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Abstract. Let P, and C, denote a path on t vertices and a cycle on ¢ vertices, respectively.
In this paper we study the k-coloring problem for (P, C¢)-free graphs. Maffray and Morel, and
Bruce, Hoang and Sawada, have proved that 3-colorability of Ps-free graphs has a finite forbid-
den induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and Vatshelle
have shown that k-colorability of Ps-free graphs for k > 4 does not. These authors have also
shown, aided by a computer search, that 4-colorability of (Ps,Cs)-free graphs does have a fi-
nite forbidden induced subgraph characterization. We prove that for any k, the k-colorability of
(Ps, Ca)-free graphs has a finite forbidden induced subgraph characterization. We provide the
full lists of forbidden induced subgraphs for £k = 3 and k£ = 4. As an application, we obtain
certifying polynomial time algorithms for 3-coloring and 4-coloring (Ps, C4)-free graphs. (Poly-
nomial time algorithms have been previously obtained by Golovach, Paulusma, and Song, but
those algorithms are not certifying; in fact they are not efficient in practice, as they depend on
multiple use of Ramsey-type results and resulting tree decompositions of very high widths.) To
complement these results we show that in most other cases the k-coloring problem for (P, C¢)-
free graphs is NP-complete. Specifically, for £ = 5 we show that k-coloring is NP-complete for
(P, Cs)-free graphs when k > 4 and ¢ > 7; for £ > 6 we show that k-coloring is NP-complete for
(P, Cp)-free graphs when k > 5, ¢t > 6; and additionally, for £ = 7, we show that k-coloring is
also NP-complete for (P:, C'7)-free graphs if k = 4 and ¢ > 9. This is the first systematic study of
the complexity of the k-coloring problem for (P;, C¢)-free graphs. We almost completely classify
the complexity for the cases when k > 4,¢ > 4, and identify the last three open cases.

1 Introduction

Since the k-coloring problem is known to be NP-complete for any fixed k& > 3, there has been consid-
erable interest in studying restrictions to various graph classes. For instance the k-coloring problem
is polynomially solvable for perfect graphs, since a perfect graph is k-colorable if and only if it has no
subgraph isomorphic to Ki11. (In fact the chromatic number of perfect graphs can also be computed
in polynomial time [I4].) One type of graph class that has been given wide attention in recent years is
the class of H-free graphs, for various graphs H [3J4T2[T5|24I29]. For example, if H contains a cycle,
then k-coloring is NP-complete for H-free graphs. This follows from the fact, proved by Kaminski and
Lozin [19] and independently Krél, Kratochvil, Tuza, and Woeginger [20], that, for any fixed k > 3
and g > 3, the k-coloring problem is NP-complete for the class of graphs of girth at least g. Similarly,
if H is a forest with a vertex of degree at least 3, then k-coloring is NP-complete for H-free graphs;
this follows from [I7] and [22]. Combining these results we conclude that k-coloring is NP-complete for
H-free graphs, as long as H is not a linear forest, i.e., a union of disjoint paths. This focused attention
on the case when H is a path. Woeginger and Sgall [29] have proved that 4-coloring is NP-complete
for Pjo-free graphs, and that 5-coloring is NP-complete for Ps-free graphs. Later on, these results
were improved by various groups of researchers [3I4[I2I2T]. The strongest results so far are due to



Huang [I8] who has proved that 4-coloring is NP-complete for P;-free graphs, and that 5-coloring
is NP-complete for Ps-free graphs. On the positive side, Hoang, Kaminski, Lozin, Sawada, and Shu
[15] have shown that k-coloring can be solved in polynomial time on Ps-free graphs for any fixed k.
These results give a complete classification of the complexity of k-coloring P;-free graphs for any fixed
k > 5, and leave only 4-coloring Ps-free graphs open for k = 4. It should be noted that deciding the
complexity of 3-coloring for Pi-free graphs seems difficult. It is not even known that whether or not
there exists any ¢ such that 3-coloring is NP-complete on P;-free graphs. Randerath and Schiermeyer
[24] have given a polynomial time algorithm for 3-coloring Ps-free graphs. As far as we know, this
result has been extended to 3-coloring Pr-free graphs by Chudnovsky, Maceli, and Zhong [6[7].

One interesting aspect of the k-coloring problem is the number of minimal obstructions, i.e.,
minimal non-k-colorable graphs. As noted above, there is a unique minimal non-k-colorable perfect
graph, namely Kj.1. It was shown by Bruce, Hoang and Sawada [5], that the set of minimal non-
3-colorable Ps-free graphs is finite, while Hoang, Moore, Recoskie, Sawada, and Vatshelle [16] have
shown that the set of minimal non-k-colorable Ps-free graphs is infinite. These authors have also
shown, aided by a computer search, that the set of minimal non-4-colorable (Ps,C5)-free graphs is
finite.

In this paper we undertake a systematic examination of k-coloring with inputs restricted to (P, Cy)-
free graphs. Some results about k-coloring these graphs are known. In addition to the case of 4-coloring
(Ps, Cs)-free graphs mentioned just above, it is known that when ¢ = 3, each k-coloring is polynomial
for t < 6, as (Ps, C3)-free graphs have bounded cliquewidth. On the other hand, for ¢ > 164, 4-coloring
is NP-complete for (P, Cs3)-free graphs [12]. When ¢ = 4, each k-coloring is polynomial for (P;, Cy)-
free graphs [12]. When ¢ > 5, 4-coloring is NP-complete for (P;, Cy)-free graphs as long as ¢ is large
enough with respect to ¢ [12]. (For ¢ =5, the bound on ¢ is t > 21.)

We first focus on the number of minimal obstructions in a case in which polynomial time algorithms
are known to exist, namely (Ps, Cy)-free graphs [I2]. We prove that, for each k, the set of minimal
non-k-colorable (Pg, Cy)-free graphs is finite. We actually describe all the minimal non-k-colorable
(Ps, Cy)-free graphs for k = 3 and k = 4, and then apply these results to derive efficient certifying
k-coloring algorithms in these cases. We complement these results by showing that in most cases with
k > 4,0 > 4, the k-coloring problem for (P, Cy)-free graphs is NP-complete. Specifically, we prove
that k-coloring is NP-complete for (P;, C5)-free graphs when k > 4 and ¢ > 7, and that k-coloring
is NP-complete for (P;, Cy)-free graphs when ¢ > 6 and k > 5,¢t > 6. We show that k-coloring is
also NP-complete for (P, C7)-free graphs if k = 4 and ¢t > 9. This almost completely classifies the
complexity of k-coloring for (P, C¢)-free graphs when ¢ > 4,k > 4. The few remaining open problems
are listed in the last section.

We say that G is H-free if it does not contain, as an induced subgraph, any graph H € H. If
H ={H} or H={H;, Hs}, we say that G is H-free or (Hy, Hz)-free. For two disjoint vertex subsets
X and Y we say that X is complete, respectively anti-complete, to Y if every vertex in X is adjacent,
respectively non-adjacent, to every vertex in Y. A graph G is called a minimal obstruction for k-
coloring if G is not k-colorable but any proper induced subgraph of G is k-colorable. We also call G a
minimal non-k-colorable graph. A minimal non-(k — 1)-colorable graph is also called a k-critical graph.
A graph is critical if it is k-critical for some k. We shall use n and m to denote the number of vertices
and edges of G, respectively.



2 Imperfect (Ps, C4)-Free Graphs

In this section, we analyze the structure of imperfect (Ps, Cy)-free graphs. Let G be a connected
imperfect (P, Cy)-free graph. By the Strong Perfect Graph Theorem []], G must contain an induced
five-cycle, say C' = vguivavzvy. We call a vertex v € V' \ C a p-vertex with respect to C' if v has
exactly p neighbors on C, i.e., [N¢(v)| = p. We denote by S, the set of p-vertices for 0 < p < 5. In the
following all indices are modulo 5. Let S1(v;) be the subset of Sy containing all 1-vertices that have
v; as their neighbor on C. Let S5(v;) be the subset of S3 containing all 3-vertices that have v;_1, v;
and v;41 as their neighbors on C. Let S2(v;, v;4+1) be the subset of Ss containing all 2-vertices that
have v; and v;41 as their neighbors on C. Note that S; = U?:o S1(v;), Sa = U?:o Sa(vi, vit1) and
S5 = Ui Sa(vi).

A subset S C V is dominating if every vertex not in S has a neighbor in S. Brandstédt and Hoang
[2] proved the following fact about induced five-cycles in (Pg, Cy)-free graphs.

Lemma 1. ([2]) Let G be a (Ps, Cy)-free graph without clique cutset. Then every induced Cs of G is
dominating.

In the rest of this section, we collect some information about imperfect (Pg, C4)-free graphs. Recall
that we assume that G is a connected (Pg, Cy)-free graph, and vovivav3v, is an induced five-cycle in
G. Then the following properties must hold.

(P0) S5 and each S3(v;) are cliques and Sy = 0.

(P1) Si(v;) is complete to Sq(vit2) and anti-complete to Sp(vi41); moreover, if both sets Sy (v;) and
S1(vit2) are nonempty, then both are cliques.

(P2) Sa(vi,vi41) is complete to Sa(vit1,vit2) and anti-complete to Sa(v;42,vi43); moreover, if both
sets Sa(v;, vi41) and Sa(vi11,v12) are nonempty, then both are cliques.

(P3) S3(v;) is anti-complete to S5(vit2).

(P4) S1(v;) is anti-complete to Sa(v;,vj41) if j # @ + 2; moreover, if y € So(vit2,vi43) is not anti-
complete to Si(v;), then y is an universal vertex in Ss(v;42, vits).

P5) Si(v;) is anti-complete to S3(v;12).

P6) S2(viy2,v;+3) is anti-complete to S3(v;).

(P5)
(P6)
(P7) One of S1(v;) and Sa(vit3,viv4) is empty, and one of Sy (v;) and Sa(viy1,v;v2) is empty.
(P8) Ome of Sa(vi—1,vi), S2(vi,vit1) and Sa(viy2,vit3) is empty.

(P9)

P9) If both Si(v;_1) and S;(v;11) are nonempty, then So = ; if both Si(v;) and Si(v;11) are
nonempty, then Sy = So(v;, viy1).

(P10) Let & € S3(v;). If both So(v; 41, vit2) and Sa(v;43,v;+4) are nonempty, then x is either complete
or anti-complete to Sa(viy1,vir2) U So(vit3,vi14). In the former case, both Ss(vit1,v;42) and
So(Vi+3,Vita) are cliques. Moreover, if Sa(v;42,v;+3) is also nonempty, then x is anti-complete to
S92 (Vig1, Viga) U S2(Vig3, Viga).

(P11) If Si(v;) is not anti-complete to So(v;12,vi1+3) then S = S1(v;).

(P12) If G has no clique cutset, then S (v;) is complete to Ss(v;).

The proofs of these properties are simple, using the absence of induced copies of Ps and Cy. The
proof of property (P12) also uses Lemma



3 Obstructions to k-coloring

In this section we shall prove our first main result, that for each k, there are only finitely many
minimal non-k-colorable (Ps,Cy)-free graphs. In subsequent sections we then describe all minimal
non-3-colorable and non-4-colorable (Pg, Cy)-free graphs, and apply these characterizations to obtain
polynomial time certifying algorithms for the 3-coloring and the 4-coloring problems on (Pg, Cy)-free
graphs.

The following lemma is folklore.
Lemma 2. A minimal non k-colorable graph G has 6(G) > k and no clique cutset.

Let P be the graph obtained from the Peterson graph by adding one new vertex that is adjacent
to every vertex of P. A graph is called specific if it results from replacing each vertex of P by a clique
of arbitrary size (including possibly size 0, resulting in deleting the vertex).

Lemma 3. ([2]) Let G be a (Ps,Cy)-free graph without a clique cutset. Then either G is specific, or
every induced Cg of G is dominating. Moreover, there is a linear time algorithm to decide whether or
not G is specific.

We are now ready to prove the main result of this section, the finiteness of the number of minimal
obstructions for k-coloring (P, Cy)-free graphs. It should be observed that this result is best possible
in the sense that there are infinitely many minimal non-k-colorable Ps-free graphs and infinitely many
minimal non-k-colorable Cy-free graphs. The former fact follows from [16] where it is shown that there
are infinitely many minimal non-k-colorable Ps-free graphs, and the latter fact follows from [10] where
it is shown that there are non-k-colorable graphs of arbitrarily high girth.

Theorem 1. For any k, there are only finitely many minimal non-k-colorable (Pgs, Cy4)-free graphs.

Proof. Let G be a (Ps, Cy)-free minimal non-k-colorable graph. By Lemma [2] G has §(G) > k and
no clique cutset. If G contains K1, then G = Kj1. Thus we assume that that G is Kjiq-free. If G
contains an induced C' = Cg, then either G is specific or C' is dominating by Lemma [3] In the former
case, the size of G is bounded by the definition of specific graph and the fact that G is Ki1-free. In
the latter case, we analyze the remaining vertices as to their connection to C, analogously to what
we did in the previous section for C' being a five-cycle. We define again, for any X C C' the set S(X)
to consist of all vertices not in C' that have X as their neighborhood on C. Using the fact that G is
(Ps, Cy)-free, we derive easily the fact that S(X) = 0 if X has size at most two, and that S(X) is a
clique and thus of size at most k, if | X| > 3. Since there are at most 2° such set X, we conclude that
G has at most 64k vertices.

Therefore, we assume from now on that G is Ky 1-free, Cg-free, and contains an induced five-cycle
C' = vgu1v2v3v4. Since G is K yi-free, |S5| < k — 2 and |S3(v;)| < k — 2 for each .

Lemma 4. If S1(v;) is anti-complete to Sa(vit2,vit3), then both sets are bounded.

Proof of Lemma |4} It suffices to prove this for ¢ = 0. We bound S;(vg) as follows. Let A be a
component of S1(vg) and = € S3(vy). If there exist two vertices y, 2 € A such that xy € F and 2z ¢ E,
then we may assume that yz is an edge, by the connectivity of A. Thus, zyxvsvsve induces a Pgs. This
is a contradiction and therefore x is either complete or anti-complete to A. Moreover, x is complete
to S3(vg) if « is complete to A, as G is Cy-free. The same property holds if z € S5(vy1). Since G has



no clique cutset, A must be complete to a pair of vertices {x,y} where z € S3(v1) and y € S3(vy).
As G is Cy-free, A must be a clique and so of size at most k. Moreover, the number of components
of S1(vg) is at most (k — 2)2. Otherwise an induced C4 would arise by the pigeonhole principle and
the fact there are at most (k — 2)? pairs of vertices {z,y} with x € S3(v;) and y € S3(v4). Hence,
|S1(vo)| < k(k —2)% < k3.

Let us now consider Sa(va,v3). Let A be a component of Ss(va,v3). Observe first that a vertex
x € S3(v2) U S3(v3), is either complete or anti-complete to A, as G is Ps-free. Let S4(vs) and S%(vs)
be the subsets of S3(v3) and S3(vg) consisting of all vertices that are complete to A, respectively.
Moreover, S5(vs) and S%(ve) are complete to each other. Otherwise vovit'ztvy would induce a Cg
where t € S5(vs) and t' € S5(ve) with ¢t' ¢ E, and z € A. So, if A is anti-complete to S3(v1) U S3(v4),
then V' = S5 U {vq, v3} U S} (v2) U S5(v3) would be a clique cutset of G.

Therefore, the set T' of neighbors of S3(v1) U S3(vs) in A is nonempty. Let B be a component
of A\ T. Our goal is to show that B = ) by a similar clique cutset argument. It is not hard to see
that every vertex ¢t € T is either complete or anti-complete to B as G is Ps-free. Let TV C T be
the set of those vertices that are complete to A. By the definition of 7', any ¢t € T” is complete to
{v2,v3} U S%(va) U Si(v3). Let @ € S5 and ¢ € T” be a neighbor of some vertex y € S3(vy). Then
zytvg # Cy implies that tx € E. Hence, T” is complete to Ss.

Next we show that T” is a clique. Let ¢ and ¢ be any two vertices in 77, and p € B. If t is a
neighbor of some vertex in S3(v4) and ¢’ is a neighbor of some vertex in S3(v1), then vyvit'ptvy would
induce a Cg, unless tt’ € E. Now we assume that both ¢ and ¢ are neighbors of some vertex in S3(vy4).
If t and ¢’ have a common neighbor in S3(vy4), then ¢’ € FE as G is Cy-free. So we may assume that
there exist two distinct vertices z,z’ € S3(v4) such that at,2't’ € E but at’,2't ¢ E. If tt’ ¢ E, then
C* = ztpt’x’ would be an induced C5. However, this contradicts Lemma (1} since vy is anti-complete
to C*. Therefore, T is a clique and so V' UT is a clique cutset of G. Thus, B =0 and A = T'. Since
A is an arbitrary component of Ss(va,v3), the above argument shows that Ss(ve, v3) is dominated by
S3(v1) U S3(vy4). Note that for any vertex @ € S3(v1) U S3(vy), the neighbors of = in Sa(vg,v3) form a
clique and hence have size at most k. This shows that |Sq(ve, v3)| < 2k(k — 2) < 2k ]

Now we consider the following cases.

Case 1. There exists some 4 such that S;(v;) and S (v;42) are nonempty.

In this case Sy = () by the property (P9). Further, each nonempty S (v;) is a clique by (P1). Hence,
the size of G is bounded.

Case 2. There exists some 4 such that S;(v;) and S (v;41) are nonempty.

In this case Sy = S3(v;, vi+1) by (P9). Further, S; and Sy are anti-complete to each other, hence
by Lemma the sizes of S1(v;) and Sa(v;, v;41) are bounded.

Case 3. S; = ). Then the size of G is bounded by Lemma

Case 4. There is exactly one S;(v;) that is nonempty. We may assume that S(vg) # () and that
S1(vp) is not anti-complete to So(va, v3). If Sa(v1,v2) # 0 or Sa(vs, v4) # 0, then each nonempty Ss(v;)
would be a clique (and hence bounded) as G is Cy-free. So we assume that Sa(v1,v2) = Sa(vs,v4) = 0.
By Lemma [4] So(vo,v4) and Sa(vg,v1) are bounded. The remaining sets are Sy (vg) and Sz (v, v3).

Bounding the size of S;(vg). Let X C S1(vg) be the set of vertices that are not anti-complete to
Sa(va,v3), let Si(vo) = S1(vo) \ X, and let A be a component of S (vg). As G is Ps-free, we conclude
that any vertex x € X U S3(v1) U S3(vy) is either complete or anti-complete to A. If A has a neighbor
in both S3(vy) and S3(v4), then A must be a clique and thus of size at most k. Further, there are at
most k% such components.



Hence, we may assume that A is anti-complete to S3(v4). Let X’ C X be the set of vertices that
are complete to A. We claim that X' is a clique. Let 2; € X’ (i = 1,2) and p € A. If ; and x5 have
a common neighbor y € Ss(vg,v3), then x129 € F or x1pxoy would induce a Cy. So, we assume that
there exist y; € Sa(va,v3) (i = 1,2) such that z;y; € E but x;y; ¢ E for i # j. Now z1y1y222p is an
induced Cj, and it is anti-complete to v1, which contradicts Lemmall] Let S5(vi) € S3(v1) be the set
of vertices that are complete to A. By Cy-freeness of G it is easy to see that S5(v1) is complete to X'.
Let V' = {wo} U S3(vg) US5(v1). If A is anti-complete to X’ or S5, then G has a clique cutset V' U S
or V/'UX'. So, A has a neighbor x € X’ and p € S5 with pz ¢ E. As |X'| < k? and |S5| < k, there
are at most k> such pairs of vertices. Hence, there are at most k% such components, otherwise by the
pigeonhole principle an induced C; would arise.

Hence, it suffices to bound the size of A. Let R C S5 be the set of vertices that are not anti-complete
to A and have a non-neighbor in X’. Let S = S5 \ R. Note that X’ and S are complete to each
other. Let T C A be the set of vertices that are neighbors of R. Since any r € R has a non-neighbor
x € X', the set Na(r) is a clique and hence |[Na(r)| < k. So, |T| < k%. Let B be a component of A\ T
Observe that any t € T is either complete or anti-complete to B. If not, let bV’ € E(B) with bt € E
but b't ¢ E. Let r € R be a neighbor of ¢, let z € X’ be a non-neighbor of 7, and let y € Sa(v2,v3) be
a neighbor of z. If ry € E then tryz would induce a Cy. But now b'btrvsy induces a Pg.

Let T7 C T be the set of vertices that are complete to B. Note that by definition V* = SEUX UV’

is a clique. Our goal is to show that V* UT" is a clique. Let ¢; € T’. If t; and t have a common
neighbor in R, then an induced C4 would arise unless t1ty € E. So, we assume that there exist r; € R
(¢ = 1,2) such that t;7; € E but t;r; ¢ E for i # j. Let b € B. Now t;r172t2b induces a Cs. Let
x; € X' be a non-neighbor of r; and y; € Sa3(va,v3) be a neighbor of x;. Note that for any r € S5, r
is either complete or anti-complete to any edge between S;(vg) and Sa(ve, vs). If 1 = x5 or y; = ya,
tir17at2b would not be dominating. Hence, x1 # x2, y1 # y2 and y;x; ¢ E for i # j. Now z122y21n
induces a Cy. This proves that T” is a clique. By definition, 7" is complete to X’ U S3(vg) U {vg}.
Let ¢ € Si(vy1) and t € T’, and r € R be a neighbor of ¢. Since gbtr does not induce a Cy, we have
tq € E. Now suppose that ¢ € S and ¢ has a neighbor b € B. As gbtr does not induce a Py, we have
gt € E. Hence, T" is complete to S5(vy) U SL. We have shown that T’ is complete to V* and T” is
a clique. So, V* UT" is a clique cutset if B # (). Therefore, A = T and has size at most k2. Thus,
|S1(vo)| < K2+ K2 x k+ k% x k% = k? + k3 + k5.
Bounding the size of Sy(v2,v3). Let Y C So(vs, v3) be the set of vertices that are not anti-complete
to S1(vo) U S3(v1)US3(vye). Let A be a component S5 (va,v3) = S2(v2,v3) \ Y. As in previous case, we
can show that any y € Y is either complete or anti-complete to A. Let Y/ C Y be the set of vertices
that are complete to A. Since any vertex in Sa(vg, v3) that is not anti-complete to Sy (vg) is a universal
vertex in S (ve, v3), we conclude that Y is a clique. Let S5(vs) and S4(v2) be the subsets of S5(vs) and
S3(v2) consisting of all vertices that are complete to A, respectively. Let V' = {vs, va }US%(v2)US, (v3).
If A is anti-complete to S5 or Y/, then V/US5 or V/UY” would be a clique cutset. Hence, A corresponds
to a pair of nonadjacent vertices y € Y’ and r € S5 such that r is not anti-complete to A. By property
(P4), each y € Y is a dominating vertex in Sa(ve,v3), and so |Y’| < |Y| < k. Since |Y’| < k and
|Ss5| < k, there are at most k? components of S5(v2,v3) by the pigeonhole principle and the fact that
G is Cy-free.

It suffices to bound the size of A. We define R C S5, S = S5 \ R and T' = N4(R) as in the
previous case. Then |T'| < k2. Let B be a component of A\ T. Note that any ¢ € T is either complete
or anti-complete to B. Let T/ C T be the set of vertices that are complete to A. By definition,
V*=V'USLUY’ is a clique. Moreover, T" is complete to V*\ Sg. Let b € B be a neighbor of ¢ € SE,
and let t € T'. Then tb € E. Let 7 € R be a neighbor of ¢. Since btrq does not induce a Cy, we have
tq € E, as rb ¢ E by definition. Hence, T" is complete to vertices in Si that are not anti-complete



to B. Finally, we show that 7" is a clique. Let t; € T” for i = 1,2. Let r; € R be a neighbor of ;.
If ry = ro, then t1to € E or t1btor; would induce a Cy. So ry # rp and 7;t; ¢ E if ¢ # j. Suppose
that t1ty ¢ E. Then btyr17ots induces a Cs. Let y; € Y’ be a non-neighbor of r;, and let x; € S1(vg)
be a neighbor of y; (i = 1,2). If y; = ya or x1 = x, then bt;rirats is not dominating, contradicting
Lemma Hence, y1 # y2 and y;x; ¢ E. Thus, z129 ¢ E. Since {y1,y2} is complete to A and thus
to {b,t1,t2}, the set {y1,y2, 71,72} induces a disjoint union of two copies of K. Moreover, r;z; ¢ E
or x;7;t;y; would induce a Cy. Since bt1r17ato is dominating, we obtain that rixze € E and rox; € F.
But then {y1,y2, 1, 22,71, 72} induces a Cg, a contradiction. Hence, A = T and so has size at most
k2. Therefore, |Sa(v2, v3)| < k% + k% x k? = k* + k2. O

4 Obstructions to 3-Coloring

In this section we explicitly describe all the minimal non-3-colorable (Pgs, Cy)-free graphs. We note
that [23], in conjunction with [5], describe all minimal non-3-colorable Ps-free graphs, and that [16]
describes all minimal non-4-colorable (Ps, Cs)-free graphs.

A < (D

) The Hajos graph.

Fig. 1. All minimal non-3-colorable (Ps, C4)-free graphs.

Theorem 2. There are exactly four minimal non-3-colorable (Ps, Cy)-free graphs, depicted in Figure

m

Proof. Let G be a (Ps, Cy)-free minimal non 3-colorable graph. From the first few lines of the proof
of Theorem |l we know that G has 6(G) > k, contains no clique cutset, is Ky4-free, and contains an
induced C = C5 = vgv1 ... vs. We use the notation S,, S1(v;), S2(vs, vi11), and S3(v;) from Section
2. From Lemma we have Sy = (). It is easy to see that |S5| < 1. If |S5| = 1, then G = W5. So we
may assume that S5 = (). If there exists an index 7 such that S3(v;) # 0 and S3(vit2) # 0, then G is
the Hajos graph. Hence, at most two S3(v;)’s are nonempty. Furthermore, each Ss(v;) is clique and
contains at most one vertex, since G is (C4, K4)-free. Therefore, |S3| < 2. We distinguish three cases.

Case 1. |S3] = 2.

Without loss of generality, assume that Ss3(vg) = {z} and S3(vi) = {y}. 2y ¢ E as G is Ky-free.
Also S1(vs) = 0, otherwise let ¢t € S1(v3) and then tvsvayvor = Ps. Moreover,  (respectively y) is
complete to Sa(vs, vs) (respectively So(va,v3)). Otherwise there exists some vertex z € Sa(vs, vy4) with
2z ¢ E. Then zvszvayvox = Ps. Hence, Sa(vs,v4) and Sa(vs,ve) are cliques and each of them contains
at most one vertex. As d(v3) > 3 and S1(v3) = 0, at least one of them is nonempty. Suppose first that
p € Sa(vs,v4) and q € So(ve,v3). Then xp € F and yq € E. Tt follows from Sy (v3) = @ and property



(PT7) that Sy = 0. Further, Ss(v1,v2) = Sa(vg,v4) = 0 by (P10). Hence we have Sy = {p, q} by (P8),
and therefore N(x) = {v4,v1,v0,p}. Since G is a minimal obstruction, there exists a 3-coloring ¢ of
G — x. Note that we must have ¢(v4) = ¢(q) = ¢(v1) and ¢(p) = @d(v2) = ¢(vp). Consequently, we
can extend ¢ to G by setting ¢(z) = {1,2,3} \ {¢(vo), #(v1)}. This contradicts the fact that G is not
3-colorable. Therefore, exactly one of Ss(vs,vs) and So(vs,ve) is empty. Without loss of generality,
assume that So(vs,v4) = 0 and let z € So(ve,v3). Note that N(vs) = {vg, v, z}. Let ¢ be a 3-coloring
of G — vz, and note that we must have ¢(vs) = ¢(v1) = ¢(z). Thus we can extend ¢ to G. This is a
contradiction.

Case 2. |S3| = 1. Without loss of generality, assume that « € S3(vp).
Case 2.1 S1(vg) = 0.

We claim that in this case S3(ve,v3) = 0. Otherwise we let z € Sa(va,v3). Note that Sy (ve,v3)
is independent and anti-complete to x since G is (Cy, K4)-free. By property (P4), the set So(va,v3)
is anti-complete to S;. Since {va,v3} is not a clique cutset separating Ss(va,v3), one of Sa(vs,v4)
and S3(v1,vs) is nonempty. We assume by symmetry that Sa(vs,vs) # 0 and let w € Sa(vs,vy).
By property (P7), S; = S1(v3). Moreover, z is anti-complete to Sa(v1,v) and Sa(vs,v4). Otherwise
consider induced C5 = C' = zviv2vzvy. We define S with respect to C7 in the same way as we
define S3. It is easy to check that |S5| > 2 and we are in Case 1. Also, Sa(vg,v4) = (. Otherwise
let t € Sa(vg,vs). Since xvotwzve does not induce a P, xt must be an edge, and hence {x,vg, v4,t}
would induce a Kj4. Therefore, N(z) = {vg,v1,v4}. If So(vy,v2) # (), then in any 3-coloring ¢ of
G — z we would have ¢(v;) = ¢(vsg) and so ¢ can be extended to G. This contradicts that G is
a minimal obstruction. Hence, Sa(v1,v2) = 0. Note that So = {w, z} since G is (Cy, K4)-free, and
hence N(v9) = {vs, z,v1}. Observe that in any 3-coloring ¢ of G — vy we have ¢(2) = ¢(v4) = P(vy).
Consequently, we can extend ¢ to G, and this is a contradiction. So the claim follows. By (P7), one
of Sa(vs,vq) and Sy(v2) is empty, and one of Sz(vi,v2) and Si(vs) is empty. On the other hand,
Sa(vs,v4) US1(v3) # 0 and Sa(v1,v2) US1(ve) # 0 as 6(G) > 3. This leads to the following two cases.

Case 2.1.a Si(vg) # (0 and Sy (v3) # 0 while Sa(vi,v2) = So(vs,v4) = 0.

By (P7), the set Sa(vo,v1) = Sa(vo,v4) = 0, and so So = 0. Since {vs} is not a clique cutset
separating S1(v3), we have Sj(v1) # 0. Similarly, Sy(vs) # 0. Let u; € S1(v;) for @ # 0. By (P1), each
S1(v;) is a clique, for ¢ # 0. Moreover, |S1(v1)|4+]51(vs3)| = 3 and |S1(v2)|+|S1(vs)| = 3as 6(G) > 3 and
G is Ky-free. If |S1 (v1)| = 2, then |S1(v4)| = 1 and so |S1(v2)| = 2. Hence, {ug, v1,v2}US1(v1)US] (v2)
induces a Hajos graph. Therefore, |S1(v1)| = |S1(va)| = 1 and |S1(v2)| = |S1(vs)| = 2. Note that =
is anti-complete to {u1,us} or G would contain either a Cy or a W5 as an induced subgraph. Now G
has a 3-coloring: {v1,us, u2, v}, {vo,vs, w1, us}, {x,us, us, v} where uhy € S1(v2) and uj € S1(vs).

Case 2.1.b Sy(v1,v2) # 0 and S (vs,vs) # 0 while Sy(ve) = S1(v3) = 0.

Recall that z is anti-complete to Sa(v1,ve) and So(vs,vs). Let y € Sa(vs,vq) and z € Sa(v1,va).
By (P8), S2 = Sa(v1,v2) U S2(vs, v4). Since {vs,vq} is not a clique cutset, S2(vs, v4) has a neighbor in
S1(v1). Similarly, Sa(v1,v2) has a neighbor in S;(v4). However, this contradicts (P11).

Case 2.2 S1(vg) # 0. Let y € Si(vo).

In this case zy € E by property (P12). It follows from properties (P7) to (P9) that Sa(vy,v2) =
Sa(vs,vg) = 0. If Sy (vg) is not anti-complete to Sa(va,v3), G would contain F as an induced subgraph
and so G = F. Hence, we may assume that S (vg) is anti-complete to Sa(va, v3). Therefore, So(ve, v3) =
) or {va,v3} would be a clique cutset of G. Since §(G) > 3, S1(v2) # @ and S;(vs) # 0. By (P9),
Sy = (. Let p € S1(v2) and ¢ € Si(v3). Note that pg ¢ E, py € E and qy € E. Consider induced
Cs = C'" = vovivapy. We define S5 and S}, (vp) in the same way we define Sz and S, (vp). It is easy to
see that S = S5(vo) = {z}. By (P1), S1(vp) is a clique and hence S1(vg) = {y}. Now we are in Case
2.1 since S} (vg) =0



Case 3. |S3| =0,1e.,V=CUS; USs.

We first claim that now S; # (). Assume that S; = @ and thus S> # () or G is 3-colorable. Note
that each So(v;,v;41) is an independent set. If there is exactly one nonempty Sa(v;, v;41), then G is 3-
colorable. If there are exactly three nonempty Sa(v;, v;+1)’s, then each of them is a clique by property
(P2). Since G is Ky-free, each So(v;,v;11) contains only one vertex. Therefore, G has eight vertices
and it is easy to check that G is 3-colorable. Let us assume now that there are exactly two nonempty
Sa(vi, vig1). If two Sa(v;,vi41)’s are complete to each other, then we either find a K, or conclude
that |S2| = 2 so that G is 3-colorable. If two Sa(v;, v;41)’s are anti-complete to each other, G is also
3-colorable. Therefore, we may assume that S1(vg) # 0 and let © € S1(vp). Sa(vs, va) = S2(v1,v2) =0
by (P7). We claim that Sy(vs) # 0 and S1(v4) # 0. Otherwise we must have So(ve,v3) # 0 and
S (v, vq) # 0, and S1(vs) = S1(vs) = 0 since d(vs) > 3 and d(v4) > 3. By properties (P7) and (P8),
the set Sa(vg,v1) = S1(v1) = 0. This contradicts the fact that §(G) > 3. By symmetry, Si(vy) # 0
and Si(ve) # (. Hence, So = @ and S;(v;) is nonempty for each i. Since G is Kj-free, we have
5 < |S1| < 7. 1t is easy to check that G is 3-colorable if |S1| < 6. Thus |S;]| = 7 and we may assume
that |S1(vo)| = |S1(v1)] = 2. Let u; € S1(v;) and ug € S1(vp), uj € S1(v1). The subgraph induced by
{us, u1,v1, vg, ug, up, u) } is isomorphic to the Hajos graph. O

5 Obstructions to 4-Coloring

Theorem 3. There are exactly 13 minimal non-4-colorable (Pg, Cy)-free graphs, depicted in Figure

2

Our proof of Theorem [3| has two parts. The first part deals with the case when G contains an
induced Wjs. In the second part of the proof, we handle the case when G has no induced Ws5. The
technique we use is to choose some induced C5 with a certain minimality condition and derive some
additional properties, valid for graphs without induced Wij.

Lemma 5. Let G be a (Ps,C4)-free minimal non-4-colorable graph with an induced Ws. Then G
either is one of four minimal non-3-colorable graphs with an additional dominating vertex or G is Fy
or Fy from Figure 2]

Proof. If G is perfect, then G = K5. Hence, we assume that G is imperfect and Kjs-free. Let C' =
Vg . ..v4 be an induced Cs. If |S5]| > 2, then G is W5 with an additional dominating vertex. Hence we
may assume that every induced Cs has at most one 5-vertex. In particular, |S5| = 1. Let S5 = {w}.
Note that S5 is complete to S3. Hence, if there exists ¢ such that S3(v;) # () and S3(vit2) # 0, then
G is the Hajos graph with an additional dominating vertex. So there are at most two S3(v;) are
nonempty. Further, |S5(v;)| < 1 as G contains no Ks. So |S3| < 2.

Case 1. |S3| = 2. Let = € S5(vp) and y € S5(v1). Then zy ¢ E as G contains no Ks. If t € S;(v3),
then tvzvgzviy would induce a Ps. So, Si(v3z) = 0. Also, z is complete to Sa(vs,vs). Otherwise let
z € So(vs,vs4) with zz ¢ E. Then zvzvayvoz would induce a Ps. By symmetry, y is complete to
Sa(va,v3). Note that N(v3) = {va, vg, w} U Sa(vs,v4) USa(v3,v2). Now let ¢ be a 4-coloring of G — vs.
Note that ¢(vs) = ¢(v1), ¢(x) = ¢(y) and d(vg) = d(v2). As v4xvg induces a triangle, we may assume
that ¢(vs) = 1, ¢(vg) = 2, ¢(x) = 3. Hence, ¢p(w) = 4. Since x is complete to Sz(vs,v4) and y is
complete to Sa(ve,vs), any vertex ¢ in So(vs,v4) U Sa(vs,ve) has ¢(t) # 3. Hence, only colors 1, 2, 4
appear on N (v3) and so we can extend ¢ to G by setting ¢(vs) = 3.

Case 2. |S5| = 0. We claim that S; # (). If not, Sy # 0. If there is exactly one nonempty Sa(v;, viy1)
then So (v, v;41) U{w} must be bipartite otherwise a K5 or W5 with an additional dominating vertex



would arise. It is easy to see G is 4-colorable. Now suppose that there are exactly three nonempty
S2(vi, vi41). We may assume that Sa(vg,vs), Sa(vs,va2) and Sa(va,v1) are nonempty. Observe that
each Sy(vi,vit1) is a clique now and thus contains at most two vertices. Further, |Sa(v;, vit1)| +
[S2(vig1,vig2)| < 3. Let p € Sa(va,vs3), r € Sa(vs,v2) and g € Sa(ve,v1). Suppose that wr € E.
Then the fact that wrqu; does not induce a Cy implies that wq € FE. By symmetry, wp € E. Let
r’ € Sa(vs,va). wqr'vs # Cy implies that wr’ € E. Therefore, w is either complete or anti-complete to
So. In the former case, w is a dominating vertex and hence G — w is a minimal non-3-colorable graph.
In the latter case, it is easy to check that G is 4-colorable.

Fig. 2. 9 nontrivial minimal non-4-colorable (Ps, Cy)-free graphs.

Suppose now that there are exactly two nonempty Ss(v;,v;+1). If the two sets are complete to
each other, then it is same as the above case. So let us assume that the two sets are anti-complete to
each other. Without loss of generality, assume that Sa(vg,v1) # 0 and Sa(ve, v3) # (0. Since G — vy is
4-colorable, both {w} U Sa(va,v3) and {w} U Sa(vg,v1) are bipartite. In fact, T = {w} U Sa(vg, v1) U
Sa(v2,v3) is also bipartite. If not, let @ be an induced odd cycle in T. As Q € {w} U S3(vg, v1) and
Q ¢ {w} U S3(v2,v3), Q contains a vertex in both S2(vg,v1) and Sa(vs,vs). As Sa(vp,v1) is anti-
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complete to S5 (va,v3), @ must contain w and @ is not a triangle. However, Q — w is connected and
hence is fully contained in Sa(vg,v1) or Sz(ve,vs). This is a contradiction. We therefore can 4-color
G as following: ¢(vg) = d(v2) =1, p(v1) = P(v3) = 2, Pp(vs) = 3, $(w) = 4, and color one partite of T
with color 3 and the other with color 4.

Therefore, we may assume that Sj(vg) # (. Going through the same argument for Case 3 in
Theorem [2] we conclude that Sy(v;) # @ for each ¢ and Sy = (). Moreover, w is either complete or
anti-complete to S7 as G is Cy-free. In the former case, w is a dominating vertex and hence G — w is
a minimal minimal non-3-colorable graph. In the latter case, we let u; € Sy(v;) for each 0 < i < 4,
and wvoususuiusg induce a Pyg.

Case 3. |S3| = 1. Let = € S3(vp). We distinguish two cases.

Case 3.1 S1(vg) = 0. We claim that S (vs,v3) = . Otherwise let z € Sa(ve, v3). By (P7), we have
S1(v1) = S1(ve) = 0. Note that Se(ve,v3) is bipartite and is anti-complete to x. Since {va,v3} does
not separate So(va,v3), one of So(vs,vs) and Sa(v1,v2) is nonempty. By symmetry, we assume that
p € S2(vs,vyq). By properties (P7) to (P9), we have S; = S1(v3) and Sa(vg, v1) = 0. In fact, Sy (vs) =0
otherwise {vs,w} would separate S;(v3). Moreover, x is anti-complete to Sa(vs,vs). If not, we may
assume zp € F and consider induced C5 = C’ = C'\ {vg}U{x}. Observe that w € S§ and {vg,p} C S%,
so we are in Case 1. Going through the same argument in Case 2 we conclude that w is either complete
or anti-complete to Ss. In the former case w is a dominating vertex of G and we are done. Therefore,
we assume w is anti-complete to Sa. Note also that 2 < |S3| < 5. In the following we either find
a minimal obstruction or show G is 4-colorable. Consider first that Sy = So(vg,v3) U Sa(vs, va). If
Sy = {p,z}, G has a 4-coloring ¢: {v4,v1, 2}, {v2,v0,p}, {x,v3}, {w}. If there exists p’ € Sa(v4,v3)
or 2 € So(v4,v3), then we can extend ¢ by adding p’ or 2’ to {w}. So, we assume that S5(vg,vo) # 0
and let r € Sy(vp,v4). The fact that vozprvgr # Ps implies that xr € E, hence So(vg,vo) = {r}
as G is Ks-free. If So(vg,v3) = {p,p'}, then {w,z, v, vs,v4,p,p’,r} induces a graph that is not 4-
colorable. Note that v, is a dominating vertex in this subgraph, and hence G is the Hajos graph with
an additional dominating vertex. Thus, Ss(vs, v3) = {p}. Note that S2(v3,v2) might contain a vertex
z' # z or not. In either case, G has a 4-coloring: {v4,v1, 2}, {v2,v0,p}, {z,v3}, {w,r, 2’'}. Finally,
we assume that So(vg,v4) = 0 and let r € Sa(ve,v1). If Sa(ve,v3) = {z,2'}, then Sa(v4,v3) = {p}
and Sa(v1,v2) = {r} since G is Ks-free. G has a 4-coloring: {vy4,v1, 2}, {ve,v0,p}, {2, v3,7}, {w,2'}.
Hence, Sa(va,v3) = {2z, }. By 6(G) > 4 we have Sy(vy,v3) = {p,p'} and Sa(v1,v2) = {r,r'}. In this
case G has a 4-coloring: {v4,v1, 2}, {ve, vo,p}, {x,vs, 7}, {w,p',r'}.

Therefore, So(ve,v3) = (. Consider first that Ss(vi,ve) # 0 and Sa(vs,vs) # 0 but Sq(ve) =
S1(v3) = (. Then Sy = Sa(v1,v2)US2(v3,v4) by (P7) and the fact that Sa(ve, v3) = 0. Since {vs, v4, w}
is not a clique cutset separating So(vs,v4), S2(vs,v4) has a neighbor in Sy (vq). Similarly, So(v1,vs2)
has a neighbor in S} (v4). However, this contradicts property (P11). Hence, we must have Sy (vq) # 0
and Sq(v3) # 0 but Sy(vi,v2) = Sa(vs,vq) = 0. By (P7), we have Sy = 0. S1(v1) # 0, since {vs,w} is
not a clique cutset separating Sy (v3). Similarly, Sy(v4) # 0. Let u; € S1(v;) for ¢ # 0. Note that w is
either complete or anti-complete to S;. In the former case w is a dominating vertex and we are done.
In the latter case we find an induced Ps = wuoustguqus.

Case 3.2 Si(vg) # 0. Let y € S1(vg). Sa(vi,va) = Sa(vs,vs) = @ by (P7). Consider first that
Sa(vg,v3) = 0. Since d(vs) > 4 and d(v3) > 4, we have S1(v2) # 0 and S1(v3) # 0. By properties (P7)
to (P9), the set So = 0. Let p € S1(vs) and ¢ € S1(v2). Consider induced Cs = C" = vovyvagy. If w is
complete to S1, w is a dominating vertex in G and we are done. Hence, w is anti-complete to S7. Note
that S1(vg) is a clique and thus contains at most two vertices. Suppose first that S (vo) = {y,y'}. If
S1(vs) = {p,p'}, then {vg,v9,v3, w,x,p,p’,y,y’'} induces a G p, with respect to Cs5 = voy’p'vzw. Thus,
G = Gp, but this contradicts that G contains an induced Ws. Hence, S1(vs) = {p} and S;(v2) = {¢}.
As d(p) > 4 and d(q) > 4, both S;(vy) and S;(v4) are nonempty. Let u; € Si(v;) for each 4, and
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so G contains an induced Ps = wvausugujug. Hence, Sy(vg) = {y}. If |S1(v3)| = |S1(ve)| = 3, then
G = G3,; which is Ws-free. Thus we assume that |S7(v3)| < 2. Note that S1(v1) # 0 as d(p) > 4. Let
t € S1(v1), and so wvitpyq = Ps.

Therefore, So(ve,v3) # 0. Let z € So(ve,vs). As {vg,v3,w} is not a clique cutset separating
Sa(ve,v3), we may assume that yz € E. If wy € E, then the fact that wyzvs # Cy implies that
wz € E. Hence G is the graph F with an additional dominating vertex. If wz € E, G is the graph
F with an additional dominating vertex. Therefore, w is anti-complete to {y, z}. By (P11), we have
S1 = Si(vg). Further, So(vg,v1) = 0 otherwise {vg,v1,x,w} would be a clique cutset. Similarly,
Sa(vo,v4) = 0. Hence, So = Sa(va,v3). Note that Sy(vg) U Sa2(v2,v3) contains no induced Cj, since
vy is anti-complete to S1(vg) U Sa(va,vs). If S1(vg) U Sa(ve,v3) is not bipartite, it must contain a
triangle, and hence G = F} or G = F,. Therefore, we assume that S;(vg) U Sa(va, v3) is triangle-free
and the edges between S;(vg) and Sa(va,v3) form a matching. As d(y) > 4 and d(z) > 4, y and z
have a neighbor 3y’ € S1(vg) and 2’ € Sy(ve,v3), respectively. Note y'2" ¢ E or 2'y'yz = Cy. If w is
complete to {y, 2}, {w,y,y, 2z, 'z, v, v2,v3} would induce a G with respect to C5 = wy'yzz'. If
wy' € E, then w2z’ ¢ F and hence vywy'yzz' = Ps. Thus, wy’ ¢ E. Similarly, wz’ ¢ E. By (P7), the
vertex z is universal in Ss(v2,v3), and so z’ cannot have a neighbor different from z, as otherwise A
K5 would arise. As d(z’) > 4, 2z’ must have a neighbor 3" in Sy (vg). Note that y” ¢ {y,y'}. Applying
the argument for {z,y} to {2/, y"}, we conclude that w is anti-complete to {z’, 3" }. ¥ is not complete
to {y,y'} or K5 would arise. If y"y € E, then y"yzz' = Cy. If vy’ € E, then y"’y ¢ E and thus

1,0

y'y'yzvsw = Ps. As d(y”) > 4, y” has a neighbor v’ € S1(vy). v € {y,y’,y"}. Moreover, y"’ is not

", 1!

complete to {y,y'}. If y"'y € E, then v’y ¢ F and thus y'yy"'y"2've = Ps. By symmetry, v’y ¢ E.
", 1!

Now y"'y"2'2yy’ = Ps. O
The following holds under the assumption that G has no induced Wis.

Observation 1 Let G be a (Ps,Cy)-free graph without an induced Wi. Let C = vov1v2vsv4 be an
induced Cys of G. Then the following properties hold.

(1) If both Si(vi—1) and Si(vix1) are nonempty then Ss(v;) is anti-complete to Sy(vi—1) and
Sl (’U,'_H).

(2) If both So(vi—1,v;) and Sa(vi,viy1) are nonempty, then Ss(v;) is complete to Sa(v;—1,v;) and
SQ(Ui,Ui+1).

(3) Let x € S5(vi—1) U S3(vit+1). Suppose that pg € E where p € S1(v;) and ¢ € Sa(Vit2,Vit3).
Then x is anti-complete to {p,q}.

Lemma 6. Suppose that G is a (Pg, Cy)-free minimal non-4-colorable graph without an induced Wi.
Then G S {G371, GQ,Q, G27171, G1 1.1,1, Hl,HQ, Gp4} (586 Figure .

IR

We postpone the lengthy proof of this lemma to the Appendix.

6 The Complexity of k-Coloring

We now apply our results to the questions of complexity of k-coloring (Ps, Cy)-free graphs. Reference
[12] gives a linear time algorithm for k-coloring (P;, Cy4)-free graphs for any k,t. However, that algo-
rithm depends on Ramsey-type results, and end up using tree-decompositions with very high widths.
We offer more practical algorithms for 3-coloring and 4-coloring (Ps, Cy)-free graphs. Our algorithms
are linear time, once a clique cutset decomposition is given. Moreover, our algorithms are certifying
algorithms. Indeed, they are based on our characterizations of minimal non-k-colorable (Pg, Cy)-free
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graphs, and when no coloring is found, they exhibit a forbidden induced subgraph from Theorems
and [3

The proof of Theorem [2 can be easily turned into a linear time algorithm for 3-coloring (Pgs, Cy)-
free graphs without clique cutset. We first test if G is chordal. If so, we can test whether or not G is
3-colorable. Otherwise we have an induced C' = Cj for some £ > 4. Up to this point every step can
be done in linear time [I3]. If £ =4 or ¢ > 7 then G is not (Ps, C4)-free. If £ = 5 we follow the above
proof, and it can be readily checked that every step can be performed in linear time. The remaining
case is £ = 6, and we can now assume G is also Cs-free. By Lemma [3] either G is specific or C is
dominating. In the former case, a k-coloring of G or a K4 can be found in linear time. Therefore, we
assume that C' is dominating. We define p-vertices and S, with respect to C'. We either find that G is
not (Pg, Cy)-free or the vertices of G consist of C'U Sg U S3. Finally, in linear time we either find a Ky
or conclude that G has at most 13 vertices, in which case a 3-coloring of G can be obtained by brute
force. A similar algorithm applies to the problem of 4-coloring (Pg, Cy)-free graphs. Thus we have the
following result.

Theorem 4. There exist linear time certifying algorithms for 3-coloring and 4-coloring (Ps, Cy)-free
graphs, given a clique cutset decomposition of the input graph.

We note that a clique cutset decomposition can be obtained in time O(mn) [27].
We now complement our results by proving most of the remaining problems of k-coloring (P;, Cy)-
free graphs NP-complete (at least as long as k > 3 and ¢ > 3).

Recently, Huang [I§] proved that the 5-coloring problem for Ps-free graphs is NP-complete, and
that the 4-coloring problem for Pr-free graphs is also NP-complete. The proof used the following
framework. We call a k-critical graph nice if G contains three independent vertices {c1, ca,c3} such
that the clique number w(G — {c1,¢2,c3}) = w(G) = k — 1. For example, any odd cycle of length at
least 7 is a nice 3-critical graph.

We give a reduction from 3-SAT, as in [I8]. Let I be any 3-SAT instance with variables X =
{x1,22,...,2,} and clauses C = {C1,C5,...,Cp}, and let H be a nice k-critical graph with three
specified independent vertices {c1, ca, c3}. We construct a new graph Gy ; as follows.

e Introduce for each variable xz; a variable component T; which is isomorphic to Ko, labeled by
x;T;. Call these vertices X -type.

e Introduce for each variable z; a vertex d;. Call these vertices D-type.

e Introduce for each clause C; = y;, V yi, V ¥i, a clause component H; which is isomorphic to H,
where y;, is either x;, or a7,. Denote three specified independent vertices in H; by ¢;,; for t = 1,2, 3.
Call ¢;,; C-type and all remaining vertices U -type.

For any C-type vertex c;; we call x; or &; its corresponding literal verter, depending on whether
x; € Cj or r; € Cj.

e Make each U-type vertex adjacent to each D-type and X-type vertices.

e Make each C-type vertex c;; adjacent to d; and its corresponding literal vertex.

We refer to [I8] for the proofs of the following two lemmas.

Lemma 7. Let H be a nice k-critical graph. Suppose G 1 is the graph constructed from H and a
3-SAT instance I. Then I is satisfiable if and only if G 1 is (k4 1)-colorable.

Lemma 8. Let H be a nice k-critical graph. Suppose G 1 is the graph constructed from H and a
3-SAT instance I. If H is P;-free where t > 6, then Gu,1 is Pi-free as well.
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To obtain NP-completeness results for (P, Cy)-free graphs, we need an additional lemma.

Lemma 9. Let £ > 6. If H is Cy-free, then Gg,r s Co-free.

Proof. Let @ = v;1...v, be an induced Cy in Gy ;. Let C; (respectively C;) be the set of C-type
vertices that connect to z; (respectively ;). Let G; = G[{T; U {d;} U C; U C;}]. Note that G — U is
disjoint union of G4, ¢ = 1,2,...,n. T QNU = 0, then Q C G; for some i. It is easy to see that
G; is Cp-free as £ > 6. Thus, Q N U # (. Without loss of generality, we assume that vy is a U-type
vertex where vy is in the jth clause component Hj. If vy and v, are both in Hj, then @ C H;, which
contradicts our assumption that H; = H is Cj-free. If v and vy are both in X U D, then as U-type
vertices are complete to X-type and D-type vertices, all other vertices on @ are of C-type. This is
impossible since C' is independent. The last case is vy is in H; and vy is in X U D. Similar to the
second case, we have vy, vs,...v;_1 are C-type vertices. This contradicts that vyvs is an edge. o

The following theorem follows now directly from the above lemmas.

Theorem 5. Let ¢ > 6. Then k-coloring is NP-complete for (P, Cy)-free graphs whenever there exists
a (P, Cy)-free nice (k — 1)-critical graph.

We apply Theorem [5|to derive a series of hardness results on (P, Cy)-free graphs for various values
of k and t.

Fig. 3. G.

Theorem 6. Let k > 5, ¢t > 6 and ¢ > 6 be fized integers. Then k-coloring is NP-complete for
(P, Cy)-free graphs.

Proof. It is easy to check that the graph G; shown in Figure [3|is a nice 4-critical (P, Cy)-free graph
for any fixed £ > 6. Applying Theorem [5| with G will complete our proof. O

Theorem 7. 4-coloring is NP-complete for (P, C¢)-free graphs when t > 7 and £ > 6 with £ # 7; and
4-coloring is NP-complete for (P, Cy)-free graphs when t > 9 and ¢ > 6 with £ # 9.
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Proof. It is easy to check that C7 is a nice 3-critical (P, Cy)-free graph for any ¢t > 7 and ¢ > 6
except £ = 7, and that Cy is a nice 3-critical (P;, Cy)-free graph for any ¢ > 9 and ¢ > 6 except £ = 9.
Applying Theorem [5| with C7 and Cy will complete the proof. a

We shall use a different reduction to prove the next result.
Theorem 8. 4-coloring is NP-complete for (Pr, C5)-free graphs.

Proof. We reduce NOT-ALL-EQUAL 3-SATISFIABILITY with positive literals only (NAE 3-SAT
PL for short) to our problem. The NAE 3-SAT PL is NP-complete [26] and is defined as follows.
Given a set X = {x1,x9,...,z,} of logical variables, and a set C = {C4,Cs,...,C,,} of three-literal
clauses over X in which all literals are positive, does there exist a truth assignment for X such that
each clause contains at least one true literal and at least one false literal? Given an instance I of NAE
3-SAT PL we construct a graph G as follows.

e For each variable z; we introduce a single vertex named as x;. Call these vertices X-type.

e For each variable z; we introduce a ”truth assignment” component F; where F; is isomorphic to

P, whose vertices are labeled by d;ele;d;.
e For each clause Cj = x;, Vx;, V x;; we introduce two copies of C7 denoted by H; and H}. Choose
three independent vertices of H; and name them as ¢;,;, ¢i,; and c¢;,;. Choose three independent
/

: ! / / : ! :
vertices of H} and name them as ¢;, ;, ¢;,; and ¢;_ ;. Call these vertices C-type and C’-type, respectively.

The remaining vertices in clause components are said to be of U-type.

e Make each U-type vertex adjacent to each X-type vertex and each vertex in F; for 1 <i < n.

e Make each C-type vertex ¢;; adjacent to x; and d; and make each C’-type vertex c;j adjacent to
x; and d}.

This completes the construction of Gy. It is easy to see that d; and d; have no common neighbor
in G — U and same for e; and €.
Claim 1. The instance I is satisfiable if and only if Gy is 4-colorable.
Proof. Suppose first that G is 4-colorable and ¢ is a 4-coloring of G;. Without loss of generality, we
may assume that the two adjacent U-type vertices in H; receive color 1 and 2, respectively. Now as

U is complete to X U F, it follows that each x; and each vertex in Fj receives color 3 or 4. Further,
o(d;) # ¢(d;) for each i. We define a truth assignment as follows.

e We set z; to be TRUE if ¢(z;) = ¢(d;) and to be FALSE if ¢(x;) # ¢(d;).

We show that every clause C; contains at least one true literal and one false literal. Suppose z;,,
Z;,, and z;, are all TRUE. Then it implies that (b(d;j) # ¢(x;;) for all j = 1,2,3. As a result, cgj
must be colored with color 1 or 2 under ¢. Moreover, all U-type vertices in H ]’ are colored with 1 or
2 under ¢. This contradictions the fact that H ]’ = (7 is not 2-colorable. If z;,, z;,, and x;, are all
FALSE we would reach a similar contradiction. Conversely, suppose that every clause C; contains at
least one true literal and one false literal. We define a 4-coloring ¢ as follows.

e Set ¢(x;) = 3 if x; is TRUE and ¢(x;) = 4 if z; is FALSE.
e We color vertices in F; alternately with color 3 and 4 starting from setting ¢(d;) = 3.

o Let C = x;, Vi, Vay, be a clause. Without loss of generality, we may assume that z;, is TRUE
and z;, is FALSE. It follows from the definition of ¢ that ¢(x;,) = ¢(d;;) = 3. Hence, we can color
ci,; with color 4, so that H; —c;,; can be colored with colors 1 and 2. Similarly, we can 4-color HJ’ g

Claim 2. G is C5-free.

Proof. Let Q = vy...v5 be an induced C; in G;. Let C; (respectively C!) be the set of C-type
(respectively C’-type) vertices that are adjacent to x;. Let G; be the subgraph of G; induced by
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{z;} UC; U C! U F;. Note that G — U is disjoint union of G;. Suppose first that @ N U = 0. Note
that both e; and e} have degree 2 in G;. If @) contains e; or e}, then @ contains F; as an induced
subgraph and thus the fifth vertex of @ would be a common neighbor of d; and d., a contradiction. So
QN{e; e} =0. 1 QN{d;,d;} =0, then Q is a star which is impossible. Without loss of generality, we
assume that d; € Q. If d is also in @, then there would be a common neighbor of d; and d;. So d} ¢ Q.
Then the two neighbors of d; on @ must be of C or C’-type, and so the other two vertices have to be
of X-type, which is not possible. Hence, @ NU # (). Suppose v; is of U-type and from H;. If both vy
and vs are of X-type or F-type, then v3 and vs have to be C' or C’-type. But this is a contradiction
as CUC" is independent. If both vy and vs are in Hj, then @ C H;, which is impossible as H; = C7 is
C5-free. So we assume that v, is of X-type or F-type and vs is in H;. Then vs must be C or C'-type.
Moreover, vy must be of C' or C’-type as it is not adjacent to vy or ve. This is impossible since v4vs
is an edge. a

Claim 3. G is Pr-free.

Proof. Let P be an induced P; in Gj. We first consider the case PNU # (). Let u € P be an U-type
vertex and wu is in some clause component H;. For any vertex  on P we denote by 2~ and z* the
left and right neighbor of z on P, respectively. Suppose first that u is an endvertex of P. Then u™ is
in XUF or H;. If ut is in H;, then P C H;, which is a contradiction since H; = C7 is Py-free. So u™
isin XUF. If u™ is in C' U C’, then |P| = 3, a contradiction. So ™ is in U. But now ™" must
be in C UC’, and thus |P| = 4, a contradiction. Hence, v must have degree 2 on P. If u~ and u™ are
both in Hj, then P C Hj, a contradiction. If v~ and u™ are both in X U F, then v~ and u™" are
both of C- or C’-type. Hence, |P| < 5 since C U C’ is independent. So we may assume that u™ is in
H; and v~ is in X U F. Now u™ must be of C- or C’-type and hence an endvertex of P. Therefore,
|[P|<2+4—-1=5.

We have shown that PNU = (). So P C G, for some i. Now we show that |[P N C;| = 1. Otherwise
assume that |P N C;| = 2. Let ¢; and ¢y be the vertices in PN C;. If ¢; and ¢y are not at distance
2 on P, then z; and d; are not on P otherwise P would not be induced. However, x; and d; are the
only neighbors of C-type vertices in G;, a contradiction. So, ¢; and ¢ must be at distance 2 on P. If
they are connected by d;, then x; ¢ P and vice versa. But now |P| = 3, since C; U C! is independent.
Therefore, |P N C| < 1 and similarly |[PNC’| < 1. So, we must have F; U {z;} C P, and thus P = C7,
a contradiction. a

The following result is a direct corollary of Theorem [§]

Theorem 9. Let k >4 and t > 7. Then k-coloring is NP-complete for (P, Cs)-free graphs.

7 Conclusions

We have undertaken a first systematic study of the k-coloring problem for graphs without an induced
cycle Cy and an induced path P,. We have shown that while for many values of k, ¢t and ¢ these
problems are NP-complete, the case of (FPs, Cy)-free graphs offers much structure to be exploited. In
particular, we have shown that there are for each k only finitely many non-k-colorable (Pg, Cy)-free
graphs.

For k = 3 and k = 4, we were able to describe these minimal obstructions explicitely, and so
obtained certifying polynomial time (linear time if a clique cutset decomposition is given) algorithms
for coloring (Pg, Cy)-free graphs. However, for larger k, we do not know certifying k-coloring algorithms
for (Ps, Cy)-free graphs.
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Our hardness results come close to classifying the complexity all cases of k-coloring for (P, Cy)-
free graphs. There seem to be two stubborn cases about which not much can be said with the current
tools, when k = 3 or £ = 3. (But note [67].) Beyond these cases, our results leave only the following
remaining open problems.

Problem 1. What is the complexity of k-coloring (Pg, C5)-free graphs for k > 47
Problem 2. What is the complexity of 4-coloring (P, Cg)-free graphs?
Problem 3. What is the complexity of 4-coloring (P, C7)-free graphs for t = 7 and ¢ = 87

In [I8] Huang conjectured that 4-coloring is polynomial time solvable for Ps-free graphs. If the problems
in Problem [I] for & = 4 or Problem [2] are polynomial, this would add evidence to the conjecture.

We are grateful to Daniel Paulusma for very valuable advice and suggestions.
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Appendix

Proof of Lemma|[6} By Lemmal[j] we may assume that no induced Cs has a 5-vertex. Let C' = vy ... vy
be an induced C5 such that |Ss| is as small as possible. As the graph G3; is a minimal obstruction,
we obtain that |S3| < 7. Suppose first |S3| = 0. It is easy to check that either G contains a K5 or is
4-colorable if S; = (). Hence, we may assume that Sy(vg) # . Going through the same argument as
in Case 2 of Lemma[5] we conclude that each Sy (v;) # () for each 4. If two S (v;) have size at least 3,
then G either contains K5 or Gs 1. Now suppose that |S1(vo)| = 3. Thus |S1(v2)| = |S1(vs)| =1 or
K5 arises. If |S1(v1)| = |S1(va)| = 2, then G = G4 2. Otherwise one of Si(v1) and S1(v4) has size 1 in
which case it is easy to check G is 4-colorable. Now we assume that each |S1(v;)| < 2. If all but one
S1(v;) have size 2, then G = Gp,. Otherwise, there are at least two |Sy(v;)| = 1. It is easy to check G
is 4-colorable. Therefore, 1 < |S5| < 7.

Case 1. |S3| = 1. Let 2 € S3(vg). Suppose first that S; = 0. If Sy(ve,v3) = 0, then both
Sy = S3(v1,v2) and Sa(vs,vs) have at least two vertices as d(vy) > 4 and d(vs) > 4. By (P8),
Sa = Sa(vi,v2) U Sa(vs,vs). As d(xz) > 3, we have that z is not anti-complete to So and hence
complete to Sz by (P10). Now G contains G3; as an induced subgraph and so G = G3;. Thus
Sa(ve,v3) # 0. By (P8), one of S2(vg, v1) and S2(vg, v4) is empty, say Sa(vo,v1). As d(v1) > 4 we have
Sa(v1,v2) # 0 and thus So(vg,v4) = 0. As d(vs) > 4 we have Sa(vs,v4) # 0. By (P10),  must be
anti-complete to Se. But now d(z) = 3 contradicting §(G) > 4.

Therefore, S; # (. Suppose first that S;(vg) # (. Going through the same argument as in Case
2 of Lemma [5| we conclude that Sy(v;) # @ for each i and Sy = 0. It is easy to check that either
G € {G3,1,G22,Gp,} or G is 4-colorable. So, Sq(vg) = 0. We first show that S;(v2) is anti-complete
to Sa(vg,v4). If not, let € Sy(ve) be adjacent to y € Sa(vg,v4). By (P11), S = Si(v2). Further,
Sa(vg,v1) = Sa(vg,v3) =0, and one of Sa(vy,va) and Sa(vs, v2) is empty by properties (P7) to (P9).
As §(G) > 4 there are at least two 3-vertices adjacent to vy or vs. This is impossible as |S3| = 1.
Now if Sy(vg) # 0, then Si(vy) # 0 as vo does not separate S;(ve) and by (P9) we have Sy = 0.
As d(vz) > 4 Si(v3) # 0 and hence Si(v1) # 0. Now by Observation [1} we have x is anti-complete
to S1, contradicting §(G) > 4. Therefore, Si(vy) = 0. Similarly, S1(v3) = 0. Now we may assume
that Sl(vl) 7& @ Then SQ(U27U3) = @ As 5(G) > 4, both SQ(’Ul,’UQ) and 52(1)3,’1}4) have at least two
vertices and so Sz = Sa(v1,v2) US2(vs, v4). By (P10),  must be anti-complete to Sy or G = G5 ;. By
Observation [I| and d(x) > 4 we have S1(v4) = 0. But now {v1,z} is a clique cutset separating S7(v1).

Case 2. |S3| = 2. We distinguish two subcases.

Case 2.1 There exists some ¢ such that S (v;) # 0 and Sy (v;11) # 0. Without loss of generality,
assume that z € S1(vg) and y € S1(v1). By (P9), So = Sa(vg,v1). Suppose first that Ss(vg,v1) # 0.
Then Si(vg) = S1(vs) = 0. As d(va) > 4 and d(vs) > 4 we have |S3(v3)| = 2. Note that Si(v3) is
a clique since S(vg) # 0 and is complete to S3(v3). So, |S1(vs)] < 1 or K5 would arise. Note that
Sa(vg,v1) is bipartite. If S1(v3) = 0, then it is easy to check that G is 4-colorable. So we assume that
S1(v3) = {w}. If w has two neighbors in Sa(vg,v1), then G = G21,1. Thus w has at most one neighbor
in Sa(vg,v1). If |S1(vo)| = 3 or |Si(v1)| = 3, then G = G31. Thus |S1(v;)| < 2 for i = 0,1. Now it
is easy to check that G is 4-colorable. Therefore, So(vg,v1) = () and thus So = (). We consider two
subcases.

Case 2.1.a There exists some 4 such that |S3(v;)| = 2. Suppose that i =0 (or ¢ = 1). As d(v2) > 4
and d(vs) > 4, we have that |S1(v;)| > 2 for ¢ = 2,3. By (P12), = is complete to Ss(vo) and hence
S1(ve) = {z}. If [S1(v1)| > 2, then G = Ga2. So assume that Si(v1) = {y}. If |S1(v;)| = 3 for
some i € {2,3}, then G = G3 1. If |S1(v4)] > 2 then G = G . Hence, |S1(vs)| = |S1(v2)| = 2 and
|S1(vs)] < 1. Let u; € S1(v;) for nonempty Sy (v;) and let w} € Sy(v;) with ) # u,; for i = 2,3. Let
S3(vg) = {z,2'}. If uy exists, then S3(vg) is anti-complete to S; \ {z} by Observation |1} Thus G has
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a 4-coloring: {vy, vy, 2}, {vo, V2, ug, usz}, {vs,y, us, 2}, {uh, us, 2’}. If uy does not exist, then y may or
may not be adjacent to S3. In either case, G has a 4-coloring: {v1,v4, z}, {vo,vs3,u2,y}, {v2,us, 2},
{2/, u5, us}.

Now suppose that i =4 (or i = 2). As d(v;) > 4 we have |S1(v;)| > 2 for i = 1,2. We may assume
that S1(v4) = 0 or we are in the case i = 0. Since {v1} does not separate S1(v1), S1(vs) # 0. By
Observation [I} S3 is anti-complete to S;. Note that [S1(vs)| + |S1(vo)| < 3 otherwise G = Gz or
G = Ga,2. Let u;,u} € S1(v;) for i = 2,3 and S3(v4) = {z,2'}. If each S;(v;) has size less than 3,
then G has a 4-coloring: {vg, vs,y}, {va, va, u), x}, {v1,uz2,us, 2}, {uh, uf, 2'}. So assume without loss
of generality that |Si(v2)| = 3 and hence Sy (vg) = {z}. It is easy to check G is also 4-colorable.

Finally, suppose that i = 3. As d(v;) > 4 we have |S(v;)| > 2 for i = 0,1. If Si(v3) = 0, then as
G has no clique cutset, Sq(v;) # 0 for j = 1,4, and we are in the case i = 4. So S3(v1) = {z}. Note
that [S1(vo)| = |S1(v1)| = 2 or G = G31. Moreover, each of Sq(v1) and S1(v4) has size at most 1 or
G = G2,2. Now it is easy to check that G is 4-colorable.

Case 2.1.b Each S5(v;) has at most one vertex. Let N be the set of v; such that S3(v;) # (). Then
there are six possible cases.

Suppose first that N = {vg,v1}. Let t € S3(vg) and r € S3(vy). Since ztvgvzvar # Ps, we have
rt € E or rx € FE. Similarly, the fact that yrvsvsuvyt # Pg implies that rt € E or yt € E. If
rt ¢ E, then xr and yt are edges and so tary = Cy. Hence, rt € E. As d(vs) > 4, |S1(vs)| > 2.
Similarly, both Si(v2) and Si(v4) are nonempty. By Observation [} ¢ (respectively r) is anti-complete
to S1\ S1(vo) (respectively S\ Si(v1)). Note that [Si(vs)| = 2 or G = G31. If S1(vg) has two
vertices, then {vg,v1,¢,7,y} U S1(vg) U S1(v3) induces a Gp, with respect to tvyuivsvg and ufujvor
where u;,u} € S1(v;) for each i. Hence, S1(vo) = {x}. Similarly, Sy1(v1) = {y}. If |S1(v2)| = 3, then
G = G22. So |51(v;)] <2 for i = 2,4. Now it is easy to check G is 4-colorable.

Now suppose that N = {vy,v2}. Let t € S5(v2) and r € S3(vy). As 6(G) > 4 we have |S1(vq)| > 2
and |S1(vs)| > 1. By Observation (1} we have ty ¢ E. Since tvzvgwyr # Ps, we have rt € E, where
w € S1(vq). We may assume that Si(v2) = 0 or we are in the case N = {vp,v1}. Note that r is anti-
complete to S1(vo) as S1(vs) # 0 and G is Cy-free. Since d(x) > 4 we have |S1(vg)| + |S1(vs)| = 4. If
|S1(v4)| = 3, then |S1(v1)| = 1. Also, |S1(vs)| <2 or G = G3 1. Now G is 4-colorable. So, |S1(v4)| = 2.
As §(G) > 4 we have |S1(v1)| = 2. If |S1(vs)| > 2 then {vy,ve,vs, us, ul, us, us,r,t} induces a Gp,
with respect to vivevzusu) and uguirt where u;, u; € S1(v;). So, |S1(v3)| = 1 and then |S;(vo)| = 3.
Now S1(vo) U {vo, us, r,v1,ur,u} } induces a Gz o with respect to induced K5 — e = S1(vo) U {vo, us}
and K4 = rvjuju). This completes the proof of N = {vy,va}.

Let N = {v2,v3}. As 6(G) > 4, both S;(v1) and Sp(v4) are nonempty, and S (vg) has at least two
vertices. If one of S;(v2) and Sy(v3) is nonempty, we are in one of previous cases. But now {vg} is a
clique cutset separating S7(vg).

Let N = {vg,vs} and let r € S3(vg), t € S3(vs). As 6(G) > 4 we have S1(v;) # 0 for i # 4.
Let u; € S1(v;). By G is Cy-free, we have r (respectively t) is anti-complete to Sp(v1) (respectively
S1(v2)). Then as d(uy) > 4 and d(ug) > 4, we have |S1(v1)|+|S1(v3)] = 4 and |S1(v2)| +|S1(vo)| = 4.
If |Sl(1}o)| = 3, then |51(U2)‘ = |51(U2)| = 1, and so ‘51(1}1” = 3. Now G = G3,1. So each Sl(vi) has
size 2. But now {r,v4,t,v3,v9} U S1(vo) U S1(v1) induces a Gp,.

Let N = {vg,v2}. As in the case where N = {vg,v3}, we obtain that each Si(v;) # (). Moreover,
each S7(v;) has size 2 except S;(v1). Hence, G = Gp,.

The case N = {v2,v4} is the same as N = {vg,v3}. This completes the proof of Case 2.1.

Case 2.2 One of S1(v;) and S1(v;41) is empty for each i. Hence, there are at most two nonempty
S1(v;). We consider following three cases.

20



Suppose first that there are exactly two S1(v;) that are nonempty. Without loss of generality, we
assume that S1(vg) and S;(vs) are nonempty. By (P9), we have Sy = (. As d(v1) > 4 and d(vy) > 4,
we have |S3(vg)| = 2 but this contradicts d(vs) > 4.

Now we suppose that S1(vg) # 0 while S1(v;) = 0 for i # 0. Let & € S1(vg). Note that Sa(va,v1) =
Sa(vs,vg) = 0.

We first claim that S5 is not anti-complete to Si. If not, = has a neighbor y € Sa(va,v3) or {vg}
would be a clique cutset. Further, one of S(vg,v4) and Sa(vg,v1) is empty, say So(vg,vs). Since
d(vq) > 4, we have S3(vy) = S3(v2) = 0. Also, S5(vo) = 0 by our assumption. If S5(vs) # 0, then
|S2(vo, v1)| > 1 since d(v1) > 4. Since {vg, v1} does not separate Sa(vg, v1), S2(vg,v1) has a neighbor
t in S3(vs) and hence ty € FE by the property (P10). Now tyzvy = Cy. So it must be the case that
|S3(vs)] = 2. Then |S2(vg,v1)| > 1 since d(v1) > 4 and so {vg,v1} is a clique cutset separating
Sg (1}0, ’Ul).

Hence, S5 is not anti-complete to S1, and thus [S3(vs)US3(v2)| < 1. By d(v2) > 4 and d(vs) > 4 we
have that Sz(vg,vs) # (). We first consider the case that Sy(vg) is anti-complete to Sa. If S3(v3) # 0,
then G would have a clique cutset separating S;(vg). So, S3(vs) = S3(ve) = 0. Further, there is no
S3(v;) having size 2 or G would have a clique cutset. Let Sz = {r,t}. If r € S5(v4) and t € S3(vp),
then rt ¢ E or clique cutset would arise. Thus, Sa(vo,v1) # 0 as d(v1) > 4. As {ve,v3} is not a
clique cutset, 7 is not anti-complete to Sa(va,v3) and hence complete to Sz(ve,v3) and Sz (vg,v1). As
d(ve) > 2,|82(ve,v3)| > 2 and thus Sa (v, v1) = {q}. As d(q) > 4 we have ¢t € E and thus rqtvs = Cj.
By symmetry, it is impossible for r € S3(vg) and ¢ € S3(v1). Finally, it is impossible for Ss(v4) and
S3(v1) to be nonempty by properties (P7) to (P9) and §(G) > 4. Therefore, we may assume that x has
a neighbor y in Sy (ve, v3). Without loss of generality, we assume that S3(vs) = ). Next we distinguish
two cases by properties (P7) to (P9).

(I) 52(’1}07’01) = @ Then 53 = 53(1}0) U 53(’1)1) by d(’Ul) Z 4. If |53(U0)| = 2, then |Sg(’02,1}3)| 2 2
by d(vs) > 4. If x has a different neighbor 3’ in Sz (vs, v3), then G = Ga,1,1. If there is an edge other
than zy between Si(vp) and Sa(va,vs), then G = Gy 1,1,1. Hence, S2(ve,v3) \ {y} is anti-complete to
Sy and thus {ve, v3} is a clique cutset by (P4) to (P6). If |S3(v1)| = 2, then we are in the case S5 is
anti-complete to S1. Now let ¢ € S3(vy) and r € S3(vg). By 6(G) > 4 we have |Sa(va,v3)| > 2 and
|S2(vo, va)| > 1. As {vg, v4,7} does not separate Sa(vg,v4), t is not anti-complete to Sa(vg,v4) and
hence complete to Sz(vg,v4) and Sa(va, v3). Thus Sa(vg,vs) = {q}. As d(q) > 4 we have qr € E and
thus rt € F or grvit = C4. But now it is easy to see G contains G'3; as an induced subgraph.

(IT) Sa(vo,v4) = 0. So, S3(v;) = 0 for ¢+ = 1,2. Note that it is impossible that |S5(vs)| = 2
by our assumption. If |S3(vq)] = 2, then we are in the case where S3 is anti-complete to Sp. If
|S3(vo)| = 2, then the only edge between Si(vg) and Sa(ve,v3) is xy or G € {G11,1,1,G21,1}. As G
has no clique cutset, S1(vg) = {z} and S3(vg,v1) = 0. Note that S3(vs,vs) is bipartite and thus G
is 4-colorable. If |S3(v3)| = [S3(vo)| = 1, then Sa(vg,v1) # 0 by d(v1) > 4 and thus {vg, vy} U S3(vp)
would be a clique cutset. If |S5(vy4)| = |S3(vg)| = 1, then it is same as the third case in (I). Finally,
|S3(vs)| = |S3(va)| = 1. Let r € S3(vs) and ¢t € S3(vz). Then |S2(vo,v1)| > 2 as d(vy) > 4. As G has no
clique cutset, r is not anti-complete to S2(vg,v1) and thus complete to Sy. Thus, Sa(vo,v1) = {p,p'}
and So(ve,v3) = {y}. Since tvsyxvep # Ps, we have ty € E and so rt € E or yrugt = C4. Now
G=Gs,.

Finally, we assume that S; = 0. Consider first that |S3(vg)| = 2. If Sa(v2,v3) = 0, then both
Sa(v1,v2) and Sa(vs, v4) contain at least two vertices since d(ve) > 4 and d(v3) > 4. As G has no clique
cutset, there exists t € S3(wvg) that is complete to Sy by (P9). But now G = G31. So, let & € Sz(va, v3).
Then one of Sy(vy,vs) and Sa(vz,v4) is nonempty, say y € So(vs,v4). If So = So(vy,v2) U Sa(vs,vs4),
then |Sa2(vs,v2)] = 2 and |S2(vs,v4)| = 1. Now G is 4-colorable. Hence, either So(vi,va) # 0 or
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Sa(vg,v4) # 0. In the former case, Ss is anti-complete to Sy or Cy occurs and thus G is 4-colorable.
In the latter case, we have |Sa(vs,v2)| = 2, |S2(vs,v4)] = 1 and |S2(vg,v4)] < 2. Note that any
t € S3(vg,vs) is not complete to Sy(vg) or K5 would occur, and hence G is 4-colorable. Hence, no
S3(v;) has size 2. Suppose that |S3(vo)| = |S3(v2)| = 1. If Sa(vs,v4) = 0, then Sa(vo,v4) # ) and so
S3(vo) U {vg, va} is a clique cutset. So, Sa(vs,vs) # 0. Now as d(vg) > 2 and d(v2) > 2 we have three
Sa(v;,vi+1) are nonempty, contradicting the property (P7).

So, there must be the case that |S3(vo)| = [S3(v1)] = 1. Let » € S3(vg) and t € Ss(vy). If
Sa(vg,v3) = 0, then |Sa(vy,v2)| > 1 and |S2(v3,v4)| > 2. As G has no clique cutset, 7 is not anti-
complete to Sa(vs,v4) and thus complete to Sa. So, |S2(v1,v2)] = 1 and [Sa(vs,vs)| = 2. Let ¢ €
Sa(v1,v2). Note that gt € E as d(q) > 4. Hence, 1t € E or gruvit = Cy. Now G = G3 1. Therefore,
Sa(ve,v3) # 0. By symmetry, Sa(v4,vs) # 0. Let p € Sa(vs,ve) and ¢ € Sa(v4,vs). If Sg = Sa(vz,v4) U
Sa(vs,v2), then G has a 4-coloring ¢: {vg,ve,q}, {v1,v4,p}}, {r,p'}, {vs,t} if Sa(vs,v2) = {p,p'}.
If S2(vs,v3) = {q,¢'}, then G has a 4-coloring by replacing {r,p'}, {vs,t} in ¢ with {¢,q'}, {vs,7}.
Hence we assume by symmetry that So(vi,ve) # 0. Let s € Sa(vy,v2). By (P9) and Cy-freeness of
G, we have r is anti-complete to Sz and thus rt € E since d(r) > 4. Suppose Sa(ve,v3) = {p}. If
Sa(vy,v9) = {s,s'}, then t is not complete to {s,s'}, say ts’ ¢ E, since G is Ks-free. Hence G has
a 4-coloring: {r,q,v2}, {vo,vs,s}, {va,v1,p}, {t,8,¢'} where ¢ € Sa(vs,v4). Finally, suppose that
Sa(vg,v3) = {p,p'}. Then S2(vs,v4) = {q} and Sa(vy,v2) = {s}. If t is complete to {p,p’, s}, then Kj
would arise. Otherwise it is easy to check that G is 4-colorable. This completes the proof of Case 2.

In the remaining of the proof, we shall frequently consider some induced Cs = C’ with C" # C or
C5 = C; by modifying C with respect to some vertex ¢t ¢ C. We can then define p-vertices with respect
to C’ and C; as well. We adapt those definitions by using the notation 51/7 and Sf,. For example, S}
is the set of 1-vertices with respect to C’, and St is the set of 1-vertices with respect to C;, and so
on. Let s = (s1,...,85) be an integer vector. We say that C is of type s if S3(v;) has size s; for each
0<<4.

Case 3. |S5| = 3. There are four possible configurations.

C is of type (2,1,0,0,0). Let S3(vg) = {z,2'} and S3(v1) = {y}. We may assume that zy ¢ E.
If t € Si(vs) then tvsvazviy = Ps. So, Si(vs) = 0. Let Cp = C'\ {vo} U{z} and C,, = C'\ {vo} U {y}.
As zy ¢ E, we have S5 NSy # 0 and S§ NSy # 0. Let p € S5 NSy and g € SY N Sy. Note that zp € F
and qy € F by definition of p and ¢. Suppose first that p € Sy(v1,v2). Then py ¢ E or pyvox = Cy.
If ¢ € So(ve,v3), then gpuiy = Cy. So, ¢ € Sa(vg,v4). By (P8), Sa(vs,v4) = Sa(vs,va) = (. Now
d(v3) = 2 as S1(v3) = 0. Therefore, p € Sa(vs,v4). Then py € E or pyviz = Cy. If ¢ € Sa(vg, v4), then
gz ¢ E or qrviy = Cy. Also, gp € E and so pquox = Cy4. Thus g € Sa(va, v3). Now by (P7) to (P9) and
the fact that xp, qy € E, we have Sy = Sy (va, v3) U S2(vs,v4) and S; = (). Thus, 2 < |Ss| < 3. Suppose
first that Sa(ve,v3) = {q,¢'}. Then G has a 4-coloring: {v1,v4, q}, {vo,v2,p}, {y,x,v3}, {2, ¢'}. Now
suppose that Sa(vs,vs) = {p,p'}. If 2’y ¢ E then N(y) = {vg,v1,v2,q}. Since G is a minimal
obstruction, G — y has a 4-coloring ¢. Note that ¢(vi) = ¢(v4) = ¢(q). Hence, ¢ can be extended
to G, a contradiction. So, 2’y € E and so 2'p ¢ F or 2'pqy = Cy. Now G has a 4-coloring: {v1,v4, ¢},
{’007 U27pl}7 {yv €, 03}7 {x/’p}'

C is of type (2,0,1,0,0). Let S3(vg) = {x, 2’} and S3(v2) = {y}. We first claim that S (v3) = 0.
Otherwise let ¢ € Sq(v3). Suppose that Sq(vi) # 0. Let p € Si(v1). Then tp € E. By (P9), Sy = 0.
Let C' = vstpviva. Note that x,2" ¢ S as {z,2'} is anti-complete to {t,vs,v2}. So, |S5 N S1| > 2
by the minimality of C. It is straightforward to check that |S5 N (S1(v1) U S1(v3))| > 2 and thus
|S1(v1)] + 1S1(v3)| > 4. So, |S1(v1)] + |S1(v3)] =4 by G is Ks-free. As d(ve) > 4 we have Sy (vg) # 0.
Let g € S1(v2). Since {v2,y} is not a clique cutset separating Sy (v2), S1(vo)US1(v4) # (. Suppose that
t' € S1(vs). Then t'q € E. Let C" = v4t’quavs. Similar as above we have that |Sy(v2)| + |S1(v4)| = 4.
If Si(vg) # 0 then G = Gp,. If |S1(v1)| = 3 or |S1(va)| = 3 then G = G31. So, each Si(v;) has size
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2. But now {z,z’,vg,v1,v4} U S1(v1) U S1(v4) induce a Ga 2. Thusm Si(vs) = 0 and so S1(vo) # 0.
Since Si(vg) is complete to S3(vg), we have {x,x’,v9,v1} U S1(vo) U S1(v1) U S1(v3) induces a Ga o
or Gz1. So, S1(v1) = 0. Let p € Si(vo). pt € E. Note that Si(vg) = {p} or K5 would arise. Also,
So = . Let C" = wvoptvgvs. As y is anti-complete to {vg,vs,p}, y ¢ S and so S NSy # 0. Let
t' € S5N Sy and it is easy to see that ¢’ € S1(vs). Thus, S1(vs) = {¢,t'} or {z, 2’} UC" U S1(vs) induces
a G3.1. Now by (P11), we have S;(vs) is anti-complete to Sa(vg,v1). Hence, {¢,¢'} is complete to y as
d(t) > 4 and d(t') > 4. Now G contains G311 as an induced subgraph. So far, we have showed that
S1(v1) = S1(vg) = 0 if Si(v3) # 0. As {v3,y} is not a clique cutset separating S;(v3), we may assume
that ¢ has a neighbor p € S3(vg,v1). By Observation 1| (3), y is anti-complete to {p,¢}. Then the fact
that yvstpvox(a’) # Ps implies that p is complete to {z,z’} and so {p,vo,v1,z,2'} induces a K.

Therefore, S1(v3) = 0. Next we claim that Ss(vs,vs) # 0. If not, we have Sa(vs,v4) # 0 and
Sg(Ul,Ug) 75 @ as d(’Ug) Z 4 and d(U3) Z 4. SO7 52 = 5’2(111,112) U SQ(’Ug,’U4) and 51 = 51(1}1) U 51(1}4).
Suppose that ¢ € Sa(v1,v2) is adjacent a vertex ¢ € Si(vq). By Observation [1| (3), {x,2'} is anti-
complete to {q,t}. Hence, {z,z'} is anti-complete to Ss. Also, S1(v1) = 0. Let C' = vyvzvaqt. Note
that x, 2z’ ¢ S5 and so |S5 N (S1 U S2)| > 2. Note that S5 N Sz(vs,ve) = 0. If S5 N S1(vg)] > 2 or
|54 N Sa(vyg)| > 2, then {z,2’,vp,v1,v4} U S1(va) U S2(vy) induces a Gs 1 or Goo. Thus, there exists
a vertex ¢ € S4 N Sy(vy,v2) with ¢’ # q. Now qy € E as zvgtquay # Ps. Since ¢'q € E, ¢'y ¢ E
or K5 would arise. But then yvoq'tvyx = Ps. Therefore, S1(v4) is anti-complete to Sa(vy,vs). Since
{v1,v2,y} is not a clique cutset separating Sao(vy,vs), S2(v1,v2) is not anti-complete to {z,z’}. Thus,
we may assume that 2’ is complete to Sz by (P9). Now note that S (v1) is anti-complete to Sa(vs, v4) by
Observation[1](3). If t € Sy (vs) and ' € Sy (v1), then {z, 2’} is anti-complete to {¢,'} by Observation![i]
(1). Also, ty ¢ E. As d(t) > 4, we have |S1(v1)|+ |S1(v4)| = 4. Then {x, 2', v, v1,v4}US1(v1) US1(v4)
induces a Go2 or Gs 1. So, if S1(vs) # 0, then Si(v1) = 0 and thus {vs, 2,2’} would be a clique
cutset. Hence, S7(v4) = 0. Since x’ is complete to Sa, we have that 2 < |Ss| < 3. Moreover, py ¢ F or
pyviz’ = Cy. Thus y is anti-complete to Sa(vs, v4). Next we show that Sy (vy1) is a clique. Let ¢ € S1(v1)
and A be the component of S;(vg) containing ¢. Since {vy,z, 2’} is not a clique cutset separating A,
A is not anti-complete to y and hence complete to y. Further, since vox'pvsyt # P, we have 2t € E
and thus A is complete to z’. Hence, A is a clique. By G is Cy-free, S1(v1) = A and |4| < 2 by G
is Kps-free. If Sy(vs,v4) = {p} then zp € E as d(p) > 4. Thus, Sa(v1,v2) = {¢} or K5 would arise.
Note that gy ¢ F or G = Gp, with respect to zquavsp. Now S; = () or if ¢ € Sy(v1) then tz'quay
and vy induce a W5. Now G has a 4-coloring: {vo,p,q,vy}, {va,v1}, {z,v3}, {2',v2}. So, we assume
that So(vg,v3) = {p,p’} and thus Sa(v1,v2) = {¢}. Now z is anti-complete to Sy or K5 would arise. If
|S1(v1)| =2, then G = G351 . So, S1(v1) contains at most one vertex. If S;(v1) = {t}, then qy ¢ E or
qytz’ = Cy. Now G has a 4-coloring: {v1,v4}, {2/, v3}, {t,v2,p,v0}, {z,9,0,q}. So, S1(v1) = 0. Also,
qy € E as d(q) > 4. Now {a’,v4,p,p’,v3} = K5 — e and {v1, ¢, v2,y} = K4 induce a G 2.

Therefore, let p € So(va,v3). As {ve, v3,y} is not a clique cutset separating S (v, v3) the following
three cases are possible. First we suppose that So(v1,v2) # 0. Let ¢ € Sa(v1,v2). By Observation
(2), y is complete to Sa(vy,v2) U Sa(ve,vs). Thus, Sa(ve,vs) = {p} and Sa(ve,v3) = {q}. Further,
S1 = Si(ve) and so Sy1(v2) = 0 or {ve,y} would be a clique cutset. Suppose that So(vs,vs) # 0.
Note that {x,2'} is anti-complete to So. If So(vs,vs) = {r}, then G has a 4-coloring: {vi,v4,p},
{vo,vs, ¢}, {z,r,v2}, {2/, y}. So, Sa(vs,v4) = {r,r'}. Then y is not complete to {r,r'}, say yr’ ¢ E or
{r,r,p,vs3,y} would induce a K5. Then G has a 4-coloring: {v1, v4, p}, {vo, v3,q}, {x,r,v2}, {2/, y,7'}.
So, we may assume that So(vs,v4) = 0. If So(vg,v1) # 0, then G has a 4-coloring as above. Suppose
that r € Sy(vp,v1). The fact that vspgrvgr # Ps implies that xq € E or xr € E. Similarly, 2'q € E
or 2'r € E. Also, the fact that xq (respectively z'q) is an edge implies that zr (respectively x'r) is
an edge, since G is Cy-free. Hence, g is not complete to {x,2'}, say gz’ ¢ E or {z, 2’ vy, v1,r} would
induce a K5. As qz’ ¢ E, 2'r € E. Hence, ar ¢ F and so zq € E. Now xz'rq = Cy.
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Therefore, we may assume that Ss(vi,v2) = 0. Suppose that Ss(vs,vg) # 0. Let g € Sa(vs,vs).
Note that S; = @ since S;(v3) = 0. Suppose that r € S3(vg, v4). Note that r is not complete to {x,z’'},
say zr ¢ E. As vapqrvgxr # Ps, we have zq € E. But now zgrvg = Cy. So, Sa(vg,v4) = 0. Thus
2 < |S2| < 3. Now as yuapquavg # Ps, we have yp € E or yqg € E. Also, if yqg € E then yp € E or
yvapq = Cy4. So, yp € E and thus Ss(vq,vs) = {p}. Suppose first that Se(vs,vs) = {¢}. Note that ¢
is not complete to {z,y} or {#/,y}. Thus G has a 4-coloring: {v1, v4,p}, {¢,y,v0}, {x,ve}, {2/, vs} if
qy ¢ E, and otherwise we move ¢ from {q,y,vo} to {x,v2}. Now suppose that Sa(vs,vs) = {q,¢'}.
Then we may assume that gy ¢ E or K would arise. Also, {q,¢'} is not anti-complete to {x,z'}.
If ¢’y ¢ E, then ¢ and ¢’ are in the same place thus we may assume that gz ¢ E. Now G has a
4-coloring: {v1,v4,p}, {¢,y,v0}, {¢,x,va}, {2',v3}. Otherwise ¢'y € E and so ¢ is anti-complete to
{z,2'}. Then G has a 4-coloring: {v1,v4,p}, {q,y,v0}, {q, z,v2}, {2’ , v3}.

Now we may assume that Se(v1,v2) = Sa(vs,v4) = 0 and p has a neighbor ¢ € S;(vg). Then ¢
is complete to {z,z'}. Also S1 = Si(vg) by (P11). Let C’ = vovavsp. Clearly, y ¢ S% as y is anti-
complete to {vyg,vg,t}. Thus S N (S1 U Se) # 0. It is easy to check that S5 N S1 C S1(ve) N SE(¢) and
5S4 N Sa(va,v3) C S1(vg) N S(p). Let r € S5. If v € S1(vg), then rt € E and so {z,z’,vo,r,t} induces
a K. Hence, r € Sa(ve,vs) and now {x, z'vg, v1, v, t, v3,v2, p,r} induces a Ga11.

C is of type (1,0,1,1,0). Let = € Ss3(vg), y € S3(vz) and z € S3(v3). We first show that
Si(vg) = 0. If yz € E, then if t € S1(vy) we have G = Gao. If yz ¢ E, then yvazvsvot = Ps. Next
we claim that yz € E. Otherwise let C, = C'\ {v2} U {y} and C, = C\ {vs} U{z}. Asyz ¢ E, we
have that Sy N (S US3) # 0 and S5 N (S1 U S2) # 0. Let p € S§ N (S1US2) and g € S5 N (S1 USs).
Then py,qz € E by definition of p and ¢. Since G is Cy-free, pz,qy ¢ E. We consider the case
p € Sa(vg,vy1) first. If ¢ € Sa(vg,vy), then x is complete to Sz (vg, v1) U S2(vg, v4) by Observation (2).
Note that S; = (0. Further, So(v1,v2) = So(vs,v4) = Sa(ve,v3) = 0 by (P7) to (P9). As G is Ks-free,
Sa = {p, q}. Hence, G has a 4-coloring: {x,y, z}, {p, va, v2}, {q,v1,v3}, {vo}. Thus g € Sa(v1,vs). Now
pquoy = Cy as qy ¢ E. Hence, p € So(vs,v4). If ¢ € So(vy,v2), then So(vg,v1) = Sa(vg,vs) = @ and
so N(vg) = {v1,v4, 2}, a contradiction. Thus, g € S3(vg,v4). But now pgzvs = Cy. Therefore yz € E.
Recall that S1(vg) = 0. As d(vg) > 4, we may assume that there exists a vertex p € Sa(vp, v1). Since
G has no clique cutset, the following four cases are possible.

Case a. Sa(vg,v4) # 0. Let ¢ € Sa(vg,vq). By Observation [1| (2),  is complete to Sa(vg,v1) U
Sa(vg,v4) and so Sa(vg,v1) = {p} and Sa (v, v4) = {q}. Note that Sy = (). If Sy = {p, ¢}, then G has a
4-coloring: {q, v1,vs}, {p,ve,v4}, {y,x}, {2, v0}. Now by symmetry, we may assume that r € Sy (vq, v2).
Then z is anti-complete to Sz and so G has a 4-coloring by adding r to {z, v} if S2(v1,v2) = {r}. So,
let So(vi,ve) = {r,r'}. As G is Ks-free, y is not complete to {r,r'}, say yr’ ¢ E. Then yp € E since
yvar'pquy # Ps. But now privoy = Cy.

Case b. S3(vi,v2) # 0. Let ¢ € Sa(vi,v2). We may assume that Ss(vg,v4) = (). Suppose that
r € So(vg,v3). Then yr,yq € E by Observation (2). Hence, zr ¢ E or {vg,vs,y, 2,7} would induce a
Ks. So, zq ¢ E or vsrqz = Cy. But then zusrpqug = Ps. So, Sa(ve,v3) = (0. Hence 2 < |S5| < 3. Also,
S1 = S1(v1) and S1(v1) is a clique and thus [S1(v1)| < 2. Suppose that ¢t € S1(v1). Then tyzvsvop # Ps
implies that yp € E and so yq € E or ypqus = Cy. Since vsveqpuoxr # Pg, we have either xp € E or
xq € E. In any case, we have an induced Cy as t is complete to {z,y}. So, S1(vy) = 0. If S = {p, q},
then G has a 4-coloring: {vg, vs, q}, {ve,v4,p}, {x,y}, {2,v1}. Suppose that S3(vo,v1) = {p,p'}. Now
since vzvaqpvox # Ps, we have either zp € E or xq € E. If xq € E, then z is complete to {p,p’}
by G is Cy-free and hence {x,vg,v1,p,p’'} induces a K5. So, xq ¢ E and thus zp € E. Replacing the
argument for {p’, ¢}, we have xp’ € F and so K5 would arise. If Sy(v1,v2) contains two vertices, we
would derive a similar contradiction.

Case c. S3(vg, v1) is not anti-complete to S1(v3). We now may assume that Ss(vg, v4) = Sa(v1,v2) =
(). Without loss of generality, we assume that p has a neighbor ¢ € S1(v3). So, S; = S1(v3) by (P11).
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Moreover, So(va,v3) = 0 or {va,v3,y, 2z} would be a clique cutset. Now pz € E since vavsgpuox # Pg
and so p is the only neighbor of ¢ in S3(vg,v1) or K5 would arise. Let C' = vjvgvsgp. Note that
vo, v, & S5 and y,z € S4. Thus, S5 N (S1 U S2) # 0 by the minimality of C. Let ¢ € S5 N (S1 U S2).
It is easy to check that ¢t € Sy(vs) or t € Sa(vg,v1). If t € Sa(vg,v1), then ¢ must be complete to
{v1,p, q}, contradicting the fact that p is the only neighbor of ¢q. Hence, ¢t € Si(vs) and ¢ must be
complete to {vs,q,p}. By (P12), z is complete to {g,t}. Now G = Hs.

Case d. Now we may assume that py € E. If So(va, v3) # 0, then Sa(vs, v4) = 0 and so {va,v3,y, 2}
would be a clique cutset since S (vg) = (). So, Sa(v2,v3) = 0. Suppose that Sy (v3) # 0. Then S (v1) # 0
or {vs,y, z} would be a clique cutset. But then So = () by (P7) to (P9), a contradiction. So, S1(v3) = 0.
Thus, S; = S1(v1) and So = Sa(vp,v1) U Sa(vs,v4). Next we claim that ap ¢ E. Otherwise zp € E.
Let C' = xpyzvy. It is easy to check that vi,v3 € S} but vo,vy & S%. So, S5 N (S; U Sy) # 0. Let
t € S,N(S1USs). As S1(vy) is anti-complete to {vyg, z,p}, t ¢ S1(v1) and so ¢ € Sy. If t € Sa(vg, v1),
then ¢ is complete to {x,p,y}. If t € Sa(vs,v4), then as py € E we have yt € E and so at ¢ F or
xtyvy = Cy. Hence, t is complete to {v4, z,y}. If S5 N Sy = {t}, then |S5| = 3 and we are in one of
previous two cases. Thus, there exists another vertex ¢’ # ¢ with t' € S5NS2. If t,t' € S3(vo, v1), then
{vg, v1,t,t',p} would induce a Ks. If t,t' € Sy(vg, v3), then {y, z,¢,¢,v3} would induce a K5. Hence,
t € Sa(vg,v1) and ¢ € Sa(vy,v3). But now G = Gs 1. Therefore, zp ¢ E. Now let C" = vopyvsvs. As
xp ¢ E, x ¢ 55. Also, vy ¢ S¥ but z,v; € S{. Hence, S§ N (S1 U S2) # 0. By the same argument as
above, we either find an induced K5 or G2 2 or we are in one of previous two cases.

C is of type (1,1,0,0,1). Let x € S3(vg), y € S3(v1) and z € Ss(v4). We first suppose that
Sa(ve,v3) = 0. As 6(G) > 4, we have the following two cases. Suppose first that So(vq,v2) and
Sa(vs,v4) are nonempty but Si(v2) = Si(vs) = (. By (P9), we may assume that S;(vs) = 0. Now
x is complete to Sy or {vy,ve,y} would be a clique cutset. Also, x is complete to {y, z}, otherwise
considering Cy = C'\ {v1} U{y} or C, = C \ {va} U {2} will obtain by the minimality of C that
Sa(vg, v1)US2(vo, v4)US2(ve, v3) # O which contradicts our assumption and (P8). But now G contains
Gs,1 as an induced subgraph. So, S1(vz2) and Si(v3) are nonempty and Sa(va,v1) U S2(vs,v4) = 0.
Thus, S2 = @) and hence = is complete to {y, z} by the minimality of C. Let p € S1(v3) and g € S} (vs).
Suppose that t € S1(vg). Let C' = xtpvzvg. Then vy, va,y ¢ S5. Hence, S5NSy # (. Let r € S;NSy. It
is easy to check that r € S1(vg) U S1(vs). We claim that SN .Sy(vg) # 0. Otherwise r € Sy (vs). Then
r € S5(p) as r is anti-complete to {vy,z}. If S5 = {vg, 2,7}, then we are in the case C is of type
(1,0,1,1,0). So, |55 N S1(vs)| > 2 and thus G = Go2. Therefore, we may assume that r € Sy (vg). If
S1(vs) = {p,p'}, then C5 = xtpvsz and Py = vavert induce a Gp,. So, S1(vs) = {p} and S (v2) = {¢}.
Now let C" = tquausp. Clearly, z,v,v1,v4s ¢ S5 and so SY NSy # 0. Let s € S§ NSy Clearly,
s € S1(vg)US1(v2) US1(vs). As s ¢ {p,q}, we have s € S1(vp). Hence, s = r. By the minimality of C,
y and z must be in S¥. This implies that y is complete to {t,q,v2}. So, ry € E or rqyz = C4. But then
{z,v0,y,7,t} induces a K5. We have shown that Sj(vg) = 0. As G has no clique cutset, Si(vi) # 0
and Si(vq) # 0. Let u; € S1(v;) for ¢ = 1,4. Note that z is anti-complete to S; by Observation
(1). If [S1(v1)| > 2, say up,u) € S1(v1), then G = Gp, with respect to xyujusz whose 3-vertices are
vavour ). Hence, Sy (v;) = {u;}. Note that pz ¢ F or zpujuy = Cy. Thus, z is anti-complete to Si(v3)
and y is anti-complete to S1(v2). By §(G) > 4, we must have |S1(v2)| = |S1(v3)| = 3. It is easy to
check G is 4-colorable.

Therefore, we may assume that p € Sa(vg,v3). By (P7) to (P9), there are at most two nonempty
S1(v;). If there exists ¢ such that Si(v;) # 0@ and Si(v;y1) # 0, then i = 2 as S3(ve,v3) # 0. Thus
{v2,y} is a clique cutset separating Sq(vz).

Case a. S1(v;) # 0 for some i. As Sa(ve,vs) # 0, S1(v1) = S1(va) = 0. So, i € {0,2,3}. Suppose
first that ¢ = 2 (or ¢ = 3) and let ¢t € Sy(v2). As {vs,y} is not a clique cutset, S1(vs) is not anti-
complete to S2(vg, v4). We may assume that ¢ has a neighbor ¢ € Sy(vp,v4). By Observation [1f (3), y

25



is anti-complete to {g,t} and thus anti-complete to Sa(vo, v4) U S (ve, v3). Let C’ = qtvavsvy. Clearly,
x,v0,v1 ¢ S5. If z € S5, then z € S5(vq) and if y € S5, then z € S5(¢t). Asx ¢ S5, [S5N(S1US2)| > 1.
Let r € S5N(S1USy). If r € Sy(va) = Sy, then r € S4(¢). Also, gr € E puatquor # FPs. Hence, ¢ is the
only neighbor of ¢ in Sz and so r ¢ Sa(vg,vs). Clearly, r ¢ Sa(ve,vs). If 1 € Sa(vs,vy), then r must
be complete to {q,vs,vq} and hence r € S5(vq). So, S5 = S4(vq) U S5(¢). Now as |S5| > 3 either we
are in one of previous cases or G contains G ; as an induced subgraph.

Therefore, we may assume that ¢ = 0. Let C,, = C'\ {vo} U {a}. If 2 is not complete to {y, z}, then
by the minimality of C', we have S% N (S2(v1)USa(vs)) # (), which contradicts (P7). Hence, zy, zz € E.
Suppose that p has a neighbor ¢ € S1(vg). Let C' = vgvv2pg. Note that z is not complete to {p, ¢} by
Observation [I] (3) and hence z ¢ S5. Also, vz, vs ¢ S5. Thus, S5N(S1USy) # 0. Let t € S5N(S1US2).
If t € Si(vg), t is complete to {vg,p,q} and then G = H;. Clearly, t ¢ Sa(vg,v1) U Sa(vo, ve). If
t € Sa(va,v3), t is complete to {g,p,v2} and then G is not 4-colorable and G = H,. We have shown
that S1(vg) is anti-complete to Sa(va,v3). As {va,v3} does not separate Sa(ve,vs), Sa(ve,vs) is not
anti-complete to {y, z}. Without loss of generality, assume that py € E. As before we can show that
S1(vp) is complete to {y, z} and thus a clique. So, S1(vg) = {q} or K5 would arise. Also, pz € E or
pzay = Cy. As d(p) > 4, there exists p’ € Ss(ve,v3) with pp’ € E. Note that in any 4-coloring ¢
of G, ¢(p') = ¢(y) = ¢(z). So if p’ is not anti-complete to {y,z} G is not 4-colorable. Specifically,
if p'y € E then {y,p,p',v3,v2} = K5 — e and {z,,v9,q} = K4 induces a Gs ;. If p’z € E, then
{¢.v0,2,2,y} = K5 — e and {vs,vs3,p,p'} = K4 induce a G22. Thus, we assume that p’ is anti-
complete to {y, z}. As d(p') > 4, there exists p” € Sa(vq,v3) with p'p” € E. Moreover, pp” ¢ E or Ks
would arise, and p"y ¢ E or p”ypp’ = C4. Then the fact that p”p'pyqz # Ps implies that zp” € E,
and thus vszp”p'py = Ps.

Case b. S; = (0. Recall that p € So(ve, v3). We first show that x is complete to {y, z}. Otherwise
suppose zy ¢ E. Since yvixvavsp # Ps, we have yp € E and so zp ¢ E. Since p is an arbitrary vertex
in Sa(ve,vs), we have that y is complete to Sa(ve,vs), and z is anti-complete to Sa(va,vs). Hence,
xz € E by symmetry. Let C, = C\{vo} U{z}. Aszy ¢ E, Si NSy #0. Let ¢ € Sy NSy. zq € E.
Suppose that r € Sa(vo,v4). Then Sa(vy,vy) = 0. Hence, q € Sa(vs,v4). By (PT7) to (P9) and the fact
that yp € E, we have yr € E and thus yrgp = Cy. So, Sa2(vo,v4) = 0. If ¢ € Sa(v1,v2) then pg € E.
Note that qy ¢ E or qyuoz = Cy. Then pquiy = Cy. Thus, g € So(v3,v4). As zq € E, Sa(vy,v2) =0
by (P9). Thus, Sy = Sa(v4, v3) U Sa(vz,v3) and 2 < |Sz| < 3. If Sy = {p, ¢}, then G has a 4-coloring:
{z,v3}, {vo,v2,q}, {y, 2}, {v1,v4,p}. Suppose now that Sa(vs,v3) = {q,¢'}. As vayvozqq # Ps, we
have xq’ € E. As {x,v4,2,q,q¢'} does not induce a K5, z is not complete to {q,q'}, say z¢' ¢ E.
Then G has a 4-coloring by adding ¢’ to {y, z}. Finally, So(v2,v3) = {p,p’}. Then G has a 4-coloring
{z,y,v3}, {vo,ve,q}, {P, 2}, {v1,v4,p} as z is anti-complete to Sy (ve,vs).

Therefore, xy, 2z € E. Next we show that Ss(vy,ve) = Sa(vs,v4) = (. By symmetry, we may
assume that Ss(vy,ve) # 0. Let ¢ € Sa(vi,v2). Then Sa(vg,vs) = 0. As vguzpquiy # P, we have
py € E or qy € E. Suppose first that py € E. Then qy € E or pquiy = C4. Let C' = ypusvavg.
Clearly, v; ¢ S% as vy is anti-complete to {vs,vs,p}, and = € Si(vg), z € Si(v4) and vy € S5(p). If
St = {x, z,v2} then we are in the case C' is of type (1,0,1,1,0). So, let r € S5\ {z, z, v2}. Clearly,
r & Sa(vg,v1) U Sa(vy,ve). If 7 € Sa(ve,v3) then r € S5(p) and G = Gapo. So, r € Sa(vs,v4). As
py € E, pz ¢ E and then rz € F since vivoprvsz # Ps. Hence, y and z are complete to Sa(v1,v3) and
Sa(vs,v4), respectively. So, Se(vi,v2) = {q} and Sa(vs,vq) = {r}. If So(ve,vs3) = {p,p’} and p'y € E,
then p’ € S5(p) and thus G = G2 2. Note z is anti-complete to S2. Now G has a 4-coloring: {x,q,vs},
{vo,m,v2}, {v1,2,p}, {va,y,0'}.

Now we have shown that py ¢ F and thus qy € E. Since p is an arbitrary vertex in S (v, v3), we
may assume that y is anti-complete to Sa(vs, v3). Also, replacing any ¢’ € Sa(v1,v2) we obtain y¢’' € F
and so Sa(vi,v2) = {q} or K5 would arise. If Sa(vs,v4) # 0, then z is anti-complete to Sa(vy,va)
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and complete to Ss(vs,vs) by symmetry. Thus, Se(vs,v4) = {r} and G has a 4-coloring: {z,q,v3},
{vo,m,v2}, {y, 2,0}, {va,v1,p'}, where p’ might be another vertex in Sy (va,v3). If Sa(vg,v1) # 0, then
y is complete to Sa(vg, v1)USa(v1,v2) and thus Sa(vg,v1) = {r}. Also, ar ¢ F or {z,y,vg, v1,7r} would
induce a K5. Note that z is anti-complete to Sy and thus G has a 4-coloring: {z,r,vs}, {vo, q,vs},
{y, z,p}, {v4,v1,p’}, where p’ might be another vertex in Ss(vg,v3). Finally, we have Sy = {¢} U
Sa(ve,v3). If Sa(ve,v3) = {p,p’'} and z is complete to {p,p’}, then {p,p,vs,v2,2} = K5 — e and
{z,y,v0,v1} induce a Ga,2. Otherwise in case of S3(v2,v3) = {p,p'}, we may assume p'z ¢ E and thus
G has a 4-coloring: {z,v2}, {vo,q,v3}, {y, 2,0}, {v4,v1,0'}

Therefore, S2(vi,v2) = Sa(vs,vs) = 0. As {va,v3} is not a clique cutset, Sa(ve,v3) is not anti-
complete to {y, z}. By symmetry, we may assume that py € E. Let C' = ypvsvavg. v1 ¢ S5. Clearly,
x € Si(vg), z € Si(vg) and ve € Si(p). If S5 = {x,2,v2} then we are in the case C is of type
(1,0,1,1,0). So, let t € S5\ {z,z,v2}. Note that t ¢ Sa(vg,v1) as S2(vg,v1) is anti-complete to
{vs,va,p}. I t € Sp(va,v3), t € S5(p) and thus G = Ga.2. So, t € Sa(vg,v4) and ¢ € S5(vg), namely ¢ is
complete to {vg, v4,y}. Thus, at € E. By (P9), y is complete to Sy and hence 2 < |S3| < 3. Note that
zt ¢ E or {vg,v4, 2,1, 2} would induce a K5. Now if Sa(ve,vs) = {p,p'} then p’ € S5(p) and G = Ga 5.
So, Sa(va,v3) = {p}. If So = {p,t}, then G has a 4-coloring ¢: {z,vs}, {vo,v2}, {p,t, 2,01}, {vs,y}.
If So(vo,v4) = {t,t'} then t'z ¢ E or {vg,v4,2,t,t'} would induce a K5. Then G has a 4-coloring by
adding ¢’ to {z,vs} in ¢. This completes the proof of Case 3.

Note that if S3(v;) has two vertices then Ss(v;) is not complete to S5(viy1) as G is Ks-free.
Moreover if S3(v;+1) also has two vertices, then there is at most one edge between S3(v;) and S3(v;4+1)
as G is (K5, Cy)-free.

Case 4. |S5| = 4. There are five possible configurations for Ss.

C is of type (2,2,0,0,0). Let S5(vg) = {z,2'} and S5(v1) = {y,vy'}. As G is (K35, Cy)-free, we may
assume that x is anti-complete to {y,y’} and y is anti-complete to {x,2’'}. Let C' = C \ {vo} U {z}.
Note that y,y" ¢ S%. It is easy to check that S5 N (S USy) C S5 N (Se(vy,v2) U Se(vs,vq)). Hence,
|S%4 N (S2(vi,v2) U Sa(vs,v4))| > 2 by the minimality of C. Suppose that p € S N Sa(vs,vy4). Note
that pz € E. Then as z'xzpvsvey # Ps, we have x'p € E. Further, S N Sa(vs,v4) is a clique and thus
|54 N S2(vs,v4)| < 1 or K5 would arise. Next we show that |S5 N Sa(v1,v2)| < 1. If not, let p,p’ be
two vertices in SN Sy (v1,v2). Then {p,p’,y, v, x,a’, v, v1} contains a Wy. Therefore, we may assume
q € Sa(v1,v2) and p € Sa(v3,v4). Moreover, x is complete to {p, ¢} by definition. As shown above,
we obtain that z'p € E. So, {z,z'} is complete to S2(vy,va) U Se(vs,v4) and Sa(vs,v2) = 0 by (P9).
Thus, S2(vi,v2) = {q} and Sa(v1,v2) = {p}. If ¢t € S1(v3), then tvzvszviy = Ps. So, S1(vs) = 0 and
now N (vs) = {va, v4, p} which contradicts that §(G) > 4.

C is of type (1,1,0,2,0). Let S3(vs) = {z,2'}, S5(vg) = {2} and S5(v1) = {y}. Note that yz ¢ F
or G = Ga2. Let C" = C\{vo}U{z}. Asy ¢ S% we have S5N(S2(vo, v1)US2(v3,v4)) # 0. Let p be such a
vertex. If p € So(v3,v4), then p is not complete to {z,z'}, say xp ¢ E. Now yvyzpvzz = Ps. Therefore,
p € Sa(vy,v2). Let C” = C'\ {v1} U{y}. By symmetry, we obtain that there exists ¢ € S¥ N .S2(vg,v4).
Note that pz € E and qy € F by definition of p and q. Further, gz ¢ E or qzv1y = Cy. If ap ¢ E,
then zq ¢ E by (P9) and thus quozpvex = Ps. Thus xp € E and now zvgzp = Cy.

C is of type (2,1,0,0,1). Let S3(vg) = {z,2'}, S3(v1) = {2z} and S3(vs) = {y}. As G is K;5-
free, each of {y,z} is not complete to {z,z’'}. We may assume that zax ¢ E. If t € Si(vy) then
tvguiz(x )vay = Ps. Thus, S1(v2) = 0. Similarly S1(vs) = (0. Let C’ = C'\{v1}U{z}. By the minimality
of C, we have S% N (S2(vo, v4) U Sa(va,v3)) # 0. We first show that S% N Sa(ve, v3) = 0. Otherwise let
p € S, NSy (va,v3). Note that pz € E, and py ¢ E or pyvgz = Cy. As zv12pvsy # Ps, we have yx € E
and so 2’y ¢ E. Moreover, 'z € E since z'vy zpvsy # Ps, and so yza'z = Py. Let C" = C\ {vys} U{y}.
Then there exists ¢ € S5 N (S2(vg, v1)US2(va, v3)). It is clear that qy € E by definition of q. Aspy ¢ E
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and qy € E, we have q € S3(va,v3) by (P9). Note that p # ¢. Also gz ¢ F or gzvpy = Cy. Then pg € E
since qyax’zp # Ps. Let C, = C'\ {vo} U{x}. Then there exists r € S§ N (Sa(v1,v2)USa2(vs,v4)) by the
minimality of C. If r € Sy(v1,v2), then rayq = Cy. Thus, r € So(vs,v4). Symmetrically considering
Cyp = C\{vo} U{a’} we obtain that there exists r’ € Sa(v1,v2). However, this contradicts (P9), since
ar € E. Therefore, S5MSa(vg,v4) # 0. Symmetrically considering C” = C'\ {v4} U{y} we can conclude
that S N Sa(vg,v1) # 0. Hence, S2(ve,v3) = 0. Since d(va) > 4 and d(vs) > 4, we have Sa(v1,v2) # )
and S3(vs,vs4) # 0. This contradicts (P8).

C is of type (2,0,1,0,1). Let S3(vg) = {z,2'}, S3(v2) = {z} and S3(v4) = {y}. We may assume
that 2y ¢ E. If t € S1(ve) then tvovizvgy = Ps. So, S1(v2) = 0. Let Cp = C \ {vo} U {z} and
Cy = C\ {va} U{y}. Then there exists p € S§ N (Sa(vop,v1) U Sa(ve,v3)). and ¢ € S§ N (Sz(ve,v1) U
Sa(v4,v3)). Note that py € E and gz € E by definition. We first claim that S¥ N.Ss(vs, v2) = 0. If not,
suppose that p € S3(ve, v3). Note that pz € E or zuapyvox = Ps. If ¢ € Sa(vs,vy), then qy € F or
yuaqp = Cy. But then qyvgx = Cy. So, ¢ € S2(v1,v2). Now So(vg,v1) = So(vs, v4) = 0 by the fact that
py,qr € F and (P9). Moreover, So(vg,v4) = 0. By Observation (1] (2), z is complete to S2 and hence
Sa(vs,v2) = {p} and Sa(v1,v2) = {q}. Note that S; = 0 as S1(v2) = 0. Thus, G has a 4-coloring:
{v1,v4, 0}, {v0,vs3,q}, {va2,2,y}, {a’, 2}. Therefore, p € S3(vg, v1). Suppose first that g € Sa(v3,vy).
Then S3(vi,ve) = Sa(va,v3) = @ by (P8). Thus, d(ve) = 3, a contradiction. Hence, ¢ € Sa(v1,v2).
Note that px,qy ¢ E. If 'y € E then px’ € E or yz'vip = Cy, and so {v1,p,y,vs, 2} U{vg} induces
a Ws. So, 2’y ¢ E. Hence, |S3 N Sa(vg,v1)] > 2 by the minimality of C' and the above argument. Let
p and p’ be two vertices in S§ N Sa(vg,v1), and then {p,p’,x, 2, y, v, v1,v4} contains a Wi;.

C is of type (2,0,0,1,1). Let S3(vg) = {x,2'}, S3(vsz) = {2} and S3(vs) = {y}. We may assume
that zy ¢ E. If t € Si(ve) then tvovizvgy = Ps. So Si(v2) = 0. Let C, = C \ {vo} U {z} and
Cy = C\ {v4} U{y}. Then there exists ¢ € S§ N (S2(vo,v1) U S2(v2,v3)). and p € S§ N (Sz(ve,v1) U
Sa(v4,v3)) by minimality of C. pz,qy € FE by definition of p and g. Suppose first that p € Sa(vs,vs).
py ¢ E or pyvoxr = Cy. If ¢ € Sa(va,v3) then pgyvy = Cy. So q € So(vo,v1). As Sa(vs,vs) # 0 and
Sa(vg,v1) # 0, we have S(v1,v9) = Sa(ve,v3) = 0. Now d(ve) = 3 since S1(vy) = 0, a contradiction.
Thus p € Sa(v1,v2). p is anti-complete to {y, z} since G is Cy-free. zvaprvgy implies that yz € E. If
S% N Sy = {p}, then we are in the case C is of type (2,0,1,0,1). So we let p’ € ST N Sa(vy,v2) with
p' #p.p'x € E. So 2’ is not complete to {p,p'}, say «'p ¢ E. 2’xpvovsy implies that 2’y € E. Now we
consider q. If ¢ € So(ve,v3) then Sy (vg, v1) = S2(vs,v4) = 0 by the fact that xp, qy € E and (P9). Also,
S2(vo,v4) = 0. Now Sy = {p,p’,q} and S; = (). G has a 4-coloring: {v1,v4,q}, {z,y,v2}, {vo,vs,p'},
{z,p,2'}. Thus q € S2(vp,v1). Then gz’ € E or x'yqu; = Cy. But now {v1,v4,x,y,q} U {ve} induces
a W5.

C is of type (1,1,1,1,0). Let S3(vo) = {z}, S3(v1) = {y}, Ss3(v2) = {z} and S5(v3) = {w}. Note
that {z,y, z,w} does not induce a Py or G = Gp,. So, there are at most two edges in {z,y,z,w}. We
shall consider two subcases.

Case a. There is at most one edge in {x,y, z, w}. Suppose that yz ¢ E. Without loss of generality,
assume zy ¢ E. Let C, = C\ {v1}U{y}. As z,z ¢ SY we have |S§ NSs| > 2. If |SY N S2(vo, v4)| > 2 or
|54 N Sa(vs, v2)| > 2, then |S§NSs| > 3 or we are in one of previous four cases. Thus, S5 NSa(vs, v2) # 0
and S¥ N Sa(vg,vq) # 0 or K5 would arise. Also, y is complete to Sa(vg,v4) and S2(vs, v2) and hence
Sa = Sa(v3,v2)US3(vg, v4) by (P7) to (P9). But now C, = C\{v2}U{z} has |S%| < 4, which contradicts
the minimality of C. So, it must be the case that yz € E and zy, zw ¢ E. Consider C, and C, as above.
Let p € S N (S2(vo, v4) U S2(v2,v3)) by the minimality of C. Suppose that S§ N S2(vg,v4) = 0. Then
p € S2(ve,v3). Note that py € E by definition of p, and pz ¢ E or pyzvs = Cy. So S§NS2(va, v3) = {p}
or K5 would arise. Now |S¥| = 4 and we are in one of previous four cases. So, we may assume that
p € Sa(vg,vs). By symmetry, there exists a vertex ¢ € S5 N Sa(vg,v3). by definition of p and g,
py,qz € E. Now pyzq = Cy.
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Case b. There are two edges in {z,y, z, w}. Suppose first that xy,wz € E but yz ¢ E. Define
C, and C. as above. As y ¢ S3 and z ¢ S§, we have S{ N Sy # 0 and S5 N Sy # 0. We claim
that SY N Sy(ve,vs) # 0. Otherwise, let p € S¥ N S2(vg,v4). Note that py € E, and pr € E or
vapyr = Cy. Also, S§ N Sa(vg,v4) is a clique and hence S¥ N S2(vo,v4) = {p} or K5 would arise.
Now S¥ = {z,p,v1,w} with z,p € S(vy) and so we are in one of four previous cases. Hence, the
claim holds. Similarly, S N Sz(vo,v1) # 0. Let p € S§ N Sa(va,v3) and ¢ € S5 N Sa(vg,v1). Note
that py,qz € E. Also, qy ¢ F or qyuaz = Cy. As yaxvgwzq # Ps, we have qx € E. Also, qy ¢ F or
{vg, v1,q, x,y} would induce a K5. Then {ve, z,q,z,y} U{v1} induces a W.

Now we consider the case zy,yz € E but zw ¢ E. Let C, = C\{vz}U{z} and C,, = C\{vs}U{w}.
As zw ¢ E, we have that S5N S # 0 and S¥ NSy # (. We claim that S5 N Sa(vs,vs) # 0. If not, there
exists p € S5 N Sz (v, v1). Note that pz € E, and so py € E or voyzp = Cy. So, S5 N Sa(vg,v1) = {p}
or K5 would arise. Hence, S5 = {x,y,ve,p} with y,p € S{(v1) and we are in one of previous four
cases. So, the claim holds and let p € S N S3(vs,v4). Note that pz € E and py ¢ E. Also, pw ¢ E
or pwugz = Cy, and px ¢ E or prviz = Cy. Let ¢ € S¥ NSz, qw € E. If ¢ € Sa(vp,v4), then pg € E
and thus wvspg = Cy. So, g € Sa(v1,v2). Also, gz ¢ E or gzvsw = Cy, and gz ¢ E or grvsw = Cy.
Hence, x is anti-complete to Sz(v1,v2) U Sa(vs,vs). As quugayz # Ps, we have qy € E. Note that
Sa(vs,v2) = 0 by the fact wp ¢ E and Observation [I] (2). Thus, Ss = Sa(v1,v2) U Sa(vs,v4). So,
S1 = S1(v1) U Si(vs). Now consider C* = xyzpuy. Note that vy € S5 (x), v1 € S5(y), and vs € S5 (p).
but vy, q,w ¢ Si. By the minimality of C, we have Si N (S; U Sa) # 0. Let r € S5 N (S U Ss).
If r € Sa(vs,v4), then r must be in S5(p) as r is anti-complete {x,y}. Thus G = G2 2. Moreover,
any vertex t € Sp(v1,v2) is anti-complete to {x,v4,p}, and any vertex ¢ € S1(vy) is anti-complete to
{p,y, z}. Therefore, r € Sy(v1). If r is complete to {z,y, z}, then there exists 7' € S5 N Sy(v1) with
r" # r otherwise |S%| = 4 and we are in one of four pervious cases. Note that ' must be complete to
{p,y, z}. Hence, in any case there exists a vertex r € S1(v1) that is complete to {p,y, z} but pz ¢ E.
Now wvzprvir = Pg.

Case 5. |S5| = 5. There are five possible configurations for Ss.

C is of type (2,2,0,0,1). S5(vo) = {z,2'}, S3(v1) = {y,y'}, S3(v4) = {w}. We may assume that
y is anti-complete to {x,z'} and x is anti-complete to {y,y’}. If ¢ € S1(vs) then tvsvizviy = Pe.
So, Si(vs) = 0. Let ¢’ = C \ {v1,va} U {y,w} be an induced C5. Let p € S5 N Se by = ¢ 5%
and the minimality of C. Suppose first that p € S3(vg,v1). Note that Sa(vs,vs) U Sa(ve,v3) # 0 by
d(vs) > 4. Let g € Sa(v3,v4) U Sa(v2,v3). Without loss of generality, we assume that ¢ € Sa(va,v3).
Since qusvazv1y(y') # Ps, we have ¢ is complete to {y,y'}. As ¢ is an arbitrary vertex in Sa(vs, v4),
we have S(vz,v3) is complete to {y,%'} and so Sa(va,v3) = {q}. Note that Sy(v3,vs) = ) by (P8) and
so N(v3) = {vs,v4,q,w}. Now as G is a minimal obstruction, G — vs has a 4-coloring ¢. Note
that ¢(q) = ¢(v1) = @(v4) and therefore we can extend ¢ to G, a contradiction. As z,z’ ¢ 5%, there
exists two different vertices p and ¢ in S, N Sy. If p,q € Sa(vg, v4), then {p,q,vo,vs, w} induces a
K5. Note that Ss(ve,v3) is complete to {y,y’} and Sa(va, v3) contains at most one vertex. Hence, we
may assume that p € So(vg,vs4) and Sa(ve,v3) = {q}. By the fact that y¢ € F and (P10), we have
Sa(vs,v4) = 0. Hence, we derive a similar contradiction as above.

C is of type (0,1,0,2,2). S5(v3) = {z,2'}, S3(vs) = {y,y'}, S3(v1) = {w}. We may assume that
y is anti-complete to {x,2'} and z is anti-complete to {y,y’'}. Let C’' = C \ {v1,v4} U {y,w} be an
induced Cs. Then z,z’ ¢ S and hence S; N (S; U Sy) contains at least two vertices. Let p and ¢ be
such two vertices. Let ¢ € Sy (vg). If ¢ is not anti-complete to {y,y’}, say ty € E, then tyvszvovy = Pp.
Thus p, ¢ ¢ S1(vo). Now suppose that ¢ € Sa(vg,v4). Then g is complete to {w,y}. Note that qy’ ¢ F.
Then the fact that y'yquvex # Ps implies that gz € E and thus qrvsw = Cy. Thus, p,q ¢ Sa(vo, v4).
If p,q € Sa(vg,v1), then {p,q,vp,v1,w} would induce a Ky5. Now let p,q € Sa(ve,vs). If {p,q} is
complete to y or w, then G = G'3; otherwise G would contain an induced Ws. Hence, we may assume
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that py € F and qw € E. Thus pw,qy ¢ E. By (P10), Sa(vg,v1) = S2(vg,v4) = 0. Also, Si(v1) =0
since Sa(v3,ve) # 0. By d(vy) > 4 we have So(v1,v2) # 0 and thus Sa(ve,v3) = {p,q}. Now let
Cy = C\ {vs} U{y}. Then |S¥ N Sa(ve,vs)] > 2. But this is impossible since qy ¢ E. Therefore,
p € So(vg,v1) and ¢ € Sa(vg,v3). By definition of g, py € F and hence Sy(v1,v2) = 0 by (P10).
Moreover, Sa(vq,v9) = @ by (P7). Now consider C,, = C'\ {vs} U {x} and thus |S¥| < 5 contradicting
the minimality of C.

C is of type (2,1,1,0,1). S3(vg) = {z,2'}, S3(v1) = {y}, S3(v2) = {2}, S5(v4) = {w}. U yz € E
and one of {z, 2} is complete to {y,w}, then G = Gp,. Hence, either yz ¢ E or no vertex in {z,z'}
is complete to {y,w}. Let C" = C'\ {v1,v4} U {y, w} be an induced Cs. Thus |55 N (S1 U S2)| > 2. Let
p,q € S4. Note that p, g € Sa(vg, v1)US2(vo, v4)US2(v2,v3). If {p, ¢} T Sa(vo,v1) or {p, g} C Sa(vo,v4),
then K5 would arise. Next we show that {p,q} € Sa(vs,v3). If not, then both p and ¢ are adjacent
to exactly one of {y,w}. If pw € E, then the fact that zvspwuvgz(a’) # Ps implies that pz € E. We
may assume that zy ¢ E. If py € E, Since wvspyvix # Ps, we have wr € E. Thus, 2'w ¢ E. As
wuzpyvix’ # Pg, we have 2’y € E. Now zy € E since wrz'yvez # Ps. Hence, pz € E or ypvsz = Cy.
We have showed if p € Sa(vs,v2) then pz € E. Therefore, pg ¢ E or {p,q,va,vs, 2z} would induce a
K. Further, y or w cannot be complete to {p, ¢}. Thus, we may assume that py € F and ¢z € E. By
previous argument we have that {y,z,z’, w} induces a P, and hence quza’yp = Ps.

Therefore, three cases remain. If p € So(vo,v1) and g € Sa(vg,v4), then pg € E by (P1) to (P3).
By Observation (1| (2), we have {z,z'} is complete to {p,q} and thus {z,z’, vg, p,q} induces a K.
If p € Sa(vo,v4) and ¢ € So(ve,v3), then p is complete to {y,w} by definition. By (P9), we have
yq € E and wq ¢ E. We may assume that xy ¢ E. Thus wza'y = P, as shown above. Also px ¢ E or
prv1y = Cy and hence pa’ ¢ F or px’zw = Cy. Now we have waz'yp is an induced Cs with vg being a
5-vertex. Finally, let p € Sa(vp,v1) and g € Sa(ve,v3). By definition, p is complete to {y, w}. By (P9),
qw € E and qy ¢ E. Moreover, qz € E, and pz € E or zqup = Cy. If x is complete to {y,w}, then
px € E or zwpy = Cy and thus {z,y, vg,v1, p} would induce a K;. Hence, none of {z, 2’} is complete
to {y, w}. Therefore, yz € E or |S5 N (S1 U S2)| > 3, which is impossible by previous argument. Now
{p, v1,v2,q,w,v9,y, z,v3} induces a Gp, with respect to C* = wvgyzvsz and S5 = {q,v2,v1,p} for
which qusv1p induces a Py.

C is of type (1,1,2,0,1). S3(vo) = {z}, S3(v1) = {y}, S3(v2) = {2,2"}, S3(va) = {w}. Note
that zw ¢ E or G = G22. We may assume that yz ¢ E. Let C' = C \ {v1,v4} U {y,w}. Hence,
|S5 N (S1 USe)| > 2. Let p,g € S,N(S1USe). If p € Si(vg), then p is complete to {x,y,w} and
hence prvgw = Cy. If |55 N (S1 U Sa)| > 2 or |S4 N (S1 USs)| > 2 then K5 would arise. Next we
show that {p,q} € S2(vs2,vs). If not, let ¢,p € Sa(va,v3). Note that p is not complete to {z,2'}, say
zp ¢ E. If pw € E then zvopwugz = Ps. Hence, y is complete to {p, ¢}. But now {v1,ve,vs,y, 2,2, p, ¢}
contains an induced Wjs. Therefore, three cases remains. If p € Sa(vg,v1) and g € Sa2(vg,vs), then z
is complete to {p, ¢} by Observation [1| (2). By definition of p, we have pw € E and thus prvsw = Cy.
If p € S3(vg,v1) and g € Sa(va,v3), then wp € E. By (P9), we have wqg € E. Now zvequuvozr = Pg or
Z'vaquugr = Pg. Finally, p € S3(vg,v4) and g € Sa(va,v3). By definition of p, we have py € FE and
hence qy € E by (P9). We may assume that gz ¢ E. Then zy ¢ E or vsqyz = Cy. Thus the fact that
zv3qyuox # Pg implies that xy € E and so xp € E or vyzyp = Cy. Now quswpzv; = Py.

C is of type (1,1,1,1,1). Let S5(v;) = {u;} for each i. Note that there are at most 3 edges within
Ss or G = Gp,. We consider the following three cases.

Case a. S3 has at most two edges and does not induce a P3. Without loss of generality, we may
assume that uguy, ujus, usug ¢ E. Let C' = C\ {v1,v4} U {uy,us}. Note that ug,us,us ¢ S5 and
hence S5 N (S1 U S2)| > 3 by the minimality of C. Let p € S5N(S1US2). If p € S1(v1), then pug € E
by properties (P11) and (P12). and thus pugviu; = Cy. Hence, S5N S = 0. If | S5 N S2(ve, v1)| > 2 or
|54 N Sa(vg,v1)| > 2, then K5 would occur. Now suppose that p,q,7 € S5 N Sa(va,vs). If ug or uy is
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complete to {p, ¢, 7}, then K5 would occur. So, we may assume that puy,qu; € E and ruy € E. Since
rvspuivoug # Ps, we have rp € E. Replacing ¢ with p we have rq € E and so {vs,vs,p, q, 7} induces
a Ks. By (P8), we have that |S% N S2(ve,v3)| = 2 and S% N (S (vo, v1) U Sa(vo, v4)) # 0. Suppose that
p € Sa(vg, v1). We repeat the argument for C”" = C'\ {v1,v3}U{u1,u3} and obtain that Sa(vg,vs) # 0.
This contradicts (P8). Hence, let p € Sa(vg, v4) and g, r € Sa(va, vs). Note that pu; € E by definition
of p and hence u;y is complete to {p,q,7}. So, Sa(va,v3) = {¢,7} and Sa(vo,vs) = {r}. But this
contradicts the fact that |.S§ N Sy (vo, v4)| > 2.

Case b. S5 does induce a P3. Without loss of generality, we assume that wgqug,uou; € E. Let
C1 = C\ {vo,v2} U {ug,uz}. Note that SI NS, = (. Since ui,uz ¢ Si, we have [S3 N Sy| > 2
by the minimality of C. If [S3 N Sa(vg,v1)| > 2 or [S3 N Sa(vi,v2)| > 2, then K5 would arise. If
p € S3 N Sa(vo,v1) and g € Si N Sa(v1,v2), then uy is complete to {p, ¢} by Observation (2). Also,
pug € E by definition of p and thus {ug, u1,v9,v1,p} induces a K5. Therefore, Sa(vs,vs) # 0. Now we
repeat the argument for Cy = C'\ {vo, v3} U {up, us} and obtain that Ss(vi,vs) # 0. So, Sa(v4,v) =
SQ(’U(),’Ul) = @ Let pE S% N 52(1)371)4) and q € S§ n 52(01,’02). Let CQ =C \ {Ul,Ug} U {ul,U3} and
Cs = C\ {v2,v4} U {ug,us}. Note that |[S3 N Sy| > 2 and [S3 N Sa| > 2. Since Sz(vg,v4) = @ and
|52 N Sa(v2,v1)] < 1, SN Sa(ve,v3) # 0. Let r € S3 N Sa(vg,v3). By definition of r, we have r is
complete to {uy, us}. Similarly, S3MS(va, v3) # 0. If 1 € S§NSa(ve,v3), then 7 is complete to {us, ug}.
So, uguiruy = Cy. Hence, there exists 1’ # r such that v’ € S5 N Sa(va,v3). Thus, So(v3,vs) = {p},
So(v3,v2) = {r,r'}, and Sa(v2,v1) = {q}. Now p € S5 and q € S3, i.e., p (respectively q) is complete
to {ug,uqs} (respectively {u1,us}). By the fact that rus € E and Observation [1| (2), we have ug is
complete to {p,r,r'} and thus {us,vs,p,r,r’'} induces a Kj.

Case c. S3 is isomorphic to Ps3 + P». Without loss of generality, we assume that uguy, uius, usug €
E. Let C; = C\ {v;} U {u;} for each i. By the minimality of C, we have S§ N Sy # 0 for each i # 1.
Let 7 € S5 and s € S5. If 7 € Sa(v1,v2) and s € Sa(vg,v1), then ugsruz = Cy. If r € Sa(vo, v4) and
s € Sa(va,v3), let t € S2NSy. Note that t € Sa(vs,vs). By Observation (2), we have t is complete to
{us,us} and so {us,uq,v3,vq,t} = K. The remaining two cases are symmetric and we may assume
that r € Sa(vo,vs) and s € Sa(vg,v1). Let t € S9N Sy. If t € Sa(v1,v2), then s is complete to {ug,u; }
by Observation (2). Hence, {ug, u1,v9,v1,5} = K5. So, t € Sa(vs,vs). Then uy is complete to {r,t}.
Since G is Ks-free, tug € E and thus trusvs = Cy.

Case 6. |S5| = 6. There are three possible configurations for Ss.

C is of type (2,1,1,1,1). Let S5(vg) = {z,2'}, S3(v1) = {y}, Sz(v2) = {r}, Ss(v3) = {t},
S3(vs) = {z}. We may assume that xy ¢ E. We also assume that 1t ¢ E or G = Goo. Let C' =
C\ {v1,v4} U{y, 2z} be an induced C5. As zy ¢ E, we have S, N (S1US2) # 0 by the minimality of C'.
Let p € S4. Then p is complete to {y, z}. It is easy to check that p € (N(vo) N (S1 U S2)) U Sa(va,v3).
If p € Si(vg), then pz € E and so prvy = Cy. If p € S1(vo, v1), then the fact that pyvevsvsz # P
implies that pz € E. Thus 2z € E or prvyz = Cy. Hence, 2’z ¢ E and thus o'p ¢ E. So, «’ ¢ S4. By
symmetry, if p € Sa(vg, v4), then 2’ ¢ S If p € So(ve,v3), then by symmetry we assume that py € E.
Since tvspyvox does not induce a Pg, we have tp € E. Therefore p is the only vertex in Sy (ve,v3) that
is adjacent to y otherwise K5 would occur. Thus there is also at most one vertex in Sa(ve,vs) that is
adjacent to z. Also, ry ¢ E otherwise tvsryvgz = Ps. By symmetry, zt ¢ E. Hence, |S5N(S1US)| > 3
and |S5N(S1US2)| > 4if S§ N (S2(vo, va) US2(vo,v1)) # O by the minimality of C. But now we either
have a K5 or contradicts (P9).

C is of type (2,2,0,1,1). Let S3(vo) = {z,2'}, S3(v1) = {y,9'}, S3(vs) = {t}, S3(va) = {w}.
Note that wt ¢ E or G = G22. We may assume that y is anti-complete to {z,2'}. Let C/ = C'\
{v1,v4} U {w,y}. Thus by the minimality of C' we have S N (S; U S2) # 0. Let p € S5 and it is
easy to check that p € Sa(vp,v1) U Sa(vg,v4) U So(va,v3). Suppose first that p € Sa(vg,v1). Then p
is complete to {y,w}. Note that tp ¢ E or tpugvy = Cy. Since tvgwpv1y’ # Ps, we have py’ € E and
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thus {vg,v1,y,9’,p} induces a K5. Suppose now that p € Sy(vg,v4). Again, p is complete to {y,w}.
Note that tp ¢ E or tpyvs = C4. Then the fact that tvswpyy’ # Ps implies that py’ € E. Now
{z,2',y,y,v0,v1,v4,p} induces a Hajos graph with one additional dominating vertex. Finally, assume
that p € Sa(ve,v3). Then p is adjacent to exactly one of {y,w}. Suppose that pw € E. Then tp ¢ E
or vgwpt = Cy. By G is Ks-free, w is not complete to {z,2'}, say wx ¢ FE, and hence zp ¢ E or
zvgwp = Cy. Now tvgpwugz = Pg. Therefore, py € E and pw ¢ E. We may assume that zw ¢ E, and
now puovixvsw = Pg.

C is of type (2,2,,1,0,1). Let S5(vg) = {z,2'}, S3(v1) = {y,y'}, S3(va) = {t}, S3(vs) = {w}.
We may assume that y is anti-complete to {z,z'} and z is anti-complete to {y,y'}. Let C' = C'\
{v1,v4} U {y,w}. By the minimality of C, we have S5 N (S; U S2) # 0. Let p € S; and it is easy to
check that p € Sa(vg, v1)US2(vg,v4) U Se(ve, v3). Suppose first that p € Sa(vg,v1). Then p is complete
to {y,w}. Now Since pyvavsvsz(x’) # Ps, we have p is complete to {z,z'} and thus {vg, v1,p,z, 2’}
induces a K. Now suppose that p € Sa(vg,v4). Again, p is complete to {y,w}. Note that tp ¢ E or
pvouit = Cy. If py’ € E, then zp € E or zv1y'pvs and vg would induce a Ws5. But now zpy'vy = Cy.
Hence, py’ ¢ E. Now the fact that tvsvspyy’ # Ps implies that ty € E or ty’ € E. If ty € E, then
y'ytvgvgr = Ps. Otherwise, ty’ € E. Then px ¢ E or prviy = Cy. Now ty'ypvgx = Ps. Thus there
exist vertices p,p’ € S} N Sa(ve,vs3). Suppose that py € E and so pw € E. Since zvgvspyy’ # Pe,
we have py’ € E. Note that ¢ is not complete to {y,y'}. Thus, tp € E as tuspy(y')voxr # Ps . Now
py(y' )vit = Cy. Hence, w is complete to {p,p’}. Now {y,y’,vo, v1,v2, p,p'vs, w} induces a G 1.

Case 7. |S3| = 7. Suppose that S3(vo) = {z}, Ss(v1) = {y} , S3(v4) = {2}, S3(ve) = {r,7'} and
S3(vs) = {t,t'}. We may assume that r is anti-complete to {¢,t'} and t is anti-complete to {r,r’'} or
K5 would occur. Let C,. = C'\ {v2} U {r}. Since t,#' ¢ S% we have |S§ N (S; US2)| > 2 by minimality
of C. Let p and p’ be two vertices in the S§ N (S; U S3). Then r is complete to {p,p’}. It is routine
to check that p and p’ belong to Ss(vg,v1) U Sa(vs,vs). First suppose that {p,p'} C Sa(vg,v1). Let
Cy = C'\ {vs} U {t}. Then there exist ¢ and ¢’ such that ¢ and ¢’ belong to S2(v4,vg) or Sa(v1,ve).
If {q,¢'} C Sa(vs,vp) or {q,q'} C Sa(vi,v2) then {p,p'q,q’,v1} would induce a Kj5. Hence there
must be the case that ¢ € So(v4,v0) and ¢ € Sa(v1,v2). By definition of ¢ and ¢', ¢ is complete to
{q,¢'}, which contradicts (P10). Therefore, Sa(v3,v4) # 0. Repeating the argument for C; we have
SQ(’Ul,’UQ) 7é @ SO, 52(1)0,’1}4) = SQ(UO7U1) = @ and thus p,p’ S SQ(Ug,’U4) and q,q' € SQ(’Ul,UQ). Now
Let C,y = C\ {v1} U{y} and C, = C\ {vs} U{z}. The same argument shows that S§ N Sz (va,v3) # 0
and S5 N So(vg,v3) # 0. As |Sa(v1,v2)| > 2, we obtain that Ss(ve,v3) contains only one vertex wu.
Thus uy € E and uz € E. But now uyvgz = Cjy.

This completes the proof. a
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