values. Therefore, we might need a
different fixed adversary for different algorithms. Second, even if we do know the
k, values, the resulting adversary is not identical to the one from the previous
section. Adversaries from the previous section always increase the right-hand
sides of constraints as soon as they know what their final values should be. The
adversaries defined here delay the increase (almost) as long as possible. However,
it can be easily verified that the bound of Theorem 1 still holds, as long as the
adversary is built with the correct k,. values.

Parallel adversaries. In the construction of the previous section, the order in
which the variables become inactive defines a permutation 7, of {0,...,d — 1}.
In other words, if the variable with index k, becomes inactive in round r we
have 7,(r) = ky..

Consider an adversary that acts in exactly the same way as before, but it
guesses the permutation 7, and proceeds as if the variables would actually be-
come inactive in this order. If the adversary guesses correctly, the construction
works as intended and the algorithm can only obtain a value of O(d2a1/), while
the optimum value is «. If the adversary chooses the permutation uniformly at
random, the success probability is 1/(d!), i.e., with this probability we achieve
the same upper bound as in the previous section. However, if the adversary
guesses incorrectly the algorithm can perform better than O(d?a'/?), perhaps
even obtain a value of «, while the optimal value remains a. We are not going
to attempt to analyze the average performance of an algorithm in this setting.
Instead, we will increase the success probability for the adversary from 1/(d!) to
about 1 —1/a.

New Bounds for Online Packing LPs 9

The idea is to have K adversaries with random m, sequences working in
parallel and require the algorithm to beat all of them, for some sufficiently large
K. This is done as follows. Suppose we want to have K d-dimensional adversaries.
We construct a packing program with d¥ variables {Ziy, i]0 <dpy...jig <
d — 1}. The objective function is the sum of all variables.

For the k-th adversary, we add d! constraints to the LP. The constraints have
the same form as the ones in the previous section but instead of variables x; the

variables are
k. E X .
l'j T Liq,...ix

(41 yeenyine)i =3

For each adversary k, a permutation 7 of {0,...,d — 1} is chosen indepen-
dently and uniformly at random and the functions f, are randomly assigned to
constraints based on this permutation as described earlier.

Note that, for any adversary k, the objective function is

d—1
k
E : Liq,.ix :E Ly -
0<in, iz <d—1 i=0

d—1
=075

We now allow the online algorithm to increase x;“ directly instead of in-
creasing the underlying z;,, . ;, variables. Note that, in reality, the algorithm

cannot increase the x? variables completely independently of each other, since

Therefore the objective function is also equal to ming »

increasing one of the underlying x;, . ., variables always affects multiple xf
variables. However, allowing the algorithm to directly and individually increase
:C;“ variables can only give the online algorithm more power.

This completes the construction of an input that combines K adversaries
from the previous section, each of them independently guessing a random order
in which variables becomes inactive. The profit of the online algorithm against
one of the adversaries is bounded by O(d?a!'/?) with probability 1/(d!) (namely
if the adversary guessed the correct permutation) and by a otherwise.

The total profit of the online algorithm is bounded by the minimum profit the
algorithm achieves against any of the K adversaries. By choosing K = [d!In /]
we get that the expected overall profit of the online algorithm is bounded by

(1 - l)Ka + (1 - (1 - i)K)O(dzal/d) = 0(d2a?) .

d! d!

The optimal profit is always a. To see this set @, (0),....xx (0) = @ and all other
variables to 0. Consider the constraints that belong to the k-th adversary. Then
:E;‘”' is equal to « for j = 7%(0) and 0 otherwise. This is exactly the feasible solution
from Lemma 4, applied to the constraints of the k-th adversary. Altogether, this

gives the desired theorem.

Theorem 4. The competitive ratio of any randomized online algorithm against
an oblivious adversary is at most O(mQal/m/a) for LPs involving m!™ Ml
variables.

10 Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

4 Tight lower bound for two dimensions

In this section we give a simple deterministic ©(1/1/a)-competitive algorithm
for packing linear programs involving two variables z; and 5.

For convenience, in a first step, the algorithm normalizes variables such that
the objective function is z; 4+ x2 instead of the more general form byx, + boxo,
with positive b1 and by. For this we divide all entries a;; of the constraint matrix
by b;. This does not change the profit of an optimal solution. In fact, an increase
of ; by € in the normalized LP exactly corresponds to an increase of x; by €/b;
in the old LP. Both of these increases would increase the objective function of
the respective LP by the same amount, namely €.

Now, let 2*(z) = (23(2),25(2)) denote an optimal solution of the linear
program where the capacities, that is, the right hand sides of constraints, are
given by the vector z. Let = (x1,z2) be the current online solution.

At time ¢, our algorithm ALG, which uses a parameter v, does the following:

1. If any constraint is tight, STOP.
2. Else if z}(¢") > x17, increase z; infinitesimally.

3. Else if z3(¢") > x97, increase z2 infinitesimally.
4. Else, STOP.

Theorem 5. For v =1+ 1/\/a, the optimum profit is at most (v/a + 1) times
the profit obtained by ALG.

Proof. Let o’ = (), %) indicate the point where ALG stops. Since ALG will
either stop due to Step 1 or Step 4, we distinguish these two cases:

ALG stops due to Step 1. There is a tight constraint k. Let us write this
constraint as ajzy + aswe < fi. Since (¢ — Az) < a(f' — Ax), this implies
a1y + asxh = c.

Assume, without loss of generality, that a; > as. Then, the optimum profit
can be at most ¢ /as.

For every point in time ¢, 2*(¢") has to satisfy ajx}(€") + agx} (') < 4 < cg.
Therefore, x3 (") < ¢ /ay. Additionally, since ALG increases variable z; only if
z1y < 2 (0%) < cp/aq, it holds o) < c¢/(a1y). But since a1z + asxh = cx, we
obtain agzh = ¢ — ajxy > (1 —1/7)c.

Therefore, the profit of ALG is at least (1 — 1/7)ck/az. Since the optimum
profit is at most ¢ /as and with v =1+ 1/y/«, the profit of ALG is at least a a
1/(y/a + 1) fraction of the optimum profit.

ALG stops due to Step 4. In this case, by the choice of the stopping condition,
i (0 < zfvy and z5(¢') < xb7y. Adding the two inequalities, we get |z'y|; >
[l (€°)]]1-

New Bounds for Online Packing LPs 11

Since (¢ — Az) < a(ft — Ax), we have ¢! > ((a — 1) Az + ¢) /a.. Hence,
2"yl > [l=* (€)llx

> [l (),
> (1= 2o (a2 s + 10

1 x*(c
« (0%

The second inequality follows from the fact that ¢! > ((a — 1)Az + ¢)/o;
therefore the polytope defined by setting the capacity vector to ((a—1)Az+c)/«
is enclosed by the polytope defined by setting the capacity vector to £¢. The last
inequality follows from the fact that point z’ is a feasible solution if the capacities
are set to Az’

Solving for o/ gives 2/l > [l*(c) |1 /(a7 — a + 1) = [lo*(c) |/ (va + 1),
showing again that the optimum profit cannot be greater than (y/a + 1) times
the profit of ALG. O

5 Conclusions

Although we significantly narrow the gap between lower and upper bound for
this online LP problem the obvious open question whether it is possible to beat
the competitive ratio of £2(In” a/a) in general, either with a randomized or even
with a deterministic algorithm, remains.

Our new bounds also suggest that it is interesting to study the influence of
the number of variables d in the LP on the achievable competitive ratio. We
would be interested in bounds that are tight for any fixed number of variables,
not just when the number of variables is very large.

This is further emphasized by the fact that, if d is very large, there seems
little difference in the power of randomized and deterministic online algorithms.
However, taking d into account and considering the particular interesting case of
moderately large values of d, randomization has the potential to greatly improve
performance. It is, for instance, easy to see that the algorithm that picks one
of the d variables uniformly at random and increases that variable until a con-
straint becomes tight is 1/d-competitive. Take for example d = 2, where this is a
significant improvement over the @(1/+/a) competitive ratio deterministic algo-
rithms can achieve. In fact, this trivial randomized algorithm beats the general
deterministic upper bound as long as, say, d < ¢/a/2.

Another interesting question is whether our upper bound construction can
be realized by some natural combinatorial packing problem.

References

1. Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Réacke. An O(log k)-
competitive algorithm for generalized caching. In Proceedings of the 28rd ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1681-1689, 2012.

12

Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

. Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A poly-

logarithmic-competitive algorithm for the k-server problem. In Proceedings of the
52nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 267—
276, 2011.

Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and
packing. Mathematics of Operations Research, 34(2):270-286, 2009.

Gruia Calinescu, Sanjiv Kapoor, Alexander Olshevsky, and Alexander Zelikovsky.
Network lifetime and power assignment in ad hoc wireless networks. In Proceedings
of the 11th European Symposium on Algorithms (ESA), pages 114-126, 2003.
Marcel Ochel, Klaus Radke, and Berthold Vocking. Online packing with gradually
improving capacity estimations and applications to network lifetime maximization.
In Proceedings of the 89th International Colloguium on Automata, Languages and
Programming (ICALP), pages 648-659, 2012.

