Skip to main content

Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Abstract

We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k th power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in the sense that the former has an n 1 − ε hardness while the latter admits a \((1+1/\varDelta)\)-approximation algorithm, where \(\varDelta\) is the maximum degree of a graph. However, vertex coloring becomes easier (can be \(O(\sqrt{n})\)-approximated) for k = 2 while edge coloring seems to become much harder (no known O(n 1 − ε)-approximation algorithm) for k ≥ 2.

In this paper, we make a progress towards closing the gap for the edge coloring problems in the power of graphs. First, we confirm that edge coloring indeed becomes computationally harder when k > 1: we prove a hardness of n 1/3 − ε for k ∈ {2, 3} and n 1/2 − ε for k ≥ 4 (previously, only NP-hardness for k = 2 is known). Our techniques allow us to derive an alternate proof of vertex coloring hardnesses as well as the hardness of maximum clique and stable set (a.k.a. independent set) problems on graph powers. These results rely on a common simple technique of proving bounds via fractional coloring, which allows us to prove some new bounds on graph products. Finally, we finish by presenting the proof of Erdös and Nešetřil conjecture on cographs, which uses a technique different from other results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnarsson, G., Greenlaw, R., Halldrsson, M.M.: On powers of chordal graphs and their colorings. Congr. Numer. 144, 41–65 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. SIAM J. Discrete Math. 16(4), 651–662 (2003), also in SODA 2000

    Google Scholar 

  3. Alon, N., Mohar, B.: The chromatic number of graph powers. Combinatorics, Probability & Computing 11(1), 1–10 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Barrett, C.L., Istrate, G., Vilikanti, A.K., Marathe, M., Thite, S.V.: Approximation algorithms for distance-2 edge coloring. Tech. rep., Los Alamos National Lab., NM, US (2002)

    Google Scholar 

  5. Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S., Istrate, G.: Strong edge coloring for channel assignment in wireless radio networks. In: PerCom Workshops, pp. 106–110 (2006)

    Google Scholar 

  6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited: Tight approximation hardness of induced matching, poset dimension and more. In: SODA, pp. 1557–1576 (2013)

    Google Scholar 

  7. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: Connections and tight (subexponential time) approximation hardnesses. In: FOCS (2013)

    Google Scholar 

  8. Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006), preliminary version in FCT 2003

    Google Scholar 

  9. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010), http://diestel-graph-theory.com/

    Book  Google Scholar 

  10. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum induced matching problem. J. Discrete Algorithms 3(1), 79–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erickson, J., Thite, S., Bunde, D.P.: Distance-2 edge coloring is NP-complete. CoRR abs/cs/0509100 (2005)

    Google Scholar 

  12. Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: Induced matchings in bipartite graphs. Discrete Math. 78(1-2), 83–87 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: The strong chromatic index of graphs. Ars. Combin. 29B, 205–2011 (1990)

    MATH  Google Scholar 

  14. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: CCC, pp. 278–287 (1996)

    Google Scholar 

  15. Halldórsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discrete Appl. Math. 99(1-3), 39–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Håstad, J.: Clique is hard to approximate within n 1 − ε. In: FOCS, pp. 627–636 (1996)

    Google Scholar 

  17. Hell, P., Raspaud, A., Stacho, J.: On injective colourings of chordal graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 520–530. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Hocquard, H., Valicov, P.: Strong edge colouring of subcubic graphs. Discrete Appl. Math. 159(15), 1650–1657 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kaiser, T., Kang, R.J.: The distance-t chromatic index of graphs. Combinatorics, Probability and Computing 23, 90–101 (2014), http://journals.cambridge.org/article_S0963548313000473

    Article  MATH  Google Scholar 

  20. Kang, R.J., Manggala, P.: Distance edge-colourings and matchings. Discrete Applied Mathematics 160(16-17), 2435–2439 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Král, D.: Coloring powers of chordal graphs. SIAM J. Discrete Math. 18(3), 451–461 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approximation algorithms for channel assignment in radio network. Wireless Networks 7(6), 575–584 (2001)

    Article  MATH  Google Scholar 

  23. Laekhanukit, B.: Parameters of two-prover-one-round game and the hardness of connectivity problems. To appear in SODA 2014 (2014)

    Google Scholar 

  24. Lloyd, E.L., Ramanathan, S.: On the complexity of distance-2 coloring. In: ICCI, pp. 71–74 (1992)

    Google Scholar 

  25. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383 (1975), http://www.sciencedirect.com/science/article/pii/0012365X75900588

    Article  MATH  MathSciNet  Google Scholar 

  26. Mahdian, M.: The strong chromatic index of graphs. Master’s thesis, University of Toronto (2000)

    Google Scholar 

  27. Mahdian, M.: On the computational complexity of strong edge coloring. Discrete Appl. Math. 118(3), 239–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. McCormick, S.: Optimal approximation of sparse hessians and its equivalence to a graph coloring problem. Math. Program. 26, 153–171 (1983), http://dx.doi.org/10.1007/BF02592052 , doi:10.1007/BF02592052

    Article  MATH  MathSciNet  Google Scholar 

  29. Misra, J., Gries, D.: A constructive proof of vizing’s theorem. Information Processing Letters 41(3), 131–133 (1992), http://www.sciencedirect.com/science/article/pii/002001909290041S

    Article  MATH  MathSciNet  Google Scholar 

  30. Molloy, M.S.O., Reed, B.A.: A bound on the strong chromatic index of a graph. J. Comb. Theory, Ser. B 69(2), 103–109 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks. IEEE/ACM Trans. Netw. 1(2), 166–177 (1993), also in SODA 2000

    Google Scholar 

  32. Togni, O.: Strong chromatic index of products of graphs. Discrete Math. Theor. Comput. Sci. 9(1) (2007)

    Google Scholar 

  33. Zito, M.: Induced matchings in regular graphs and trees. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 89–100. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  34. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chalermsook, P., Laekhanukit, B., Nanongkai, D. (2014). Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics