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Abstract. Let Pt and C` denote a path on t vertices and a cycle on ` vertices, respectively.
In this paper we study the k-coloring problem for (Pt, C`)-free graphs. Maffray and Morel, and
Bruce, Hoang and Sawada, have proved that 3-colorability of P5-free graphs has a finite forbid-
den induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and Vatshelle
have shown that k-colorability of P5-free graphs for k ≥ 4 does not. These authors have also
shown, aided by a computer search, that 4-colorability of (P5, C5)-free graphs does have a fi-
nite forbidden induced subgraph characterization. We prove that for any k, the k-colorability of
(P6, C4)-free graphs has a finite forbidden induced subgraph characterization. We provide the
full lists of forbidden induced subgraphs for k = 3 and k = 4. As an application, we obtain
certifying polynomial time algorithms for 3-coloring and 4-coloring (P6, C4)-free graphs. (Poly-
nomial time algorithms have been previously obtained by Golovach, Paulusma, and Song, but
those algorithms are not certifying; in fact they are not efficient in practice, as they depend on
multiple use of Ramsey-type results and resulting tree decompositions of very high widths.) To
complement these results we show that in most other cases the k-coloring problem for (Pt, C`)-
free graphs is NP-complete. Specifically, for ` = 5 we show that k-coloring is NP-complete for
(Pt, C5)-free graphs when k ≥ 4 and t ≥ 7; for ` ≥ 6 we show that k-coloring is NP-complete for
(Pt, C`)-free graphs when k ≥ 5, t ≥ 6; and additionally, for ` = 7, we show that k-coloring is
also NP-complete for (Pt, C7)-free graphs if k = 4 and t ≥ 9. This is the first systematic study of
the complexity of the k-coloring problem for (Pt, C`)-free graphs. We almost completely classify
the complexity for the cases when k ≥ 4, ` ≥ 4, and identify the last three open cases.

1 Introduction

Since the k-coloring problem is known to be NP-complete for any fixed k ≥ 3, there has been consid-
erable interest in studying restrictions to various graph classes. For instance the k-coloring problem
is polynomially solvable for perfect graphs, since a perfect graph is k-colorable if and only if it has no
subgraph isomorphic to Kk+1. (In fact the chromatic number of perfect graphs can also be computed
in polynomial time [14].) One type of graph class that has been given wide attention in recent years is
the class of H-free graphs, for various graphs H [3,4,12,15,24,29]. For example, if H contains a cycle,
then k-coloring is NP-complete for H-free graphs. This follows from the fact, proved by Kamiński and
Lozin [19] and independently Král, Kratochv́ıl, Tuza, and Woeginger [20], that, for any fixed k ≥ 3
and g ≥ 3, the k-coloring problem is NP-complete for the class of graphs of girth at least g. Similarly,
if H is a forest with a vertex of degree at least 3, then k-coloring is NP-complete for H-free graphs;
this follows from [17] and [22]. Combining these results we conclude that k-coloring is NP-complete for
H-free graphs, as long as H is not a linear forest, i.e., a union of disjoint paths. This focused attention
on the case when H is a path. Woeginger and Sgall [29] have proved that 4-coloring is NP-complete
for P12-free graphs, and that 5-coloring is NP-complete for P8-free graphs. Later on, these results
were improved by various groups of researchers [3,4,12,21]. The strongest results so far are due to
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Huang [18] who has proved that 4-coloring is NP-complete for P7-free graphs, and that 5-coloring
is NP-complete for P6-free graphs. On the positive side, Hoàng, Kamiński, Lozin, Sawada, and Shu
[15] have shown that k-coloring can be solved in polynomial time on P5-free graphs for any fixed k.
These results give a complete classification of the complexity of k-coloring Pt-free graphs for any fixed
k ≥ 5, and leave only 4-coloring P6-free graphs open for k = 4. It should be noted that deciding the
complexity of 3-coloring for Pt-free graphs seems difficult. It is not even known that whether or not
there exists any t such that 3-coloring is NP-complete on Pt-free graphs. Randerath and Schiermeyer
[24] have given a polynomial time algorithm for 3-coloring P6-free graphs. As far as we know, this
result has been extended to 3-coloring P7-free graphs by Chudnovsky, Maceli, and Zhong [6,7].

One interesting aspect of the k-coloring problem is the number of minimal obstructions, i.e.,
minimal non-k-colorable graphs. As noted above, there is a unique minimal non-k-colorable perfect
graph, namely Kk+1. It was shown by Bruce, Hoang and Sawada [5], that the set of minimal non-
3-colorable P5-free graphs is finite, while Hoang, Moore, Recoskie, Sawada, and Vatshelle [16] have
shown that the set of minimal non-k-colorable P5-free graphs is infinite. These authors have also
shown, aided by a computer search, that the set of minimal non-4-colorable (P5, C5)-free graphs is
finite.

In this paper we undertake a systematic examination of k-coloring with inputs restricted to (Pt, C`)-
free graphs. Some results about k-coloring these graphs are known. In addition to the case of 4-coloring
(P5, C5)-free graphs mentioned just above, it is known that when ` = 3, each k-coloring is polynomial
for t ≤ 6, as (P6, C3)-free graphs have bounded cliquewidth. On the other hand, for t ≥ 164, 4-coloring
is NP-complete for (Pt, C3)-free graphs [12]. When ` = 4, each k-coloring is polynomial for (Pt, C4)-
free graphs [12]. When ` ≥ 5, 4-coloring is NP-complete for (Pt, C`)-free graphs as long as t is large
enough with respect to ` [12]. (For ` = 5, the bound on t is t ≥ 21.)

We first focus on the number of minimal obstructions in a case in which polynomial time algorithms
are known to exist, namely (P6, C4)-free graphs [12]. We prove that, for each k, the set of minimal
non-k-colorable (P6, C4)-free graphs is finite. We actually describe all the minimal non-k-colorable
(P6, C4)-free graphs for k = 3 and k = 4, and then apply these results to derive efficient certifying
k-coloring algorithms in these cases. We complement these results by showing that in most cases with
k ≥ 4, ` ≥ 4, the k-coloring problem for (Pt, C`)-free graphs is NP-complete. Specifically, we prove
that k-coloring is NP-complete for (Pt, C5)-free graphs when k ≥ 4 and t ≥ 7, and that k-coloring
is NP-complete for (Pt, C`)-free graphs when ` ≥ 6 and k ≥ 5, t ≥ 6. We show that k-coloring is
also NP-complete for (Pt, C7)-free graphs if k = 4 and t ≥ 9. This almost completely classifies the
complexity of k-coloring for (Pt, C`)-free graphs when ` ≥ 4, k ≥ 4. The few remaining open problems
are listed in the last section.

We say that G is H-free if it does not contain, as an induced subgraph, any graph H ∈ H. If
H = {H} or H = {H1, H2}, we say that G is H-free or (H1, H2)-free. For two disjoint vertex subsets
X and Y we say that X is complete, respectively anti-complete, to Y if every vertex in X is adjacent,
respectively non-adjacent, to every vertex in Y . A graph G is called a minimal obstruction for k-
coloring if G is not k-colorable but any proper induced subgraph of G is k-colorable. We also call G a
minimal non-k-colorable graph. A minimal non-(k−1)-colorable graph is also called a k-critical graph.
A graph is critical if it is k-critical for some k. We shall use n and m to denote the number of vertices
and edges of G, respectively.
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2 Imperfect (P6, C4)-Free Graphs

In this section, we analyze the structure of imperfect (P6, C4)-free graphs. Let G be a connected
imperfect (P6, C4)-free graph. By the Strong Perfect Graph Theorem [8], G must contain an induced
five-cycle, say C = v0v1v2v3v4. We call a vertex v ∈ V \ C a p-vertex with respect to C if v has
exactly p neighbors on C, i.e., |NC(v)| = p. We denote by Sp the set of p-vertices for 0 ≤ p ≤ 5. In the
following all indices are modulo 5. Let S1(vi) be the subset of S1 containing all 1-vertices that have
vi as their neighbor on C. Let S3(vi) be the subset of S3 containing all 3-vertices that have vi−1, vi
and vi+1 as their neighbors on C. Let S2(vi, vi+1) be the subset of S2 containing all 2-vertices that

have vi and vi+1 as their neighbors on C. Note that S1 =
⋃4

i=0 S1(vi), S2 =
⋃4

i=0 S2(vi, vi+1) and

S3 =
⋃4

i=0 S3(vi).

A subset S ⊆ V is dominating if every vertex not in S has a neighbor in S. Brandstädt and Hoàng
[2] proved the following fact about induced five-cycles in (P6, C4)-free graphs.

Lemma 1. ([2]) Let G be a (P6, C4)-free graph without clique cutset. Then every induced C5 of G is
dominating.

In the rest of this section, we collect some information about imperfect (P6, C4)-free graphs. Recall
that we assume that G is a connected (P6, C4)-free graph, and v0v1v2v3v4 is an induced five-cycle in
G. Then the following properties must hold.

(P0) S5 and each S3(vi) are cliques and S4 = ∅.
(P1) S1(vi) is complete to S1(vi+2) and anti-complete to S1(vi+1); moreover, if both sets S1(vi) and

S1(vi+2) are nonempty, then both are cliques.

(P2) S2(vi, vi+1) is complete to S2(vi+1, vi+2) and anti-complete to S2(vi+2, vi+3); moreover, if both
sets S2(vi, vi+1) and S2(vi+1, vi+2) are nonempty, then both are cliques.

(P3) S3(vi) is anti-complete to S3(vi+2).

(P4) S1(vi) is anti-complete to S2(vj , vj+1) if j 6= i + 2; moreover, if y ∈ S2(vi+2, vi+3) is not anti-
complete to S1(vi), then y is an universal vertex in S2(vi+2, vi+3).

(P5) S1(vi) is anti-complete to S3(vi+2).

(P6) S2(vi+2, vi+3) is anti-complete to S3(vi).

(P7) One of S1(vi) and S2(vi+3, vi+4) is empty, and one of S1(vi) and S2(vi+1, vi+2) is empty.

(P8) One of S2(vi−1, vi), S2(vi, vi+1) and S2(vi+2, vi+3) is empty.

(P9) If both S1(vi−1) and S1(vi+1) are nonempty, then S2 = ∅; if both S1(vi) and S1(vi+1) are
nonempty, then S2 = S2(vi, vi+1).

(P10) Let x ∈ S3(vi). If both S2(vi+1, vi+2) and S2(vi+3, vi+4) are nonempty, then x is either complete
or anti-complete to S2(vi+1, vi+2) ∪ S2(vi+3, vi+4). In the former case, both S2(vi+1, vi+2) and
S2(vi+3, vi+4) are cliques. Moreover, if S2(vi+2, vi+3) is also nonempty, then x is anti-complete to
S2(vi+1, vi+2) ∪ S2(vi+3, vi+4).

(P11) If S1(vi) is not anti-complete to S2(vi+2, vi+3) then S1 = S1(vi).

(P12) If G has no clique cutset, then S1(vi) is complete to S3(vi).

The proofs of these properties are simple, using the absence of induced copies of P6 and C4. The
proof of property (P12) also uses Lemma 1.
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3 Obstructions to k-coloring

In this section we shall prove our first main result, that for each k, there are only finitely many
minimal non-k-colorable (P6, C4)-free graphs. In subsequent sections we then describe all minimal
non-3-colorable and non-4-colorable (P6, C4)-free graphs, and apply these characterizations to obtain
polynomial time certifying algorithms for the 3-coloring and the 4-coloring problems on (P6, C4)-free
graphs.

The following lemma is folklore.

Lemma 2. A minimal non k-colorable graph G has δ(G) ≥ k and no clique cutset.

Let P be the graph obtained from the Peterson graph by adding one new vertex that is adjacent
to every vertex of P . A graph is called specific if it results from replacing each vertex of P by a clique
of arbitrary size (including possibly size 0, resulting in deleting the vertex).

Lemma 3. ([2]) Let G be a (P6, C4)-free graph without a clique cutset. Then either G is specific, or
every induced C6 of G is dominating. Moreover, there is a linear time algorithm to decide whether or
not G is specific.

We are now ready to prove the main result of this section, the finiteness of the number of minimal
obstructions for k-coloring (P6, C4)-free graphs. It should be observed that this result is best possible
in the sense that there are infinitely many minimal non-k-colorable P6-free graphs and infinitely many
minimal non-k-colorable C4-free graphs. The former fact follows from [16] where it is shown that there
are infinitely many minimal non-k-colorable P5-free graphs, and the latter fact follows from [10] where
it is shown that there are non-k-colorable graphs of arbitrarily high girth.

Theorem 1. For any k, there are only finitely many minimal non-k-colorable (P6, C4)-free graphs.

Proof. Let G be a (P6, C4)-free minimal non-k-colorable graph. By Lemma 2, G has δ(G) ≥ k and
no clique cutset. If G contains Kk+1, then G = Kk+1. Thus we assume that that G is Kk+1-free. If G
contains an induced C = C6, then either G is specific or C is dominating by Lemma 3. In the former
case, the size of G is bounded by the definition of specific graph and the fact that G is Kk+1-free. In
the latter case, we analyze the remaining vertices as to their connection to C, analogously to what
we did in the previous section for C being a five-cycle. We define again, for any X ⊆ C the set S(X)
to consist of all vertices not in C that have X as their neighborhood on C. Using the fact that G is
(P6, C4)-free, we derive easily the fact that S(X) = ∅ if X has size at most two, and that S(X) is a
clique and thus of size at most k, if |X| ≥ 3. Since there are at most 26 such set X, we conclude that
G has at most 64k vertices.

Therefore, we assume from now on that G is Kk+1-free, C6-free, and contains an induced five-cycle
C = v0v1v2v3v4. Since G is Kk+1-free, |S5| ≤ k − 2 and |S3(vi)| ≤ k − 2 for each i.

Lemma 4. If S1(vi) is anti-complete to S2(vi+2, vi+3), then both sets are bounded.

Proof of Lemma 4. It suffices to prove this for i = 0. We bound S1(v0) as follows. Let A be a
component of S1(v0) and x ∈ S3(v4). If there exist two vertices y, z ∈ A such that xy ∈ E and xz /∈ E,
then we may assume that yz is an edge, by the connectivity of A. Thus, zyxv4v3v2 induces a P6. This
is a contradiction and therefore x is either complete or anti-complete to A. Moreover, x is complete
to S3(v0) if x is complete to A, as G is C4-free. The same property holds if x ∈ S3(v1). Since G has
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no clique cutset, A must be complete to a pair of vertices {x, y} where x ∈ S3(v1) and y ∈ S3(v4).
As G is C4-free, A must be a clique and so of size at most k. Moreover, the number of components
of S1(v0) is at most (k − 2)2. Otherwise an induced C4 would arise by the pigeonhole principle and
the fact there are at most (k − 2)2 pairs of vertices {x, y} with x ∈ S3(v1) and y ∈ S3(v4). Hence,
|S1(v0)| ≤ k(k − 2)2 ≤ k3.

Let us now consider S2(v2, v3). Let A be a component of S2(v2, v3). Observe first that a vertex
x ∈ S3(v2) ∪ S3(v3), is either complete or anti-complete to A, as G is P6-free. Let S′3(v3) and S′3(v2)
be the subsets of S3(v3) and S3(v2) consisting of all vertices that are complete to A, respectively.
Moreover, S′3(v3) and S′3(v2) are complete to each other. Otherwise v0v1t

′ztv4 would induce a C6

where t ∈ S′3(v3) and t′ ∈ S′3(v2) with tt′ /∈ E, and z ∈ A. So, if A is anti-complete to S3(v1)∪S3(v4),
then V ′ = S5 ∪ {v2, v3} ∪ S′3(v2) ∪ S′3(v3) would be a clique cutset of G.

Therefore, the set T of neighbors of S3(v1) ∪ S3(v4) in A is nonempty. Let B be a component
of A \ T . Our goal is to show that B = ∅ by a similar clique cutset argument. It is not hard to see
that every vertex t ∈ T is either complete or anti-complete to B as G is P6-free. Let T ′ ⊆ T be
the set of those vertices that are complete to A. By the definition of T ′, any t ∈ T ′ is complete to
{v2, v3} ∪ S′3(v2) ∪ S′3(v3). Let x ∈ S5 and t ∈ T ′ be a neighbor of some vertex y ∈ S3(v1). Then
xytv3 6= C4 implies that tx ∈ E. Hence, T ′ is complete to S5.

Next we show that T ′ is a clique. Let t and t′ be any two vertices in T ′, and p ∈ B. If t is a
neighbor of some vertex in S3(v4) and t′ is a neighbor of some vertex in S3(v1), then v0v1t

′ptv4 would
induce a C6, unless tt′ ∈ E. Now we assume that both t and t′ are neighbors of some vertex in S3(v4).
If t and t′ have a common neighbor in S3(v4), then tt′ ∈ E as G is C4-free. So we may assume that
there exist two distinct vertices x, x′ ∈ S3(v4) such that xt, x′t′ ∈ E but xt′, x′t /∈ E. If tt′ /∈ E, then
C∗ = xtpt′x′ would be an induced C5. However, this contradicts Lemma 1, since v1 is anti-complete
to C∗. Therefore, T is a clique and so V ′ ∪ T is a clique cutset of G. Thus, B = ∅ and A = T . Since
A is an arbitrary component of S2(v2, v3), the above argument shows that S2(v2, v3) is dominated by
S3(v1) ∪ S3(v4). Note that for any vertex x ∈ S3(v1) ∪ S3(v4), the neighbors of x in S2(v2, v3) form a
clique and hence have size at most k. This shows that |S2(v2, v3)| ≤ 2k(k − 2) ≤ 2k2. ut

Now we consider the following cases.

Case 1. There exists some i such that S1(vi) and S1(vi+2) are nonempty.

In this case S2 = ∅ by the property (P9). Further, each nonempty S1(vi) is a clique by (P1). Hence,
the size of G is bounded.

Case 2. There exists some i such that S1(vi) and S1(vi+1) are nonempty.

In this case S2 = S2(vi, vi+1) by (P9). Further, S1 and S2 are anti-complete to each other, hence
by Lemma 4, the sizes of S1(vi) and S2(vi, vi+1) are bounded.

Case 3. S1 = ∅. Then the size of G is bounded by Lemma 4.

Case 4. There is exactly one S1(vi) that is nonempty. We may assume that S1(v0) 6= ∅ and that
S1(v0) is not anti-complete to S2(v2, v3). If S2(v1, v2) 6= ∅ or S2(v3, v4) 6= ∅, then each nonempty S2(vi)
would be a clique (and hence bounded) as G is C4-free. So we assume that S2(v1, v2) = S2(v3, v4) = ∅.
By Lemma 4, S2(v0, v4) and S2(v0, v1) are bounded. The remaining sets are S1(v0) and S2(v2, v3).

Bounding the size of S1(v0). Let X ⊆ S1(v0) be the set of vertices that are not anti-complete to
S2(v2, v3), let S′1(v0) = S1(v0) \X, and let A be a component of S′1(v0). As G is P6-free, we conclude
that any vertex x ∈ X ∪ S3(v1)∪ S3(v4) is either complete or anti-complete to A. If A has a neighbor
in both S3(v1) and S3(v4), then A must be a clique and thus of size at most k. Further, there are at
most k2 such components.
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Hence, we may assume that A is anti-complete to S3(v4). Let X ′ ⊆ X be the set of vertices that
are complete to A. We claim that X ′ is a clique. Let xi ∈ X ′ (i = 1, 2) and p ∈ A. If x1 and x2 have
a common neighbor y ∈ S2(v2, v3), then x1x2 ∈ E or x1px2y would induce a C4. So, we assume that
there exist yi ∈ S2(v2, v3) (i = 1, 2) such that xiyi ∈ E but xiyj /∈ E for i 6= j. Now x1y1y2x2p is an
induced C5, and it is anti-complete to v1, which contradicts Lemma 1. Let S′3(v1) ⊆ S3(v1) be the set
of vertices that are complete to A. By C4-freeness of G it is easy to see that S′3(v1) is complete to X ′.
Let V ′ = {v0} ∪ S3(v0)∪ S′3(v1). If A is anti-complete to X ′ or S5, then G has a clique cutset V ′ ∪ S5

or V ′ ∪X ′. So, A has a neighbor x ∈ X ′ and p ∈ S5 with px /∈ E. As |X ′| ≤ k2 and |S5| ≤ k, there
are at most k3 such pairs of vertices. Hence, there are at most k3 such components, otherwise by the
pigeonhole principle an induced C4 would arise.

Hence, it suffices to bound the size of A. Let R ⊆ S5 be the set of vertices that are not anti-complete
to A and have a non-neighbor in X ′. Let S′5 = S5 \ R. Note that X ′ and S′5 are complete to each
other. Let T ⊆ A be the set of vertices that are neighbors of R. Since any r ∈ R has a non-neighbor
x ∈ X ′, the set NA(r) is a clique and hence |NA(r)| ≤ k. So, |T | ≤ k2. Let B be a component of A\T .
Observe that any t ∈ T is either complete or anti-complete to B. If not, let bb′ ∈ E(B) with bt ∈ E
but b′t /∈ E. Let r ∈ R be a neighbor of t, let x ∈ X ′ be a non-neighbor of r, and let y ∈ S2(v2, v3) be
a neighbor of x. If ry ∈ E then tryx would induce a C4. But now b′btrv2y induces a P6.

Let T ′ ⊆ T be the set of vertices that are complete to B. Note that by definition V ∗ = S′5∪X ′∪V ′
is a clique. Our goal is to show that V ∗ ∪ T ′ is a clique. Let ti ∈ T ′. If t1 and t2 have a common
neighbor in R, then an induced C4 would arise unless t1t2 ∈ E. So, we assume that there exist ri ∈ R
(i = 1, 2) such that tiri ∈ E but tirj /∈ E for i 6= j. Let b ∈ B. Now t1r1r2t2b induces a C5. Let
xi ∈ X ′ be a non-neighbor of ri and yi ∈ S2(v2, v3) be a neighbor of xi. Note that for any r ∈ S5, r
is either complete or anti-complete to any edge between S1(v0) and S2(v2, v3). If x1 = x2 or y1 = y2,
t1r1r2t2b would not be dominating. Hence, x1 6= x2, y1 6= y2 and yixj /∈ E for i 6= j. Now x1x2y2y1
induces a C4. This proves that T ′ is a clique. By definition, T ′ is complete to X ′ ∪ S3(v0) ∪ {v0}.
Let q ∈ S′3(v1) and t ∈ T ′, and r ∈ R be a neighbor of t. Since qbtr does not induce a C4, we have
tq ∈ E. Now suppose that q ∈ S′5 and q has a neighbor b ∈ B. As qbtr does not induce a P4, we have
qt ∈ E. Hence, T ′ is complete to S′3(v1) ∪ S′5. We have shown that T ′ is complete to V ∗ and T ′ is
a clique. So, V ∗ ∪ T ′ is a clique cutset if B 6= ∅. Therefore, A = T and has size at most k2. Thus,
|S1(v0)| ≤ k2 + k2 × k + k2 × k3 = k2 + k3 + k5.

Bounding the size of S2(v2, v3). Let Y ⊆ S2(v2, v3) be the set of vertices that are not anti-complete
to S1(v0)∪S3(v1)∪S3(v4). Let A be a component S′2(v2, v3) = S2(v2, v3) \Y . As in previous case, we
can show that any y ∈ Y is either complete or anti-complete to A. Let Y ′ ⊆ Y be the set of vertices
that are complete to A. Since any vertex in S2(v2, v3) that is not anti-complete to S1(v0) is a universal
vertex in S2(v2, v3), we conclude that Y ′ is a clique. Let S′3(v3) and S′3(v2) be the subsets of S3(v3) and
S3(v2) consisting of all vertices that are complete to A, respectively. Let V ′ = {v3, v2}∪S′3(v2)∪S′3(v3).
If A is anti-complete to S5 or Y ′, then V ′∪S5 or V ′∪Y ′ would be a clique cutset. Hence, A corresponds
to a pair of nonadjacent vertices y ∈ Y ′ and r ∈ S5 such that r is not anti-complete to A. By property
(P4), each y ∈ Y is a dominating vertex in S2(v2, v3), and so |Y ′| ≤ |Y | ≤ k. Since |Y ′| ≤ k and
|S5| ≤ k, there are at most k2 components of S′2(v2, v3) by the pigeonhole principle and the fact that
G is C4-free.

It suffices to bound the size of A. We define R ⊆ S5, S′5 = S5 \ R and T = NA(R) as in the
previous case. Then |T | ≤ k2. Let B be a component of A \ T . Note that any t ∈ T is either complete
or anti-complete to B. Let T ′ ⊆ T be the set of vertices that are complete to A. By definition,
V ∗ = V ′ ∪S′5 ∪Y ′ is a clique. Moreover, T ′ is complete to V ∗ \S′5. Let b ∈ B be a neighbor of q ∈ S′5,
and let t ∈ T ′. Then tb ∈ E. Let r ∈ R be a neighbor of t. Since btrq does not induce a C4, we have
tq ∈ E, as rb /∈ E by definition. Hence, T ′ is complete to vertices in S′5 that are not anti-complete
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to B. Finally, we show that T ′ is a clique. Let ti ∈ T ′ for i = 1, 2. Let ri ∈ R be a neighbor of ti.
If r1 = r2, then t1t2 ∈ E or t1bt2r1 would induce a C4. So r1 6= r2 and ritj /∈ E if i 6= j. Suppose
that t1t2 /∈ E. Then bt1r1r2t2 induces a C5. Let yi ∈ Y ′ be a non-neighbor of ri, and let xi ∈ S1(v0)
be a neighbor of yi (i = 1, 2). If y1 = y2 or x1 = x2, then bt1r1r2t2 is not dominating, contradicting
Lemma 1. Hence, y1 6= y2 and yixj /∈ E. Thus, x1x2 /∈ E. Since {y1, y2} is complete to A and thus
to {b, t1, t2}, the set {y1, y2, r1, r2} induces a disjoint union of two copies of K2. Moreover, rixi /∈ E
or xiritiyi would induce a C4. Since bt1r1r2t2 is dominating, we obtain that r1x2 ∈ E and r2x1 ∈ E.
But then {y1, y2, x1, x2, r1, r2} induces a C6, a contradiction. Hence, A = T and so has size at most
k2. Therefore, |S2(v2, v3)| ≤ k2 + k2 × k2 = k4 + k2. ut

4 Obstructions to 3-Coloring

In this section we explicitly describe all the minimal non-3-colorable (P6, C4)-free graphs. We note
that [23], in conjunction with [5], describe all minimal non-3-colorable P5-free graphs, and that [16]
describes all minimal non-4-colorable (P5, C5)-free graphs.

(a) K4. (b) W5. (c) The Hajos graph. (d) F .

Fig. 1. All minimal non-3-colorable (P6, C4)-free graphs.

Theorem 2. There are exactly four minimal non-3-colorable (P6, C4)-free graphs, depicted in Figure
1.

Proof. Let G be a (P6, C4)-free minimal non 3-colorable graph. From the first few lines of the proof
of Theorem 1 we know that G has δ(G) ≥ k, contains no clique cutset, is K4-free, and contains an
induced C = C5 = v0v1 . . . v4. We use the notation Sp, S1(vi), S2(vi, vi+1), and S3(vi) from Section
2. From Lemma 1, we have S0 = ∅. It is easy to see that |S5| ≤ 1. If |S5| = 1, then G = W5. So we
may assume that S5 = ∅. If there exists an index i such that S3(vi) 6= ∅ and S3(vi+2) 6= ∅, then G is
the Hajos graph. Hence, at most two S3(vi)’s are nonempty. Furthermore, each S3(vi) is clique and
contains at most one vertex, since G is (C4,K4)-free. Therefore, |S3| ≤ 2. We distinguish three cases.

Case 1. |S3| = 2.

Without loss of generality, assume that S3(v0) = {x} and S3(v1) = {y}. xy /∈ E as G is K4-free.
Also S1(v3) = ∅, otherwise let t ∈ S1(v3) and then tv3v2yv0x = P6. Moreover, x (respectively y) is
complete to S2(v3, v4) (respectively S2(v2, v3)). Otherwise there exists some vertex z ∈ S2(v3, v4) with
xz /∈ E. Then zv3v2yv0x = P6. Hence, S2(v3, v4) and S2(v3, v2) are cliques and each of them contains
at most one vertex. As d(v3) ≥ 3 and S1(v3) = ∅, at least one of them is nonempty. Suppose first that
p ∈ S2(v3, v4) and q ∈ S2(v2, v3). Then xp ∈ E and yq ∈ E. It follows from S1(v3) = ∅ and property
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(P7) that S1 = ∅. Further, S2(v1, v2) = S2(v0, v4) = ∅ by (P10). Hence we have S2 = {p, q} by (P8),
and therefore N(x) = {v4, v1, v0, p}. Since G is a minimal obstruction, there exists a 3-coloring φ of
G − x. Note that we must have φ(v4) = φ(q) = φ(v1) and φ(p) = φ(v2) = φ(v0). Consequently, we
can extend φ to G by setting φ(x) = {1, 2, 3} \ {φ(v0), φ(v1)}. This contradicts the fact that G is not
3-colorable. Therefore, exactly one of S2(v3, v4) and S2(v3, v2) is empty. Without loss of generality,
assume that S2(v3, v4) = ∅ and let z ∈ S2(v2, v3). Note that N(v3) = {v4, v2, z}. Let φ be a 3-coloring
of G − v3, and note that we must have φ(v4) = φ(v1) = φ(z). Thus we can extend φ to G. This is a
contradiction.

Case 2. |S3| = 1. Without loss of generality, assume that x ∈ S3(v0).

Case 2.1 S1(v0) = ∅.
We claim that in this case S2(v2, v3) = ∅. Otherwise we let z ∈ S2(v2, v3). Note that S2(v2, v3)

is independent and anti-complete to x since G is (C4,K4)-free. By property (P4), the set S2(v2, v3)
is anti-complete to S1. Since {v2, v3} is not a clique cutset separating S2(v2, v3), one of S2(v3, v4)
and S2(v1, v2) is nonempty. We assume by symmetry that S2(v3, v4) 6= ∅ and let w ∈ S2(v3, v4).
By property (P7), S1 = S1(v3). Moreover, x is anti-complete to S2(v1, v2) and S2(v3, v4). Otherwise
consider induced C5 = C ′ = xv1v2v3v4. We define S′3 with respect to C ′ in the same way as we
define S3. It is easy to check that |S′3| ≥ 2 and we are in Case 1. Also, S2(v0, v4) = ∅. Otherwise
let t ∈ S2(v0, v4). Since xv0twzv2 does not induce a P6, xt must be an edge, and hence {x, v0, v4, t}
would induce a K4. Therefore, N(x) = {v0, v1, v4}. If S2(v1, v2) 6= ∅, then in any 3-coloring φ of
G − x we would have φ(v1) = φ(v4) and so φ can be extended to G. This contradicts that G is
a minimal obstruction. Hence, S2(v1, v2) = ∅. Note that S2 = {w, z} since G is (C4,K4)-free, and
hence N(v2) = {v3, z, v1}. Observe that in any 3-coloring φ of G− v2 we have φ(z) = φ(v4) = φ(v1).
Consequently, we can extend φ to G, and this is a contradiction. So the claim follows. By (P7), one
of S2(v3, v4) and S1(v2) is empty, and one of S2(v1, v2) and S1(v3) is empty. On the other hand,
S2(v3, v4)∪ S1(v3) 6= ∅ and S2(v1, v2)∪ S1(v2) 6= ∅ as δ(G) ≥ 3. This leads to the following two cases.

Case 2.1.a S1(v2) 6= ∅ and S1(v3) 6= ∅ while S2(v1, v2) = S2(v3, v4) = ∅.
By (P7), the set S2(v0, v1) = S2(v0, v4) = ∅, and so S2 = ∅. Since {v3} is not a clique cutset

separating S1(v3), we have S1(v1) 6= ∅. Similarly, S1(v4) 6= ∅. Let ui ∈ S1(vi) for i 6= 0. By (P1), each
S1(vi) is a clique, for i 6= 0. Moreover, |S1(v1)|+|S1(v3)| = 3 and |S1(v2)|+|S1(v4)| = 3 as δ(G) ≥ 3 and
G is K4-free. If |S1(v1)| = 2, then |S1(v4)| = 1 and so |S1(v2)| = 2. Hence, {u4, v1, v2}∪S1(v1)∪S1(v2)
induces a Hajos graph. Therefore, |S1(v1)| = |S1(v4)| = 1 and |S1(v2)| = |S1(v3)| = 2. Note that x
is anti-complete to {u1, u4} or G would contain either a C4 or a W5 as an induced subgraph. Now G
has a 3-coloring: {v1, u3, u2, v4}, {v0, v3, u1, u′2}, {x, u4, u′3, v2} where u′2 ∈ S1(v2) and u′3 ∈ S1(v3).

Case 2.1.b S2(v1, v2) 6= ∅ and S2(v3, v4) 6= ∅ while S1(v2) = S1(v3) = ∅.
Recall that x is anti-complete to S2(v1, v2) and S2(v3, v4). Let y ∈ S2(v3, v4) and z ∈ S2(v1, v2).

By (P8), S2 = S2(v1, v2)∪S2(v3, v4). Since {v3, v4} is not a clique cutset, S2(v3, v4) has a neighbor in
S1(v1). Similarly, S2(v1, v2) has a neighbor in S1(v4). However, this contradicts (P11).

Case 2.2 S1(v0) 6= ∅. Let y ∈ S1(v0).

In this case xy ∈ E by property (P12). It follows from properties (P7) to (P9) that S2(v1, v2) =
S2(v3, v4) = ∅. If S1(v0) is not anti-complete to S2(v2, v3), G would contain F as an induced subgraph
and soG = F . Hence, we may assume that S1(v0) is anti-complete to S2(v2, v3). Therefore, S2(v2, v3) =
∅ or {v2, v3} would be a clique cutset of G. Since δ(G) ≥ 3, S1(v2) 6= ∅ and S1(v3) 6= ∅. By (P9),
S2 = ∅. Let p ∈ S1(v2) and q ∈ S1(v3). Note that pq /∈ E, py ∈ E and qy ∈ E. Consider induced
C5 = C ′ = v0v1v2py. We define S′3 and S′p(v0) in the same way we define S3 and Sp(v0). It is easy to
see that S′3 = S′3(v0) = {x}. By (P1), S1(v0) is a clique and hence S1(v0) = {y}. Now we are in Case
2.1 since S′1(v0) = ∅.
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Case 3. |S3| = 0, i.e., V = C ∪ S1 ∪ S2.

We first claim that now S1 6= ∅. Assume that S1 = ∅ and thus S2 6= ∅ or G is 3-colorable. Note
that each S2(vi, vi+1) is an independent set. If there is exactly one nonempty S2(vi, vi+1), then G is 3-
colorable. If there are exactly three nonempty S2(vi, vi+1)’s, then each of them is a clique by property
(P2). Since G is K4-free, each S2(vi, vi+1) contains only one vertex. Therefore, G has eight vertices
and it is easy to check that G is 3-colorable. Let us assume now that there are exactly two nonempty
S2(vi, vi+1). If two S2(vi, vi+1)’s are complete to each other, then we either find a K4 or conclude
that |S2| = 2 so that G is 3-colorable. If two S2(vi, vi+1)’s are anti-complete to each other, G is also
3-colorable. Therefore, we may assume that S1(v0) 6= ∅ and let x ∈ S1(v0). S2(v3, v4) = S2(v1, v2) = ∅
by (P7). We claim that S1(v3) 6= ∅ and S1(v4) 6= ∅. Otherwise we must have S2(v2, v3) 6= ∅ and
S2(v0, v4) 6= ∅, and S1(v3) = S1(v4) = ∅ since d(v3) ≥ 3 and d(v4) ≥ 3. By properties (P7) and (P8),
the set S2(v0, v1) = S1(v1) = ∅. This contradicts the fact that δ(G) ≥ 3. By symmetry, S1(v1) 6= ∅
and S1(v2) 6= ∅. Hence, S2 = ∅ and S1(vi) is nonempty for each i. Since G is K4-free, we have
5 ≤ |S1| ≤ 7. It is easy to check that G is 3-colorable if |S1| ≤ 6. Thus |S1| = 7 and we may assume
that |S1(v0)| = |S1(v1)| = 2. Let ui ∈ S1(vi) and u′0 ∈ S1(v0), u′1 ∈ S1(v1). The subgraph induced by
{u3, u1, v1, v0, u0, u′0, u′1} is isomorphic to the Hajos graph. ut

5 Obstructions to 4-Coloring

Theorem 3. There are exactly 13 minimal non-4-colorable (P6, C4)-free graphs, depicted in Figure
2.

Our proof of Theorem 3 has two parts. The first part deals with the case when G contains an
induced W5. In the second part of the proof, we handle the case when G has no induced W5. The
technique we use is to choose some induced C5 with a certain minimality condition and derive some
additional properties, valid for graphs without induced W5.

Lemma 5. Let G be a (P6, C4)-free minimal non-4-colorable graph with an induced W5. Then G
either is one of four minimal non-3-colorable graphs with an additional dominating vertex or G is F1

or F2 from Figure 2.

Proof. If G is perfect, then G = K5. Hence, we assume that G is imperfect and K5-free. Let C =
v0 . . . v4 be an induced C5. If |S5| ≥ 2, then G is W5 with an additional dominating vertex. Hence we
may assume that every induced C5 has at most one 5-vertex. In particular, |S5| = 1. Let S5 = {w}.
Note that S5 is complete to S3. Hence, if there exists i such that S3(vi) 6= ∅ and S3(vi+2) 6= ∅, then
G is the Hajos graph with an additional dominating vertex. So there are at most two S3(vi) are
nonempty. Further, |S3(vi)| ≤ 1 as G contains no K5. So |S3| ≤ 2.

Case 1. |S3| = 2. Let x ∈ S3(v0) and y ∈ S3(v1). Then xy /∈ E as G contains no K5. If t ∈ S1(v3),
then tv3v4xv1y would induce a P6. So, S1(v3) = ∅. Also, x is complete to S2(v3, v4). Otherwise let
z ∈ S2(v3, v4) with xz /∈ E. Then zv3v2yv0x would induce a P6. By symmetry, y is complete to
S2(v2, v3). Note that N(v3) = {v2, v4, w}∪S2(v3, v4)∪S2(v3, v2). Now let φ be a 4-coloring of G− v3.
Note that φ(v4) = φ(v1), φ(x) = φ(y) and φ(v0) = φ(v2). As v4xv0 induces a triangle, we may assume
that φ(v4) = 1, φ(v0) = 2, φ(x) = 3. Hence, φ(w) = 4. Since x is complete to S2(v3, v4) and y is
complete to S2(v2, v3), any vertex t in S2(v3, v4) ∪ S2(v3, v2) has φ(t) 6= 3. Hence, only colors 1, 2, 4
appear on N(v3) and so we can extend φ to G by setting φ(v3) = 3.

Case 2. |S3| = 0. We claim that S1 6= ∅. If not, S2 6= ∅. If there is exactly one nonempty S2(vi, vi+1)
then S2(vi, vi+1)∪{w} must be bipartite otherwise a K5 or W5 with an additional dominating vertex
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would arise. It is easy to see G is 4-colorable. Now suppose that there are exactly three nonempty
S2(vi, vi+1). We may assume that S2(v4, v3), S2(v3, v2) and S2(v2, v1) are nonempty. Observe that
each S2(vi, vi+1) is a clique now and thus contains at most two vertices. Further, |S2(vi, vi+1)| +
|S2(vi+1, vi+2)| ≤ 3. Let p ∈ S2(v4, v3), r ∈ S2(v3, v2) and q ∈ S2(v2, v1). Suppose that wr ∈ E.
Then the fact that wrqv1 does not induce a C4 implies that wq ∈ E. By symmetry, wp ∈ E. Let
r′ ∈ S2(v3, v2). wqr′v3 6= C4 implies that wr′ ∈ E. Therefore, w is either complete or anti-complete to
S2. In the former case, w is a dominating vertex and hence G−w is a minimal non-3-colorable graph.
In the latter case, it is easy to check that G is 4-colorable.

(a) G3,1. (b) G2,2. (c) G2,1,1. (d) G1,1,1,1.

(e) F1. (f) F2. (g) H1. (h) H2.

(i) GP4 .

Fig. 2. 9 nontrivial minimal non-4-colorable (P6, C4)-free graphs.

Suppose now that there are exactly two nonempty S2(vi, vi+1). If the two sets are complete to
each other, then it is same as the above case. So let us assume that the two sets are anti-complete to
each other. Without loss of generality, assume that S2(v0, v1) 6= ∅ and S2(v2, v3) 6= ∅. Since G− v4 is
4-colorable, both {w} ∪ S2(v2, v3) and {w} ∪ S2(v0, v1) are bipartite. In fact, T = {w} ∪ S2(v0, v1) ∪
S2(v2, v3) is also bipartite. If not, let Q be an induced odd cycle in T . As Q * {w} ∪ S2(v0, v1) and
Q * {w} ∪ S2(v2, v3), Q contains a vertex in both S2(v0, v1) and S2(v3, v4). As S2(v0, v1) is anti-
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complete to S2(v2, v3), Q must contain w and Q is not a triangle. However, Q − w is connected and
hence is fully contained in S2(v0, v1) or S2(v2, v3). This is a contradiction. We therefore can 4-color
G as following: φ(v0) = φ(v2) = 1, φ(v1) = φ(v3) = 2, φ(v4) = 3, φ(w) = 4, and color one partite of T
with color 3 and the other with color 4.

Therefore, we may assume that S1(v0) 6= ∅. Going through the same argument for Case 3 in
Theorem 2, we conclude that S1(vi) 6= ∅ for each i and S2 = ∅. Moreover, w is either complete or
anti-complete to S1 as G is C4-free. In the former case, w is a dominating vertex and hence G−w is
a minimal minimal non-3-colorable graph. In the latter case, we let ui ∈ S1(vi) for each 0 ≤ i ≤ 4,
and wv2u2u4u1u3 induce a P6.

Case 3. |S3| = 1. Let x ∈ S3(v0). We distinguish two cases.

Case 3.1 S1(v0) = ∅. We claim that S2(v2, v3) = ∅. Otherwise let z ∈ S2(v2, v3). By (P7), we have
S1(v1) = S1(v4) = ∅. Note that S2(v2, v3) is bipartite and is anti-complete to x. Since {v2, v3} does
not separate S2(v2, v3), one of S2(v3, v4) and S2(v1, v2) is nonempty. By symmetry, we assume that
p ∈ S2(v3, v4). By properties (P7) to (P9), we have S1 = S1(v3) and S2(v0, v1) = ∅. In fact, S1(v3) = ∅
otherwise {v3, w} would separate S1(v3). Moreover, x is anti-complete to S2(v3, v4). If not, we may
assume xp ∈ E and consider induced C5 = C ′ = C \{v0}∪{x}. Observe that w ∈ S′5 and {v0, p} ⊆ S′3,
so we are in Case 1. Going through the same argument in Case 2 we conclude that w is either complete
or anti-complete to S2. In the former case w is a dominating vertex of G and we are done. Therefore,
we assume w is anti-complete to S2. Note also that 2 ≤ |S2| ≤ 5. In the following we either find
a minimal obstruction or show G is 4-colorable. Consider first that S2 = S2(v4, v3) ∪ S2(v3, v2). If
S2 = {p, z}, G has a 4-coloring φ: {v4, v1, z}, {v2, v0, p}, {x, v3}, {w}. If there exists p′ ∈ S2(v4, v3)
or z′ ∈ S2(v4, v3), then we can extend φ by adding p′ or z′ to {w}. So, we assume that S2(v4, v0) 6= ∅
and let r ∈ S2(v0, v4). The fact that v2zprv0x 6= P6 implies that xr ∈ E, hence S2(v4, v0) = {r}
as G is K5-free. If S2(v4, v3) = {p, p′}, then {w, x, v0, v3, v4, p, p′, r} induces a graph that is not 4-
colorable. Note that v4 is a dominating vertex in this subgraph, and hence G is the Hajos graph with
an additional dominating vertex. Thus, S2(v4, v3) = {p}. Note that S2(v3, v2) might contain a vertex
z′ 6= z or not. In either case, G has a 4-coloring: {v4, v1, z}, {v2, v0, p}, {x, v3}, {w, r, z′}. Finally,
we assume that S2(v0, v4) = ∅ and let r ∈ S2(v2, v1). If S2(v2, v3) = {z, z′}, then S2(v4, v3) = {p}
and S2(v1, v2) = {r} since G is K5-free. G has a 4-coloring: {v4, v1, z}, {v2, v0, p}, {x, v3, r}, {w, z′}.
Hence, S2(v2, v3) = {z, }. By δ(G) ≥ 4 we have S2(v4, v3) = {p, p′} and S2(v1, v2) = {r, r′}. In this
case G has a 4-coloring: {v4, v1, z}, {v2, v0, p}, {x, v3, r}, {w, p′, r′}.

Therefore, S2(v2, v3) = ∅. Consider first that S2(v1, v2) 6= ∅ and S2(v3, v4) 6= ∅ but S1(v2) =
S1(v3) = ∅. Then S2 = S2(v1, v2)∪S2(v3, v4) by (P7) and the fact that S2(v2, v3) = ∅. Since {v3, v4, w}
is not a clique cutset separating S2(v3, v4), S2(v3, v4) has a neighbor in S1(v1). Similarly, S2(v1, v2)
has a neighbor in S1(v4). However, this contradicts property (P11). Hence, we must have S1(v2) 6= ∅
and S1(v3) 6= ∅ but S2(v1, v2) = S2(v3, v4) = ∅. By (P7), we have S2 = ∅. S1(v1) 6= ∅, since {v3, w} is
not a clique cutset separating S1(v3). Similarly, S1(v4) 6= ∅. Let ui ∈ S1(vi) for i 6= 0. Note that w is
either complete or anti-complete to S1. In the former case w is a dominating vertex and we are done.
In the latter case we find an induced P6 = wv2u2u4u1u3.

Case 3.2 S1(v0) 6= ∅. Let y ∈ S1(v0). S2(v1, v2) = S2(v3, v4) = ∅ by (P7). Consider first that
S2(v2, v3) = ∅. Since d(v2) ≥ 4 and d(v3) ≥ 4, we have S1(v2) 6= ∅ and S1(v3) 6= ∅. By properties (P7)
to (P9), the set S2 = ∅. Let p ∈ S1(v3) and q ∈ S1(v2). Consider induced C5 = C ′ = v0v1v2qy. If w is
complete to S1, w is a dominating vertex in G and we are done. Hence, w is anti-complete to S1. Note
that S1(v0) is a clique and thus contains at most two vertices. Suppose first that S1(v0) = {y, y′}. If
S1(v3) = {p, p′}, then {v4, v0, v3, w, x, p, p′, y, y′} induces a GP4 with respect to C5 = v0y

′p′v3w. Thus,
G = GP4 but this contradicts that G contains an induced W5. Hence, S1(v3) = {p} and S1(v2) = {q}.
As d(p) ≥ 4 and d(q) ≥ 4, both S1(v1) and S1(v4) are nonempty. Let ui ∈ S1(vi) for each i, and
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so G contains an induced P6 = wv2u2u4u1u3. Hence, S1(v0) = {y}. If |S1(v3)| = |S1(v2)| = 3, then
G = G3,1 which is W5-free. Thus we assume that |S1(v3)| ≤ 2. Note that S1(v1) 6= ∅ as d(p) ≥ 4. Let
t ∈ S1(v1), and so wv1tpyq = P6.

Therefore, S2(v2, v3) 6= ∅. Let z ∈ S2(v2, v3). As {v2, v3, w} is not a clique cutset separating
S2(v2, v3), we may assume that yz ∈ E. If wy ∈ E, then the fact that wyzv3 6= C4 implies that
wz ∈ E. Hence G is the graph F with an additional dominating vertex. If wz ∈ E, G is the graph
F with an additional dominating vertex. Therefore, w is anti-complete to {y, z}. By (P11), we have
S1 = S1(v0). Further, S2(v0, v1) = ∅ otherwise {v0, v1, x, w} would be a clique cutset. Similarly,
S2(v0, v4) = ∅. Hence, S2 = S2(v2, v3). Note that S1(v0) ∪ S2(v2, v3) contains no induced C5, since
v1 is anti-complete to S1(v0) ∪ S2(v2, v3). If S1(v0) ∪ S2(v2, v3) is not bipartite, it must contain a
triangle, and hence G = F1 or G = F2. Therefore, we assume that S1(v0) ∪ S2(v2, v3) is triangle-free
and the edges between S1(v0) and S2(v2, v3) form a matching. As d(y) ≥ 4 and d(z) ≥ 4, y and z
have a neighbor y′ ∈ S1(v0) and z′ ∈ S2(v2, v3), respectively. Note y′z′ /∈ E or z′y′yz = C4. If w is
complete to {y′, z′}, {w, y, y′, z, z′x, v0, v2, v3} would induce a G3,1 with respect to C5 = wy′yzz′. If
wy′ ∈ E, then wz′ /∈ E and hence v1wy

′yzz′ = P6. Thus, wy′ /∈ E. Similarly, wz′ /∈ E. By (P7), the
vertex z is universal in S2(v2, v3), and so z′ cannot have a neighbor different from z, as otherwise A
K5 would arise. As d(z′) ≥ 4, z′ must have a neighbor y′′ in S1(v0). Note that y′′ /∈ {y, y′}. Applying
the argument for {z, y} to {z′, y′′}, we conclude that w is anti-complete to {z′, y′′}. y′′ is not complete
to {y, y′} or K5 would arise. If y′′y ∈ E, then y′′yzz′ = C4. If y′′y′ ∈ E, then y′′y /∈ E and thus
y′′y′yzv3w = P6. As d(y′′) ≥ 4, y′′ has a neighbor y′′′ ∈ S1(v0). y′′′ /∈ {y, y′, y′′}. Moreover, y′′′ is not
complete to {y, y′}. If y′′′y ∈ E, then y′′′y′ /∈ E and thus y′yy′′′y′′z′v2 = P6. By symmetry, y′′′y′ /∈ E.
Now y′′′y′′z′zyy′ = P6. ut

The following holds under the assumption that G has no induced W5.

Observation 1 Let G be a (P6, C4)-free graph without an induced W5. Let C = v0v1v2v3v4 be an
induced C5 of G. Then the following properties hold.

(1) If both S1(vi−1) and S1(vi+1) are nonempty then S3(vi) is anti-complete to S1(vi−1) and
S1(vi+1).

(2) If both S2(vi−1, vi) and S2(vi, vi+1) are nonempty, then S3(vi) is complete to S2(vi−1, vi) and
S2(vi, vi+1).

(3) Let x ∈ S3(vi−1) ∪ S3(vi+1). Suppose that pq ∈ E where p ∈ S1(vi) and q ∈ S2(vi+2, vi+3).
Then x is anti-complete to {p, q}.

Lemma 6. Suppose that G is a (P6, C4)-free minimal non-4-colorable graph without an induced W5.
Then G ∈ {G3,1, G2,2, G2,1,1, G1,1,1,1, H1, H2, GP4} (see Figure 2).

We postpone the lengthy proof of this lemma to the Appendix.

6 The Complexity of k-Coloring

We now apply our results to the questions of complexity of k-coloring (P6, C4)-free graphs. Reference
[12] gives a linear time algorithm for k-coloring (Pt, C4)-free graphs for any k, t. However, that algo-
rithm depends on Ramsey-type results, and end up using tree-decompositions with very high widths.
We offer more practical algorithms for 3-coloring and 4-coloring (P6, C4)-free graphs. Our algorithms
are linear time, once a clique cutset decomposition is given. Moreover, our algorithms are certifying
algorithms. Indeed, they are based on our characterizations of minimal non-k-colorable (P6, C4)-free
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graphs, and when no coloring is found, they exhibit a forbidden induced subgraph from Theorems 2
and 3.

The proof of Theorem 2 can be easily turned into a linear time algorithm for 3-coloring (P6, C4)-
free graphs without clique cutset. We first test if G is chordal. If so, we can test whether or not G is
3-colorable. Otherwise we have an induced C = C` for some ` ≥ 4. Up to this point every step can
be done in linear time [13]. If ` = 4 or ` ≥ 7 then G is not (P6, C4)-free. If ` = 5 we follow the above
proof, and it can be readily checked that every step can be performed in linear time. The remaining
case is ` = 6, and we can now assume G is also C5-free. By Lemma 3, either G is specific or C is
dominating. In the former case, a k-coloring of G or a K4 can be found in linear time. Therefore, we
assume that C is dominating. We define p-vertices and Sp with respect to C. We either find that G is
not (P6, C4)-free or the vertices of G consist of C ∪S6 ∪S3. Finally, in linear time we either find a K4

or conclude that G has at most 13 vertices, in which case a 3-coloring of G can be obtained by brute
force. A similar algorithm applies to the problem of 4-coloring (P6, C4)-free graphs. Thus we have the
following result.

Theorem 4. There exist linear time certifying algorithms for 3-coloring and 4-coloring (P6, C4)-free
graphs, given a clique cutset decomposition of the input graph.

We note that a clique cutset decomposition can be obtained in time O(mn) [27].

We now complement our results by proving most of the remaining problems of k-coloring (Pt, C`)-
free graphs NP-complete (at least as long as k ≥ 3 and ` > 3).

Recently, Huang [18] proved that the 5-coloring problem for P6-free graphs is NP-complete, and
that the 4-coloring problem for P7-free graphs is also NP-complete. The proof used the following
framework. We call a k-critical graph nice if G contains three independent vertices {c1, c2, c3} such
that the clique number ω(G − {c1, c2, c3}) = ω(G) = k − 1. For example, any odd cycle of length at
least 7 is a nice 3-critical graph.

We give a reduction from 3-SAT, as in [18]. Let I be any 3-SAT instance with variables X =
{x1, x2, . . . , xn} and clauses C = {C1, C2, . . . , Cm}, and let H be a nice k-critical graph with three
specified independent vertices {c1, c2, c3}. We construct a new graph GH,I as follows.

• Introduce for each variable xi a variable component Ti which is isomorphic to K2, labeled by
xix̄i. Call these vertices X-type.

• Introduce for each variable xi a vertex di. Call these vertices D-type.

• Introduce for each clause Cj = yi1 ∨ yi2 ∨ yi3 a clause component Hj which is isomorphic to H,
where yit is either xit or x̄it . Denote three specified independent vertices in Hj by citj for t = 1, 2, 3.
Call citj C-type and all remaining vertices U -type.

For any C-type vertex cij we call xi or x̄i its corresponding literal vertex, depending on whether
xi ∈ Cj or x̄i ∈ Cj .

• Make each U -type vertex adjacent to each D-type and X-type vertices.

• Make each C-type vertex cij adjacent to di and its corresponding literal vertex.

We refer to [18] for the proofs of the following two lemmas.

Lemma 7. Let H be a nice k-critical graph. Suppose GH,I is the graph constructed from H and a
3-SAT instance I. Then I is satisfiable if and only if GH,I is (k + 1)-colorable.

Lemma 8. Let H be a nice k-critical graph. Suppose GH,I is the graph constructed from H and a
3-SAT instance I. If H is Pt-free where t ≥ 6, then GH,I is Pt-free as well.
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To obtain NP-completeness results for (Pt, C`)-free graphs, we need an additional lemma.

Lemma 9. Let ` ≥ 6. If H is C`-free, then GH,I is C`-free.

Proof. Let Q = v1 . . . v` be an induced C` in GH,I . Let Ci (respectively C̄i) be the set of C-type
vertices that connect to xi (respectively x̄i). Let Gi = G[{Ti ∪ {di} ∪ Ci ∪ C̄i}]. Note that G − U is
disjoint union of Gi, i = 1, 2, . . . , n. If Q ∩ U = ∅, then Q ⊆ Gi for some i. It is easy to see that
Gi is C`-free as ` ≥ 6. Thus, Q ∩ U 6= ∅. Without loss of generality, we assume that v1 is a U -type
vertex where v1 is in the jth clause component Hj . If v2 and v` are both in Hj , then Q ⊆ Hj , which
contradicts our assumption that Hj = H is C`-free. If v2 and v` are both in X ∪D, then as U -type
vertices are complete to X-type and D-type vertices, all other vertices on Q are of C-type. This is
impossible since C is independent. The last case is v` is in Hj and v2 is in X ∪ D. Similar to the
second case, we have v4, v5, . . . vl−1 are C-type vertices. This contradicts that v4v5 is an edge. ut

The following theorem follows now directly from the above lemmas.

Theorem 5. Let ` ≥ 6. Then k-coloring is NP-complete for (Pt, C`)-free graphs whenever there exists
a (Pt, C`)-free nice (k − 1)-critical graph.

We apply Theorem 5 to derive a series of hardness results on (Pt, C`)-free graphs for various values
of k and t.

Fig. 3. G1.

Theorem 6. Let k ≥ 5, t ≥ 6 and ` ≥ 6 be fixed integers. Then k-coloring is NP-complete for
(Pt, C`)-free graphs.

Proof. It is easy to check that the graph G1 shown in Figure 3 is a nice 4-critical (P6, C`)-free graph
for any fixed ` ≥ 6. Applying Theorem 5 with G1 will complete our proof. ut

Theorem 7. 4-coloring is NP-complete for (Pt, C`)-free graphs when t ≥ 7 and ` ≥ 6 with ` 6= 7; and
4-coloring is NP-complete for (Pt, C`)-free graphs when t ≥ 9 and ` ≥ 6 with ` 6= 9.
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Proof. It is easy to check that C7 is a nice 3-critical (Pt, C`)-free graph for any t ≥ 7 and ` ≥ 6
except ` = 7, and that C9 is a nice 3-critical (Pt, C`)-free graph for any t ≥ 9 and ` ≥ 6 except ` = 9.
Applying Theorem 5 with C7 and C9 will complete the proof. ut

We shall use a different reduction to prove the next result.

Theorem 8. 4-coloring is NP-complete for (P7, C5)-free graphs.

Proof. We reduce NOT-ALL-EQUAL 3-SATISFIABILITY with positive literals only (NAE 3-SAT
PL for short) to our problem. The NAE 3-SAT PL is NP-complete [26] and is defined as follows.
Given a set X = {x1, x2, . . . , xn} of logical variables, and a set C = {C1, C2, . . . , Cm} of three-literal
clauses over X in which all literals are positive, does there exist a truth assignment for X such that
each clause contains at least one true literal and at least one false literal? Given an instance I of NAE
3-SAT PL we construct a graph GI as follows.

• For each variable xi we introduce a single vertex named as xi. Call these vertices X-type.

• For each variable xi we introduce a ”truth assignment” component Fi where Fi is isomorphic to
P4 whose vertices are labeled by die

′
ieid

′
i.

• For each clause Cj = xi1 ∨xi2 ∨xi3 we introduce two copies of C7 denoted by Hj and H ′j . Choose
three independent vertices of Hj and name them as ci1j , ci2j and ci3j . Choose three independent
vertices of H ′j and name them as c′i1j , c

′
i2j

and c′i3j . Call these vertices C-type and C ′-type, respectively.
The remaining vertices in clause components are said to be of U -type.

• Make each U -type vertex adjacent to each X-type vertex and each vertex in Fi for 1 ≤ i ≤ n.

• Make each C-type vertex cij adjacent to xi and di and make each C ′-type vertex c′ij adjacent to
xi and d′i.

This completes the construction of GI . It is easy to see that di and d′i have no common neighbor
in G− U and same for ei and e′i.

Claim 1. The instance I is satisfiable if and only if GI is 4-colorable.

Proof. Suppose first that GI is 4-colorable and φ is a 4-coloring of GI . Without loss of generality, we
may assume that the two adjacent U -type vertices in H1 receive color 1 and 2, respectively. Now as
U is complete to X ∪ F , it follows that each xi and each vertex in Fi receives color 3 or 4. Further,
φ(di) 6= φ(d′i) for each i. We define a truth assignment as follows.

• We set xi to be TRUE if φ(xi) = φ(di) and to be FALSE if φ(xi) 6= φ(di).

We show that every clause Cj contains at least one true literal and one false literal. Suppose xi1 ,
xi2 , and xi3 are all TRUE. Then it implies that φ(d′ij ) 6= φ(xij ) for all j = 1, 2, 3. As a result, c′ij
must be colored with color 1 or 2 under φ. Moreover, all U -type vertices in H ′j are colored with 1 or
2 under φ. This contradictions the fact that H ′j = C7 is not 2-colorable. If xi1 , xi2 , and xi3 are all
FALSE we would reach a similar contradiction. Conversely, suppose that every clause Cj contains at
least one true literal and one false literal. We define a 4-coloring φ as follows.

• Set φ(xi) = 3 if xi is TRUE and φ(xi) = 4 if xi is FALSE.

• We color vertices in Fi alternately with color 3 and 4 starting from setting φ(di) = 3.

• Let Cj = xi1 ∨xi2 ∨xi3 be a clause. Without loss of generality, we may assume that xi1 is TRUE
and xi2 is FALSE. It follows from the definition of φ that φ(xi1) = φ(di1) = 3. Hence, we can color
ci1j with color 4, so that Hj−ci1j can be colored with colors 1 and 2. Similarly, we can 4-color H ′j . ut
Claim 2. GI is C5-free.

Proof. Let Q = v1 . . . v5 be an induced C5 in GI . Let Ci (respectively C ′i) be the set of C-type
(respectively C ′-type) vertices that are adjacent to xi. Let Gi be the subgraph of GI induced by
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{xi} ∪ Ci ∪ C ′i ∪ Fi. Note that G − U is disjoint union of Gi. Suppose first that Q ∩ U = ∅. Note
that both ei and e′i have degree 2 in Gi. If Q contains ei or e′i, then Q contains Fi as an induced
subgraph and thus the fifth vertex of Q would be a common neighbor of di and d′i, a contradiction. So
Q∩{ei, e′i} = ∅. If Q∩{di, d′i} = ∅, then Q is a star which is impossible. Without loss of generality, we
assume that di ∈ Q. If d′i is also in Q, then there would be a common neighbor of di and d′i. So d′i /∈ Q.
Then the two neighbors of di on Q must be of C or C ′-type, and so the other two vertices have to be
of X-type, which is not possible. Hence, Q ∩ U 6= ∅. Suppose v1 is of U -type and from Hj . If both v2
and v5 are of X-type or F -type, then v3 and v4 have to be C or C ′-type. But this is a contradiction
as C ∪C ′ is independent. If both v2 and v5 are in Hj , then Q ⊆ Hj , which is impossible as Hj = C7 is
C5-free. So we assume that v2 is of X-type or F -type and v5 is in Hj . Then v5 must be C or C ′-type.
Moreover, v4 must be of C or C ′-type as it is not adjacent to v1 or v2. This is impossible since v4v5
is an edge. ut
Claim 3. GI is P7-free.

Proof. Let P be an induced P7 in GI . We first consider the case P ∩U 6= ∅. Let u ∈ P be an U -type
vertex and u is in some clause component Hj . For any vertex x on P we denote by x− and x+ the
left and right neighbor of x on P , respectively. Suppose first that u is an endvertex of P . Then u+ is
in X ∪F or Hj . If u+ is in Hj , then P ⊆ Hj , which is a contradiction since Hj = C7 is P7-free. So u+

is in X ∪ F . If u++ is in C ∪ C ′, then |P | = 3, a contradiction. So u++ is in U . But now u+++ must
be in C ∪C ′, and thus |P | = 4, a contradiction. Hence, u must have degree 2 on P . If u− and u+ are
both in Hj , then P ⊆ Hj , a contradiction. If u− and u+ are both in X ∪ F , then u−− and u++ are
both of C- or C ′-type. Hence, |P | ≤ 5 since C ∪ C ′ is independent. So we may assume that u+ is in
Hj and u− is in X ∪ F . Now u+ must be of C- or C ′-type and hence an endvertex of P . Therefore,
|P | ≤ 2 + 4− 1 = 5.

We have shown that P ∩U = ∅. So P ⊆ Gi for some i. Now we show that |P ∩Ci| = 1. Otherwise
assume that |P ∩ Ci| = 2. Let c1 and c2 be the vertices in P ∩ Ci. If c1 and c2 are not at distance
2 on P , then xi and di are not on P otherwise P would not be induced. However, xi and di are the
only neighbors of C-type vertices in Gi, a contradiction. So, c1 and c2 must be at distance 2 on P . If
they are connected by di, then xi /∈ P and vice versa. But now |P | = 3, since Ci ∪C ′i is independent.
Therefore, |P ∩C| ≤ 1 and similarly |P ∩C ′| ≤ 1. So, we must have Fi ∪ {xi} ⊆ P , and thus P = C7,
a contradiction. ut

The following result is a direct corollary of Theorem 8.

Theorem 9. Let k ≥ 4 and t ≥ 7. Then k-coloring is NP-complete for (Pt, C5)-free graphs.

7 Conclusions

We have undertaken a first systematic study of the k-coloring problem for graphs without an induced
cycle C` and an induced path Pt. We have shown that while for many values of k, t and ` these
problems are NP-complete, the case of (P6, C4)-free graphs offers much structure to be exploited. In
particular, we have shown that there are for each k only finitely many non-k-colorable (P6, C4)-free
graphs.

For k = 3 and k = 4, we were able to describe these minimal obstructions explicitely, and so
obtained certifying polynomial time (linear time if a clique cutset decomposition is given) algorithms
for coloring (P6, C4)-free graphs. However, for larger k, we do not know certifying k-coloring algorithms
for (P6, C4)-free graphs.
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Our hardness results come close to classifying the complexity all cases of k-coloring for (Pt, C`)-
free graphs. There seem to be two stubborn cases about which not much can be said with the current
tools, when k = 3 or ` = 3. (But note [6,7].) Beyond these cases, our results leave only the following
remaining open problems.

Problem 1. What is the complexity of k-coloring (P6, C5)-free graphs for k ≥ 4?

Problem 2. What is the complexity of 4-coloring (P6, C6)-free graphs?

Problem 3. What is the complexity of 4-coloring (Pt, C7)-free graphs for t = 7 and t = 8?

In [18] Huang conjectured that 4-coloring is polynomial time solvable for P6-free graphs. If the problems
in Problem 1 for k = 4 or Problem 2 are polynomial, this would add evidence to the conjecture.

We are grateful to Daniel Paulusma for very valuable advice and suggestions.
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10. Erdős, P.: Graph theory and probability II, Canad. J. Math. 13, 346–352 (1961).
11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman San Faranciso, (1979).
12. Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and long induced paths.

http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/girth.pdf, 2013.
13. Golumbic, M. C., Algorithmic graph theory and perfect graphs. San Diego, 1980.
14. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Ann. Discrete Math.

21, 325–356 (1984). Topics on Perfect Graphs.
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Appendix

Proof of Lemma 6. By Lemma 5, we may assume that no induced C5 has a 5-vertex. Let C = v0 . . . v4
be an induced C5 such that |S3| is as small as possible. As the graph G3,1 is a minimal obstruction,
we obtain that |S3| ≤ 7. Suppose first |S3| = 0. It is easy to check that either G contains a K5 or is
4-colorable if S1 = ∅. Hence, we may assume that S1(v0) 6= ∅. Going through the same argument as
in Case 2 of Lemma 5, we conclude that each S1(vi) 6= ∅ for each i. If two S1(vi) have size at least 3,
then G either contains K5 or G3,1. Now suppose that |S1(v0)| = 3. Thus |S1(v2)| = |S1(v3)| = 1 or
K5 arises. If |S1(v1)| = |S1(v4)| = 2, then G = G2,2. Otherwise one of S1(v1) and S1(v4) has size 1 in
which case it is easy to check G is 4-colorable. Now we assume that each |S1(vi)| ≤ 2. If all but one
S1(vi) have size 2, then G = GP4

. Otherwise, there are at least two |S1(vi)| = 1. It is easy to check G
is 4-colorable. Therefore, 1 ≤ |S3| ≤ 7.

Case 1. |S3| = 1. Let x ∈ S3(v0). Suppose first that S1 = ∅. If S2(v2, v3) = ∅, then both
S2 = S2(v1, v2) and S2(v3, v4) have at least two vertices as d(v2) ≥ 4 and d(v3) ≥ 4. By (P8),
S2 = S2(v1, v2) ∪ S2(v3, v4). As d(x) ≥ 3, we have that x is not anti-complete to S2 and hence
complete to S2 by (P10). Now G contains G3,1 as an induced subgraph and so G = G3,1. Thus
S2(v2, v3) 6= ∅. By (P8), one of S2(v0, v1) and S2(v0, v4) is empty, say S2(v0, v1). As d(v1) ≥ 4 we have
S2(v1, v2) 6= ∅ and thus S2(v0, v4) = ∅. As d(v4) ≥ 4 we have S2(v3, v4) 6= ∅. By (P10), x must be
anti-complete to S2. But now d(x) = 3 contradicting δ(G) ≥ 4.

Therefore, S1 6= ∅. Suppose first that S1(v0) 6= ∅. Going through the same argument as in Case
2 of Lemma 5 we conclude that S1(vi) 6= ∅ for each i and S2 = ∅. It is easy to check that either
G ∈ {G3,1, G2,2, GP4

} or G is 4-colorable. So, S1(v0) = ∅. We first show that S1(v2) is anti-complete
to S2(v0, v4). If not, let x ∈ S1(v2) be adjacent to y ∈ S2(v0, v4). By (P11), S1 = S1(v2). Further,
S2(v0, v1) = S2(v4, v3) = ∅ , and one of S2(v1, v2) and S2(v3, v2) is empty by properties (P7) to (P9).
As δ(G) ≥ 4 there are at least two 3-vertices adjacent to v1 or v3. This is impossible as |S3| = 1.
Now if S1(v2) 6= ∅, then S1(v4) 6= ∅ as v2 does not separate S1(v2) and by (P9) we have S2 = ∅.
As d(v3) ≥ 4 S1(v3) 6= ∅ and hence S1(v1) 6= ∅. Now by Observation 1, we have x is anti-complete
to S1, contradicting δ(G) ≥ 4. Therefore, S1(v2) = ∅. Similarly, S1(v3) = ∅. Now we may assume
that S1(v1) 6= ∅. Then S2(v2, v3) = ∅. As δ(G) ≥ 4, both S2(v1, v2) and S2(v3, v4) have at least two
vertices and so S2 = S2(v1, v2)∪S2(v3, v4). By (P10), x must be anti-complete to S2 or G = G3,1. By
Observation 1 and d(x) ≥ 4 we have S1(v4) = ∅. But now {v1, x} is a clique cutset separating S1(v1).

Case 2. |S3| = 2. We distinguish two subcases.

Case 2.1 There exists some i such that S1(vi) 6= ∅ and S1(vi+1) 6= ∅. Without loss of generality,
assume that x ∈ S1(v0) and y ∈ S1(v1). By (P9), S2 = S2(v0, v1). Suppose first that S2(v0, v1) 6= ∅.
Then S1(v2) = S1(v4) = ∅. As d(v2) ≥ 4 and d(v4) ≥ 4 we have |S3(v3)| = 2. Note that S1(v3) is
a clique since S1(v0) 6= ∅ and is complete to S3(v3). So, |S1(v3)| ≤ 1 or K5 would arise. Note that
S2(v0, v1) is bipartite. If S1(v3) = ∅, then it is easy to check that G is 4-colorable. So we assume that
S1(v3) = {w}. If w has two neighbors in S2(v0, v1), then G = G2,1,1. Thus w has at most one neighbor
in S2(v0, v1). If |S1(v0)| = 3 or |S1(v1)| = 3, then G = G3,1. Thus |S1(vi)| ≤ 2 for i = 0, 1. Now it
is easy to check that G is 4-colorable. Therefore, S2(v0, v1) = ∅ and thus S2 = ∅. We consider two
subcases.

Case 2.1.a There exists some i such that |S3(vi)| = 2. Suppose that i = 0 (or i = 1). As d(v2) ≥ 4
and d(v3) ≥ 4, we have that |S1(vi)| ≥ 2 for i = 2, 3. By (P12), x is complete to S3(v0) and hence
S1(v0) = {x}. If |S1(v1)| ≥ 2, then G = G2,2. So assume that S1(v1) = {y}. If |S1(vi)| = 3 for
some i ∈ {2, 3}, then G = G3,1. If |S1(v4)| ≥ 2 then G = G2,2. Hence, |S1(v3)| = |S1(v2)| = 2 and
|S1(v4)| ≤ 1. Let ui ∈ S1(vi) for nonempty S1(vi) and let u′i ∈ S1(vi) with u′i 6= ui for i = 2, 3. Let
S3(v0) = {z, z′}. If u4 exists, then S3(v0) is anti-complete to S1 \ {x} by Observation 1. Thus G has
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a 4-coloring: {v1, v4, x}, {v0, v2, u4, u3}, {v3, y, u2, z}, {u′2, u′3, z′}. If u4 does not exist, then y may or
may not be adjacent to S3. In either case, G has a 4-coloring: {v1, v4, x}, {v0, v3, u2, y}, {v2, u3, z},
{z′, u′2, u′3}.

Now suppose that i = 4 (or i = 2). As d(vi) ≥ 4 we have |S1(vi)| ≥ 2 for i = 1, 2. We may assume
that S1(v4) = ∅ or we are in the case i = 0. Since {v1} does not separate S1(v1), S1(v3) 6= ∅. By
Observation 1, S3 is anti-complete to S1. Note that |S1(v3)| + |S1(v0)| ≤ 3 otherwise G = G3,1 or
G = G2,2. Let ui, u

′
i ∈ S1(vi) for i = 2, 3 and S3(v4) = {z, z′}. If each S1(vi) has size less than 3,

then G has a 4-coloring: {v0, v3, y}, {v2, v4, u′1, x}, {v1, u2, u3, z}, {u′2, u′3, z′}. So assume without loss
of generality that |S1(v2)| = 3 and hence S1(v0) = {x}. It is easy to check G is also 4-colorable.

Finally, suppose that i = 3. As d(vi) ≥ 4 we have |S1(vi)| ≥ 2 for i = 0, 1. If S1(v3) = ∅, then as
G has no clique cutset, S1(vj) 6= ∅ for j = 1, 4, and we are in the case i = 4. So S3(v1) = {z}. Note
that |S1(v0)| = |S1(v1)| = 2 or G = G3,1. Moreover, each of S1(v1) and S1(v4) has size at most 1 or
G = G2,2. Now it is easy to check that G is 4-colorable.

Case 2.1.b Each S3(vi) has at most one vertex. Let N be the set of vi such that S3(vi) 6= ∅. Then
there are six possible cases.

Suppose first that N = {v0, v1}. Let t ∈ S3(v0) and r ∈ S3(v1). Since xtv4v3v2r 6= P6, we have
rt ∈ E or rx ∈ E. Similarly, the fact that yrv2v3v4t 6= P6 implies that rt ∈ E or yt ∈ E. If
rt /∈ E, then xr and yt are edges and so txry = C4. Hence, rt ∈ E. As d(v3) ≥ 4, |S1(v3)| ≥ 2.
Similarly, both S1(v2) and S1(v4) are nonempty. By Observation 1, t (respectively r) is anti-complete
to S1 \ S1(v0) (respectively S1 \ S1(v1)). Note that |S1(v3)| = 2 or G = G3,1. If S1(v0) has two
vertices, then {v0, v1, t, r, y} ∪ S1(v0) ∪ S1(v3) induces a GP4 with respect to tv1u1v3v0 and u′3u

′
0v0r

where ui, u
′
i ∈ S1(vi) for each i. Hence, S1(v0) = {x}. Similarly, S1(v1) = {y}. If |S1(v2)| = 3, then

G = G2,2. So |S1(vi)| ≤ 2 for i = 2, 4. Now it is easy to check G is 4-colorable.

Now suppose that N = {v1, v2}. Let t ∈ S3(v2) and r ∈ S3(v1). As δ(G) ≥ 4 we have |S1(v4)| ≥ 2
and |S1(v3)| ≥ 1. By Observation 1, we have ty /∈ E. Since tv3v4wyr 6= P6, we have rt ∈ E, where
w ∈ S1(v4). We may assume that S1(v2) = ∅ or we are in the case N = {v0, v1}. Note that r is anti-
complete to S1(v0) as S1(v3) 6= ∅ and G is C4-free. Since d(x) ≥ 4 we have |S1(v0)|+ |S1(v3)| = 4. If
|S1(v4)| = 3, then |S1(v1)| = 1. Also, |S1(v3)| ≤ 2 or G = G3,1. Now G is 4-colorable. So, |S1(v4)| = 2.
As δ(G) ≥ 4 we have |S1(v1)| = 2. If |S1(v3)| ≥ 2 then {v1, v2, v3, u′3, u′1, u3, u1, r, t} induces a GP4

with respect to v1v2v3u
′
3u
′
1 and u3u1rt where ui, u

′
i ∈ S1(vi). So, |S1(v3)| = 1 and then |S1(v0)| = 3.

Now S1(v0) ∪ {v0, u3, r, v1, u1, u′1} induces a G2,2 with respect to induced K5 − e = S1(v0) ∪ {v0, u3}
and K4 = rv1u1u

′
1. This completes the proof of N = {v1, v2}.

Let N = {v2, v3}. As δ(G) ≥ 4, both S1(v1) and S1(v4) are nonempty, and S1(v0) has at least two
vertices. If one of S1(v2) and S1(v3) is nonempty, we are in one of previous cases. But now {v0} is a
clique cutset separating S1(v0).

Let N = {v0, v3} and let r ∈ S3(v0), t ∈ S3(v3). As δ(G) ≥ 4 we have S1(vi) 6= ∅ for i 6= 4.
Let ui ∈ S1(vi). By G is C4-free, we have r (respectively t) is anti-complete to S1(v1) (respectively
S1(v2)). Then as d(u1) ≥ 4 and d(u2) ≥ 4, we have |S1(v1)|+ |S1(v3)| = 4 and |S1(v2)|+ |S1(v0)| = 4.
If |S1(v0)| = 3, then |S1(v2)| = |S1(v2)| = 1, and so |S1(v1)| = 3. Now G = G3,1. So each S1(vi) has
size 2. But now {r, v4, t, v3, v0} ∪ S1(v0) ∪ S1(v1) induces a GP4

.

Let N = {v0, v2}. As in the case where N = {v0, v3}, we obtain that each S1(vi) 6= ∅. Moreover,
each S1(vi) has size 2 except S1(v1). Hence, G = GP4

.

The case N = {v2, v4} is the same as N = {v0, v3}. This completes the proof of Case 2.1.

Case 2.2 One of S1(vi) and S1(vi+1) is empty for each i. Hence, there are at most two nonempty
S1(vi). We consider following three cases.
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Suppose first that there are exactly two S1(vi) that are nonempty. Without loss of generality, we
assume that S1(v0) and S1(v2) are nonempty. By (P9), we have S2 = ∅. As d(v1) ≥ 4 and d(v4) ≥ 4,
we have |S3(v0)| = 2 but this contradicts d(v3) ≥ 4.

Now we suppose that S1(v0) 6= ∅ while S1(vi) = ∅ for i 6= 0. Let x ∈ S1(v0). Note that S2(v2, v1) =
S2(v3, v4) = ∅.

We first claim that S3 is not anti-complete to S1. If not, x has a neighbor y ∈ S2(v2, v3) or {v0}
would be a clique cutset. Further, one of S2(v0, v4) and S2(v0, v1) is empty, say S2(v0, v4). Since
d(v4) ≥ 4, we have S3(v1) = S3(v2) = ∅. Also, S3(v0) = ∅ by our assumption. If S3(v4) 6= ∅, then
|S2(v0, v1)| ≥ 1 since d(v1) ≥ 4. Since {v0, v1} does not separate S2(v0, v1), S2(v0, v1) has a neighbor
t in S3(v4) and hence ty ∈ E by the property (P10). Now tyxv0 = C4. So it must be the case that
|S3(v3)| = 2. Then |S2(v0, v1)| ≥ 1 since d(v1) ≥ 4 and so {v0, v1} is a clique cutset separating
S2(v0, v1).

Hence, S3 is not anti-complete to S1, and thus |S3(v3)∪S3(v2)| ≤ 1. By d(v2) ≥ 4 and d(v3) ≥ 4 we
have that S2(v2, v3) 6= ∅. We first consider the case that S1(v0) is anti-complete to S2. If S3(v3) 6= ∅,
then G would have a clique cutset separating S1(v0). So, S3(v3) = S3(v2) = ∅. Further, there is no
S3(vi) having size 2 or G would have a clique cutset. Let S3 = {r, t}. If r ∈ S3(v4) and t ∈ S3(v0),
then rt /∈ E or clique cutset would arise. Thus, S2(v0, v1) 6= ∅ as d(v1) ≥ 4. As {v2, v3} is not a
clique cutset, r is not anti-complete to S2(v2, v3) and hence complete to S2(v2, v3) and S2(v0, v1). As
d(v2) ≥ 2, |S2(v2, v3)| ≥ 2 and thus S2(v0, v1) = {q}. As d(q) ≥ 4 we have qt ∈ E and thus rqtv4 = C4.
By symmetry, it is impossible for r ∈ S3(v0) and t ∈ S3(v1). Finally, it is impossible for S3(v4) and
S3(v1) to be nonempty by properties (P7) to (P9) and δ(G) ≥ 4. Therefore, we may assume that x has
a neighbor y in S2(v2, v3). Without loss of generality, we assume that S3(v2) = ∅. Next we distinguish
two cases by properties (P7) to (P9).

(I) S2(v0, v1) = ∅. Then S3 = S3(v0) ∪ S3(v1) by d(v1) ≥ 4. If |S3(v0)| = 2, then |S2(v2, v3)| ≥ 2
by d(v3) ≥ 4. If x has a different neighbor y′ in S2(v2, v3), then G = G2,1,1. If there is an edge other
than xy between S1(v0) and S2(v2, v3), then G = G1,1,1,1. Hence, S2(v2, v3) \ {y} is anti-complete to
S1 and thus {v2, v3} is a clique cutset by (P4) to (P6). If |S3(v1)| = 2, then we are in the case S3 is
anti-complete to S1. Now let t ∈ S3(v1) and r ∈ S3(v0). By δ(G) ≥ 4 we have |S2(v2, v3)| ≥ 2 and
|S2(v0, v4)| ≥ 1. As {v0, v4, r} does not separate S2(v0, v4), t is not anti-complete to S2(v0, v4) and
hence complete to S2(v0, v4) and S2(v2, v3). Thus S2(v0, v4) = {q}. As d(q) ≥ 4 we have qr ∈ E and
thus rt ∈ E or qrv1t = C4. But now it is easy to see G contains G3,1 as an induced subgraph.

(II) S2(v0, v4) = ∅. So, S3(vi) = ∅ for i = 1, 2. Note that it is impossible that |S3(v3)| = 2
by our assumption. If |S3(v4)| = 2, then we are in the case where S3 is anti-complete to S1. If
|S3(v0)| = 2, then the only edge between S1(v0) and S2(v2, v3) is xy or G ∈ {G1,1,1,1, G2,1,1}. As G
has no clique cutset, S1(v0) = {x} and S2(v0, v1) = ∅. Note that S2(v2, v3) is bipartite and thus G
is 4-colorable. If |S3(v3)| = |S3(v0)| = 1, then S2(v0, v1) 6= ∅ by d(v1) ≥ 4 and thus {v0, v1} ∪ S3(v0)
would be a clique cutset. If |S3(v4)| = |S3(v0)| = 1, then it is same as the third case in (I). Finally,
|S3(v3)| = |S3(v4)| = 1. Let r ∈ S3(v4) and t ∈ S3(v3). Then |S2(v0, v1)| ≥ 2 as d(v1) ≥ 4. As G has no
clique cutset, r is not anti-complete to S2(v0, v1) and thus complete to S2. Thus, S2(v0, v1) = {p, p′}
and S2(v2, v3) = {y}. Since tv3yxv0p 6= P6, we have ty ∈ E and so rt ∈ E or yrv4t = C4. Now
G = G3,1.

Finally, we assume that S1 = ∅. Consider first that |S3(v0)| = 2. If S2(v2, v3) = ∅, then both
S2(v1, v2) and S2(v3, v4) contain at least two vertices since d(v2) ≥ 4 and d(v3) ≥ 4. As G has no clique
cutset, there exists t ∈ S3(v0) that is complete to S2 by (P9). But now G = G3,1. So, let x ∈ S2(v2, v3).
Then one of S2(v1, v2) and S2(v3, v4) is nonempty, say y ∈ S2(v3, v4). If S2 = S2(v1, v2) ∪ S2(v3, v4),
then |S2(v3, v2)| = 2 and |S2(v3, v4)| = 1. Now G is 4-colorable. Hence, either S2(v1, v2) 6= ∅ or
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S2(v0, v4) 6= ∅. In the former case, S3 is anti-complete to S2 or C4 occurs and thus G is 4-colorable.
In the latter case, we have |S2(v3, v2)| = 2, |S2(v3, v4)| = 1 and |S2(v0, v4)| ≤ 2. Note that any
t ∈ S2(v0, v4) is not complete to S1(v0) or K5 would occur, and hence G is 4-colorable. Hence, no
S3(vi) has size 2. Suppose that |S3(v0)| = |S3(v2)| = 1. If S2(v3, v4) = ∅, then S2(v0, v4) 6= ∅ and so
S3(v0) ∪ {v0, v4} is a clique cutset. So, S2(v3, v4) 6= ∅. Now as d(v0) ≥ 2 and d(v2) ≥ 2 we have three
S2(vi, vi+1) are nonempty, contradicting the property (P7).

So, there must be the case that |S3(v0)| = |S3(v1)| = 1. Let r ∈ S3(v0) and t ∈ S3(v1). If
S2(v2, v3) = ∅, then |S2(v1, v2)| ≥ 1 and |S2(v3, v4)| ≥ 2. As G has no clique cutset, r is not anti-
complete to S2(v3, v4) and thus complete to S2. So, |S2(v1, v2)| = 1 and |S2(v3, v4)| = 2. Let q ∈
S2(v1, v2). Note that qt ∈ E as d(q) ≥ 4. Hence, rt ∈ E or qrv1t = C4. Now G = G3,1. Therefore,
S2(v2, v3) 6= ∅. By symmetry, S2(v4, v3) 6= ∅. Let p ∈ S2(v3, v2) and q ∈ S2(v4, v3). If S2 = S2(v3, v4)∪
S2(v3, v2), then G has a 4-coloring φ: {v0, v2, q}, {v1, v4, p}}, {r, p′}, {v3, t} if S2(v3, v2) = {p, p′}.
If S2(v4, v3) = {q, q′}, then G has a 4-coloring by replacing {r, p′}, {v3, t} in φ with {t, q′}, {v3, r}.
Hence we assume by symmetry that S2(v1, v2) 6= ∅. Let s ∈ S2(v1, v2). By (P9) and C4-freeness of
G, we have r is anti-complete to S2 and thus rt ∈ E since d(r) ≥ 4. Suppose S2(v2, v3) = {p}. If
S2(v1, v2) = {s, s′}, then t is not complete to {s, s′}, say ts′ /∈ E, since G is K5-free. Hence G has
a 4-coloring: {r, q, v2}, {v0, v3, s}, {v4, v1, p}, {t, s′, q′} where q′ ∈ S2(v3, v4). Finally, suppose that
S2(v2, v3) = {p, p′}. Then S2(v3, v4) = {q} and S2(v1, v2) = {s}. If t is complete to {p, p′, s}, then K5

would arise. Otherwise it is easy to check that G is 4-colorable. This completes the proof of Case 2.

In the remaining of the proof, we shall frequently consider some induced C5 = C ′ with C ′ 6= C or
C5 = Ct by modifying C with respect to some vertex t /∈ C. We can then define p-vertices with respect
to C ′ and Ct as well. We adapt those definitions by using the notation S′p and St

p. For example, S′1
is the set of 1-vertices with respect to C ′, and St

1 is the set of 1-vertices with respect to Ct, and so
on. Let s = (s1, . . . , s5) be an integer vector. We say that C is of type s if S3(vi) has size si for each
0 ≤ i ≤ 4.

Case 3. |S3| = 3. There are four possible configurations.

C is of type (2,1,0,0,0). Let S3(v0) = {x, x′} and S3(v1) = {y}. We may assume that xy /∈ E.
If t ∈ S1(v3) then tv3v4xv1y = P6. So, S1(v3) = ∅. Let Cx = C \ {v0} ∪ {x} and Cy = C \ {v0} ∪ {y}.
As xy /∈ E, we have Sx

3 ∩S2 6= ∅ and Sy
3 ∩S2 6= ∅. Let p ∈ Sx

3 ∩S2 and q ∈ Sy
3 ∩S2. Note that xp ∈ E

and qy ∈ E by definition of p and q. Suppose first that p ∈ S2(v1, v2). Then py /∈ E or pyv0x = C4.
If q ∈ S2(v2, v3), then qpv1y = C4. So, q ∈ S2(v0, v4). By (P8), S2(v3, v4) = S2(v3, v2) = ∅. Now
d(v3) = 2 as S1(v3) = ∅. Therefore, p ∈ S2(v3, v4). Then py ∈ E or pyv1x = C4. If q ∈ S2(v0, v4), then
qx /∈ E or qxv1y = C4. Also, qp ∈ E and so pqv0x = C4. Thus q ∈ S2(v2, v3). Now by (P7) to (P9) and
the fact that xp, qy ∈ E, we have S2 = S2(v2, v3)∪S2(v3, v4) and S1 = ∅. Thus, 2 ≤ |S2| ≤ 3. Suppose
first that S2(v2, v3) = {q, q′}. Then G has a 4-coloring: {v1, v4, q}, {v0, v2, p}, {y, x, v3}, {x′, q′}. Now
suppose that S2(v3, v4) = {p, p′}. If x′y /∈ E then N(y) = {v0, v1, v2, q}. Since G is a minimal
obstruction, G − y has a 4-coloring φ. Note that φ(v1) = φ(v4) = φ(q). Hence, φ can be extended
to G, a contradiction. So, x′y ∈ E and so x′p /∈ E or x′pqy = C4. Now G has a 4-coloring: {v1, v4, q},
{v0, v2, p′}, {y, x, v3}, {x′, p}.

C is of type (2,0,1,0,0). Let S3(v0) = {x, x′} and S3(v2) = {y}. We first claim that S1(v3) = ∅.
Otherwise let t ∈ S1(v3). Suppose that S1(v1) 6= ∅. Let p ∈ S1(v1). Then tp ∈ E. By (P9), S2 = ∅.
Let C ′ = v3tpv1v2. Note that x, x′ /∈ S′3 as {x, x′} is anti-complete to {t, v3, v2}. So, |S′3 ∩ S1| ≥ 2
by the minimality of C. It is straightforward to check that |S′3 ∩ (S1(v1) ∪ S1(v3))| ≥ 2 and thus
|S1(v1)|+ |S1(v3)| ≥ 4. So, |S1(v1)|+ |S1(v3)| = 4 by G is K5-free. As d(v2) ≥ 4 we have S1(v2) 6= ∅.
Let q ∈ S1(v2). Since {v2, y} is not a clique cutset separating S1(v2), S1(v0)∪S1(v4) 6= ∅. Suppose that
t′ ∈ S1(v4). Then t′q ∈ E. Let C ′′ = v4t

′qv2v3. Similar as above we have that |S1(v2)|+ |S1(v4)| = 4.
If S1(v0) 6= ∅ then G = GP4

. If |S1(v1)| = 3 or |S1(v4)| = 3 then G = G3,1. So, each S1(vi) has size
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2. But now {x, x′, v0, v1, v4} ∪ S1(v1) ∪ S1(v4) induce a G2,2. Thusm S1(v4) = ∅ and so S1(v0) 6= ∅.
Since S1(v0) is complete to S3(v0), we have {x, x′, v0, v1} ∪ S1(v0) ∪ S1(v1) ∪ S1(v3) induces a G2,2

or G3,1. So, S1(v1) = ∅. Let p ∈ S1(v0). pt ∈ E. Note that S1(v0) = {p} or K5 would arise. Also,
S2 = ∅. Let C ′ = v0ptv3v4. As y is anti-complete to {v0, v4, p}, y /∈ S′3 and so S′3 ∩ S1 6= ∅. Let
t′ ∈ S′3∩S1 and it is easy to see that t′ ∈ S1(v3). Thus, S1(v3) = {t, t′} or {x, x′}∪C ′∪S1(v3) induces
a G3,1. Now by (P11), we have S1(v3) is anti-complete to S2(v0, v1). Hence, {t, t′} is complete to y as
d(t) ≥ 4 and d(t′) ≥ 4. Now G contains G2,1,1 as an induced subgraph. So far, we have showed that
S1(v1) = S1(v0) = ∅ if S1(v3) 6= ∅. As {v3, y} is not a clique cutset separating S1(v3), we may assume
that t has a neighbor p ∈ S2(v0, v1). By Observation 1 (3), y is anti-complete to {p, t}. Then the fact
that yv3tpv0x(x′) 6= P6 implies that p is complete to {x, x′} and so {p, v0, v1, x, x′} induces a K5.

Therefore, S1(v3) = ∅. Next we claim that S2(v3, v2) 6= ∅. If not, we have S2(v3, v4) 6= ∅ and
S2(v1, v2) 6= ∅ as d(v2) ≥ 4 and d(v3) ≥ 4. So, S2 = S2(v1, v2) ∪ S2(v3, v4) and S1 = S1(v1) ∪ S1(v4).
Suppose that q ∈ S2(v1, v2) is adjacent a vertex t ∈ S1(v4). By Observation 1 (3), {x, x′} is anti-
complete to {q, t}. Hence, {x, x′} is anti-complete to S2. Also, S1(v1) = ∅. Let C ′ = v4v3v2qt. Note
that x, x′ /∈ S′3 and so |S′3 ∩ (S1 ∪ S2)| ≥ 2. Note that S′3 ∩ S2(v3, v4) = ∅. If |S′3 ∩ S1(v4)| ≥ 2 or
|S′3 ∩ S2(v4)| ≥ 2, then {x, x′, v0, v1, v4} ∪ S1(v4) ∪ S2(v4) induces a G3,1 or G2,2. Thus, there exists
a vertex q ∈ S′3 ∩ S2(v1, v2) with q′ 6= q. Now qy ∈ E as xv4tqv2y 6= P6. Since q′q ∈ E, q′y /∈ E
or K5 would arise. But then yv2q

′tv4x = P6. Therefore, S1(v4) is anti-complete to S2(v1, v2). Since
{v1, v2, y} is not a clique cutset separating S2(v1, v2), S2(v1, v2) is not anti-complete to {x, x′}. Thus,
we may assume that x′ is complete to S2 by (P9). Now note that S1(v1) is anti-complete to S2(v3, v4) by
Observation 1 (3). If t ∈ S1(v4) and t′ ∈ S1(v1), then {x, x′} is anti-complete to {t, t′} by Observation 1
(1). Also, ty /∈ E. As d(t) ≥ 4, we have |S1(v1)|+ |S1(v4)| = 4. Then {x, x′, v0, v1, v4}∪S1(v1)∪S1(v4)
induces a G2,2 or G3,1. So, if S1(v4) 6= ∅, then S1(v1) = ∅ and thus {v4, x, x′} would be a clique
cutset. Hence, S1(v4) = ∅. Since x′ is complete to S2, we have that 2 ≤ |S2| ≤ 3. Moreover, py /∈ E or
pyv1x

′ = C4. Thus y is anti-complete to S2(v3, v4). Next we show that S1(v1) is a clique. Let t ∈ S1(v1)
and A be the component of S1(v0) containing t. Since {v1, x, x′} is not a clique cutset separating A,
A is not anti-complete to y and hence complete to y. Further, since v0x

′pv3yt 6= P6, we have x′t ∈ E
and thus A is complete to x′. Hence, A is a clique. By G is C4-free, S1(v1) = A and |A| ≤ 2 by G
is K5-free. If S2(v3, v4) = {p} then xp ∈ E as d(p) ≥ 4. Thus, S2(v1, v2) = {q} or K5 would arise.
Note that qy /∈ E or G = GP4 with respect to xqv2v3p. Now S1 = ∅ or if t ∈ S1(v1) then tx′qv2y
and v1 induce a W5. Now G has a 4-coloring: {v0, p, q, y}, {v4, v1}, {x, v3}, {x′, v2}. So, we assume
that S2(v4, v3) = {p, p′} and thus S2(v1, v2) = {q}. Now x is anti-complete to S2 or K5 would arise. If
|S1(v1)| = 2, then G = G3,1 . So, S1(v1) contains at most one vertex. If S1(v1) = {t}, then qy /∈ E or
qytx′ = C4. Now G has a 4-coloring: {v1, v4}, {x′, v3}, {t, v2, p, v0}, {x, y, p′, q}. So, S1(v1) = ∅. Also,
qy ∈ E as d(q) ≥ 4. Now {x′, v4, p, p′, v3} = K5 − e and {v1, q, v2, y} = K4 induce a G2,2.

Therefore, let p ∈ S2(v2, v3). As {v2, v3, y} is not a clique cutset separating S2(v2, v3) the following
three cases are possible. First we suppose that S2(v1, v2) 6= ∅. Let q ∈ S2(v1, v2). By Observation 1
(2), y is complete to S2(v1, v2) ∪ S2(v2, v3). Thus, S2(v2, v3) = {p} and S2(v2, v3) = {q}. Further,
S1 = S1(v2) and so S1(v2) = ∅ or {v2, y} would be a clique cutset. Suppose that S2(v3, v4) 6= ∅.
Note that {x, x′} is anti-complete to S2. If S2(v3, v4) = {r}, then G has a 4-coloring: {v1, v4, p},
{v0, v3, q}, {x, r, v2}, {x′, y}. So, S2(v3, v4) = {r, r′}. Then y is not complete to {r, r′}, say yr′ /∈ E or
{r, r′, p, v3, y} would induce a K5. Then G has a 4-coloring: {v1, v4, p}, {v0, v3, q}, {x, r, v2}, {x′, y, r′}.
So, we may assume that S2(v3, v4) = ∅. If S2(v0, v1) 6= ∅, then G has a 4-coloring as above. Suppose
that r ∈ S2(v0, v1). The fact that v3pqrv0x 6= P6 implies that xq ∈ E or xr ∈ E. Similarly, x′q ∈ E
or x′r ∈ E. Also, the fact that xq (respectively x′q) is an edge implies that xr (respectively x′r) is
an edge, since G is C4-free. Hence, q is not complete to {x, x′}, say qx′ /∈ E or {x, x′, v0, v1, r} would
induce a K5. As qx′ /∈ E, x′r ∈ E. Hence, xr /∈ E and so xq ∈ E. Now xx′rq = C4.
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Therefore, we may assume that S2(v1, v2) = ∅. Suppose that S2(v3, v4) 6= ∅. Let q ∈ S2(v3, v4).
Note that S1 = ∅ since S1(v3) = ∅. Suppose that r ∈ S2(v0, v4). Note that r is not complete to {x, x′},
say xr /∈ E. As v2pqrv0x 6= P6, we have xq ∈ E. But now xqrv0 = C4. So, S2(v0, v4) = ∅. Thus
2 ≤ |S2| ≤ 3. Now as yv2pqv4v0 6= P6, we have yp ∈ E or yq ∈ E. Also, if yq ∈ E then yp ∈ E or
yv2pq = C4. So, yp ∈ E and thus S2(v2, v3) = {p}. Suppose first that S2(v3, v4) = {q}. Note that q
is not complete to {x, y} or {x′, y}. Thus G has a 4-coloring: {v1, v4, p}, {q, y, v0}, {x, v2}, {x′, v3} if
qy /∈ E, and otherwise we move q from {q, y, v0} to {x, v2}. Now suppose that S2(v3, v4) = {q, q′}.
Then we may assume that qy /∈ E or K5 would arise. Also, {q, q′} is not anti-complete to {x, x′}.
If q′y /∈ E, then q and q′ are in the same place thus we may assume that qx /∈ E. Now G has a
4-coloring: {v1, v4, p}, {q′, y, v0}, {q, x, v2}, {x′, v3}. Otherwise q′y ∈ E and so q′ is anti-complete to
{x, x′}. Then G has a 4-coloring: {v1, v4, p}, {q, y, v0}, {q, x, v2}, {x′, v3}.

Now we may assume that S2(v1, v2) = S2(v3, v4) = ∅ and p has a neighbor t ∈ S1(v0). Then t
is complete to {x, x′}. Also S1 = S1(v0) by (P11). Let C ′ = v0v4v3p. Clearly, y /∈ S′3 as y is anti-
complete to {v4, v0, t}. Thus S′3 ∩ (S1 ∪ S2) 6= ∅. It is easy to check that S′3 ∩ S1 ⊆ S1(v0) ∩ S′3(t) and
S′3 ∩ S2(v2, v3) ⊆ S1(v0) ∩ S′3(p). Let r ∈ S′3. If r ∈ S1(v0), then rt ∈ E and so {x, x′, v0, r, t} induces
a K5. Hence, r ∈ S2(v2, v3) and now {x, x′v0, v1, v4, t, v3, v2, p, r} induces a G2,1,1.

C is of type (1,0,1,1,0). Let x ∈ S3(v0), y ∈ S3(v2) and z ∈ S3(v3). We first show that
S1(v0) = ∅. If yz ∈ E, then if t ∈ S1(v0) we have G = G2,2. If yz /∈ E, then yv2zv4v0t = P6. Next
we claim that yz ∈ E. Otherwise let Cy = C \ {v2} ∪ {y} and Cz = C \ {v3} ∪ {z}. As yz /∈ E, we
have that Sy

3 ∩ (S1 ∪ S2) 6= ∅ and Sz
3 ∩ (S1 ∪ S2) 6= ∅. Let p ∈ Sy

3 ∩ (S1 ∪ S2) and q ∈ Sz
3 ∩ (S1 ∪ S2).

Then py, qz ∈ E by definition of p and q. Since G is C4-free, pz, qy /∈ E. We consider the case
p ∈ S2(v0, v1) first. If q ∈ S2(v0, v4), then x is complete to S2(v0, v1)∪S2(v0, v4) by Observation 1 (2).
Note that S1 = ∅. Further, S2(v1, v2) = S2(v3, v4) = S2(v2, v3) = ∅ by (P7) to (P9). As G is K5-free,
S2 = {p, q}. Hence, G has a 4-coloring: {x, y, z}, {p, v4, v2}, {q, v1, v3}, {v0}. Thus q ∈ S2(v1, v2). Now
pqv2y = C4 as qy /∈ E. Hence, p ∈ S2(v3, v4). If q ∈ S2(v1, v2), then S2(v0, v1) = S2(v0, v4) = ∅ and
so N(v0) = {v1, v4, x}, a contradiction. Thus, q ∈ S2(v0, v4). But now pqzv3 = C4. Therefore yz ∈ E.
Recall that S1(v0) = ∅. As d(v0) ≥ 4, we may assume that there exists a vertex p ∈ S2(v0, v1). Since
G has no clique cutset, the following four cases are possible.

Case a. S2(v0, v4) 6= ∅. Let q ∈ S2(v0, v4). By Observation 1 (2), x is complete to S2(v0, v1) ∪
S2(v0, v4) and so S2(v0, v1) = {p} and S2(v0, v4) = {q}. Note that S1 = ∅. If S2 = {p, q}, then G has a
4-coloring: {q, v1, v3}, {p, v2, v4}, {y, x}, {z, v0}. Now by symmetry, we may assume that r ∈ S2(v1, v2).
Then z is anti-complete to S2 and so G has a 4-coloring by adding r to {z, v0} if S2(v1, v2) = {r}. So,
let S2(v1, v2) = {r, r′}. As G is K5-free, y is not complete to {r, r′}, say yr′ /∈ E. Then yp ∈ E since
yv2r

′pqv4 6= P6. But now pr′v2y = C4.

Case b. S2(v1, v2) 6= ∅. Let q ∈ S2(v1, v2). We may assume that S2(v0, v4) = ∅. Suppose that
r ∈ S2(v2, v3). Then yr, yq ∈ E by Observation 1 (2). Hence, zr /∈ E or {v2, v3, y, z, r} would induce a
K5. So, zq /∈ E or v3rqz = C4. But then zv3rpqv0 = P6. So, S2(v2, v3) = ∅. Hence 2 ≤ |S2| ≤ 3. Also,
S1 = S1(v1) and S1(v1) is a clique and thus |S1(v1)| ≤ 2. Suppose that t ∈ S1(v1). Then tyzv4v0p 6= P6

implies that yp ∈ E and so yq ∈ E or ypqv2 = C4. Since v3v2qpv0x 6= P6, we have either xp ∈ E or
xq ∈ E. In any case, we have an induced C4 as t is complete to {x, y}. So, S1(v1) = ∅. If S2 = {p, q},
then G has a 4-coloring: {v0, v3, q}, {v2, v4, p}, {x, y}, {z, v1}. Suppose that S2(v0, v1) = {p, p′}. Now
since v3v2qpv0x 6= P6, we have either xp ∈ E or xq ∈ E. If xq ∈ E, then x is complete to {p, p′}
by G is C4-free and hence {x, v0, v1, p, p′} induces a K5. So, xq /∈ E and thus xp ∈ E. Replacing the
argument for {p′, q}, we have xp′ ∈ E and so K5 would arise. If S2(v1, v2) contains two vertices, we
would derive a similar contradiction.

Case c. S2(v0, v1) is not anti-complete to S1(v3). We now may assume that S2(v0, v4) = S2(v1, v2) =
∅. Without loss of generality, we assume that p has a neighbor q ∈ S1(v3). So, S1 = S1(v3) by (P11).
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Moreover, S2(v2, v3) = ∅ or {v2, v3, y, z} would be a clique cutset. Now px ∈ E since v2v3qpv0x 6= P6

and so p is the only neighbor of q in S2(v0, v1) or K5 would arise. Let C ′ = v1v2v3qp. Note that
v0, v4, x /∈ S′3 and y, z ∈ S′3. Thus, S′3 ∩ (S1 ∪ S2) 6= ∅ by the minimality of C. Let t ∈ S′3 ∩ (S1 ∪ S2).
It is easy to check that t ∈ S1(v3) or t ∈ S2(v0, v1). If t ∈ S2(v0, v1), then t must be complete to
{v1, p, q}, contradicting the fact that p is the only neighbor of q. Hence, t ∈ S1(v3) and t must be
complete to {v3, q, p}. By (P12), z is complete to {q, t}. Now G = H2.

Case d. Now we may assume that py ∈ E. If S2(v2, v3) 6= ∅, then S2(v3, v4) = ∅ and so {v2, v3, y, z}
would be a clique cutset since S1(v0) = ∅. So, S2(v2, v3) = ∅. Suppose that S1(v3) 6= ∅. Then S1(v1) 6= ∅
or {v3, y, z} would be a clique cutset. But then S2 = ∅ by (P7) to (P9), a contradiction. So, S1(v3) = ∅.
Thus, S1 = S1(v1) and S2 = S2(v0, v1) ∪ S2(v3, v4). Next we claim that xp /∈ E. Otherwise xp ∈ E.
Let C ′ = xpyzv4. It is easy to check that v1, v3 ∈ S′3 but v0, v2 /∈ S′3. So, S′3 ∩ (S1 ∪ S2) 6= ∅. Let
t ∈ S′3 ∩ (S1 ∪ S2). As S1(v1) is anti-complete to {v4, z, p}, t /∈ S1(v1) and so t ∈ S2. If t ∈ S2(v0, v1),
then t is complete to {x, p, y}. If t ∈ S2(v3, v4), then as py ∈ E we have yt ∈ E and so xt /∈ E or
xtyv1 = C4. Hence, t is complete to {v4, z, y}. If S′3 ∩ S2 = {t}, then |S′3| = 3 and we are in one of
previous two cases. Thus, there exists another vertex t′ 6= t with t′ ∈ S′3 ∩S2. If t, t′ ∈ S2(v0, v1), then
{v0, v1, t, t′, p} would induce a K5. If t, t′ ∈ S2(v4, v3), then {y, z, t, t′, v3} would induce a K5. Hence,
t ∈ S2(v0, v1) and t′ ∈ S2(v4, v3). But now G = G3,1. Therefore, xp /∈ E. Now let C ′′ = v0pyv3v4. As
xp /∈ E, x /∈ S′′3 . Also, v2 /∈ S′′3 but z, v1 ∈ S′′3 . Hence, S′′3 ∩ (S1 ∪ S2) 6= ∅. By the same argument as
above, we either find an induced K5 or G2,2 or we are in one of previous two cases.

C is of type (1,1,0,0,1). Let x ∈ S3(v0), y ∈ S3(v1) and z ∈ S3(v4). We first suppose that
S2(v2, v3) = ∅. As δ(G) ≥ 4, we have the following two cases. Suppose first that S2(v1, v2) and
S2(v3, v4) are nonempty but S1(v2) = S1(v3) = ∅. By (P9), we may assume that S1(v4) = ∅. Now
x is complete to S2 or {v1, v2, y} would be a clique cutset. Also, x is complete to {y, z}, otherwise
considering Cy = C \ {v1} ∪ {y} or Cz = C \ {v4} ∪ {z} will obtain by the minimality of C that
S2(v0, v1)∪S2(v0, v4)∪S2(v2, v3) 6= ∅ which contradicts our assumption and (P8). But now G contains
G3,1 as an induced subgraph. So, S1(v2) and S1(v3) are nonempty and S2(v2, v1) ∪ S2(v3, v4) = ∅.
Thus, S2 = ∅ and hence x is complete to {y, z} by the minimality of C. Let p ∈ S1(v3) and q ∈ S1(v2).
Suppose that t ∈ S1(v0). Let C ′ = xtpv3v4. Then v1, v2, y /∈ S′3. Hence, S′3∩S1 6= ∅. Let r ∈ S′3∩S1. It
is easy to check that r ∈ S1(v0) ∪ S1(v3). We claim that S′3 ∩ S1(v0) 6= ∅. Otherwise r ∈ S1(v3). Then
r ∈ S′3(p) as r is anti-complete to {v4, x}. If S′3 = {v0, z, r}, then we are in the case C is of type
(1,0,1,1,0). So, |S′3 ∩ S1(v3)| ≥ 2 and thus G = G2,2. Therefore, we may assume that r ∈ S1(v0). If
S1(v3) = {p, p′}, then C5 = xtpv3z and P4 = v4v0rt induce a GP4 . So, S1(v3) = {p} and S1(v2) = {q}.
Now let C ′′ = tqv2v3p. Clearly, x, v0, v1, v4 /∈ S′′3 and so S′′3 ∩ S1 6= ∅. Let s ∈ S′′3 ∩ S1 Clearly,
s ∈ S1(v0)∪S1(v2)∪S1(v3). As s /∈ {p, q}, we have s ∈ S1(v0). Hence, s = r. By the minimality of C,
y and z must be in S′′3 . This implies that y is complete to {t, q, v2}. So, ry ∈ E or rqyx = C4. But then
{x, v0, y, r, t} induces a K5. We have shown that S1(v0) = ∅. As G has no clique cutset, S1(v1) 6= ∅
and S1(v4) 6= ∅. Let ui ∈ S1(vi) for i = 1, 4. Note that x is anti-complete to S1 by Observation 1
(1). If |S1(v1)| ≥ 2, say u1, u

′
1 ∈ S1(v1), then G = GP4 with respect to xyu1u4z whose 3-vertices are

v4v0v1u
′
1. Hence, S1(vi) = {ui}. Note that pz /∈ E or zpu1u4 = C4. Thus, z is anti-complete to S1(v3)

and y is anti-complete to S1(v2). By δ(G) ≥ 4, we must have |S1(v2)| = |S1(v3)| = 3. It is easy to
check G is 4-colorable.

Therefore, we may assume that p ∈ S2(v2, v3). By (P7) to (P9), there are at most two nonempty
S1(vi). If there exists i such that S1(vi) 6= ∅ and S1(vi+1) 6= ∅, then i = 2 as S2(v2, v3) 6= ∅. Thus
{v2, y} is a clique cutset separating S1(v2).

Case a. S1(vi) 6= ∅ for some i. As S2(v2, v3) 6= ∅, S1(v1) = S1(v4) = ∅. So, i ∈ {0, 2, 3}. Suppose
first that i = 2 (or i = 3) and let t ∈ S1(v2). As {v2, y} is not a clique cutset, S1(v2) is not anti-
complete to S2(v0, v4). We may assume that t has a neighbor q ∈ S2(v0, v4). By Observation 1 (3), y
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is anti-complete to {q, t} and thus anti-complete to S2(v0, v4)∪S2(v2, v3). Let C ′ = qtv2v3v4. Clearly,
x, v0, v1 /∈ S′3. If z ∈ S′3, then z ∈ S′3(v4) and if y ∈ S′3, then z ∈ S′3(t). As x /∈ S′3, |S′3 ∩ (S1 ∪S2)| ≥ 1.
Let r ∈ S′3 ∩ (S1 ∪S2). If r ∈ S1(v2) = S1, then r ∈ S′3(t). Also, qx ∈ E pv2tqv0x 6= P6. Hence, q is the
only neighbor of t in S2 and so r /∈ S2(v0, v4). Clearly, r /∈ S2(v2, v3). If r ∈ S2(v3, v4), then r must
be complete to {q, v3, v4} and hence r ∈ S′3(v4). So, S′3 = S′3(v4) ∪ S′3(t). Now as |S′3| ≥ 3 either we
are in one of previous cases or G contains G3,1 as an induced subgraph.

Therefore, we may assume that i = 0. Let Cx = C \ {v0}∪{x}. If x is not complete to {y, z}, then
by the minimality of C, we have Sx

3 ∩(S2(v1)∪S2(v4)) 6= ∅, which contradicts (P7). Hence, xy, xz ∈ E.
Suppose that p has a neighbor q ∈ S1(v0). Let C ′ = v0v1v2pq. Note that z is not complete to {p, q} by
Observation 1 (3) and hence z /∈ S′3. Also, v3, v4 /∈ S′3. Thus, S′3∩ (S1∪S2) 6= ∅. Let t ∈ S′3∩ (S1∪S2).
If t ∈ S1(v0), t is complete to {v0, p, q} and then G = H1. Clearly, t /∈ S2(v0, v1) ∪ S2(v0, v4). If
t ∈ S2(v2, v3), t is complete to {q, p, v2} and then G is not 4-colorable and G = H2. We have shown
that S1(v0) is anti-complete to S2(v2, v3). As {v2, v3} does not separate S2(v2, v3), S2(v2, v3) is not
anti-complete to {y, z}. Without loss of generality, assume that py ∈ E. As before we can show that
S1(v0) is complete to {y, z} and thus a clique. So, S1(v0) = {q} or K5 would arise. Also, pz ∈ E or
pzxy = C4. As d(p) ≥ 4, there exists p′ ∈ S2(v2, v3) with pp′ ∈ E. Note that in any 4-coloring φ
of G, φ(p′) = φ(y) = φ(z). So if p′ is not anti-complete to {y, z} G is not 4-colorable. Specifically,
if p′y ∈ E then {y, p, p′, v3, v2} = K5 − e and {z, x, v0, q} = K4 induces a G3,1. If p′z ∈ E, then
{q, v0, x, z, y} = K5 − e and {v2, v3, p, p′} = K4 induce a G2,2. Thus, we assume that p′ is anti-
complete to {y, z}. As d(p′) ≥ 4, there exists p′′ ∈ S2(v2, v3) with p′p′′ ∈ E. Moreover, pp′′ /∈ E or K5

would arise, and p′′y /∈ E or p′′ypp′ = C4. Then the fact that p′′p′pyqz 6= P6 implies that zp′′ ∈ E,
and thus v4zp

′′p′py = P6.

Case b. S1 = ∅. Recall that p ∈ S2(v2, v3). We first show that x is complete to {y, z}. Otherwise
suppose xy /∈ E. Since yv1xv4v3p 6= P6, we have yp ∈ E and so zp /∈ E. Since p is an arbitrary vertex
in S2(v2, v3), we have that y is complete to S2(v2, v3), and z is anti-complete to S2(v2, v3). Hence,
xz ∈ E by symmetry. Let Cx = C \ {v0} ∪ {x}. As xy /∈ E, Sx

3 ∩ S2 6= ∅. Let q ∈ Sx
3 ∩ S2. xq ∈ E.

Suppose that r ∈ S2(v0, v4). Then S2(v1, v2) = ∅. Hence, q ∈ S2(v3, v4). By (P7) to (P9) and the fact
that yp ∈ E, we have yr ∈ E and thus yrqp = C4. So, S2(v0, v4) = ∅. If q ∈ S2(v1, v2) then pq ∈ E.
Note that qy /∈ E or qyv0x = C4. Then pqv1y = C4. Thus, q ∈ S2(v3, v4). As xq ∈ E, S2(v1, v2) = ∅
by (P9). Thus, S2 = S2(v4, v3) ∪ S2(v2, v3) and 2 ≤ |S2| ≤ 3. If S2 = {p, q}, then G has a 4-coloring:
{x, v3}, {v0, v2, q}, {y, z}, {v1, v4, p}. Suppose now that S2(v4, v3) = {q, q′}. As v2yv0xqq

′ 6= P6, we
have xq′ ∈ E. As {x, v4, z, q, q′} does not induce a K5, z is not complete to {q, q′}, say zq′ /∈ E.
Then G has a 4-coloring by adding q′ to {y, z}. Finally, S2(v2, v3) = {p, p′}. Then G has a 4-coloring
{x, y, v3}, {v0, v2, q}, {p′, z}, {v1, v4, p} as z is anti-complete to S2(v2, v3).

Therefore, xy, xz ∈ E. Next we show that S2(v1, v2) = S2(v3, v4) = ∅. By symmetry, we may
assume that S2(v1, v2) 6= ∅. Let q ∈ S2(v1, v2). Then S2(v0, v4) = ∅. As v4v3pqv1y 6= P6, we have
py ∈ E or qy ∈ E. Suppose first that py ∈ E. Then qy ∈ E or pqv1y = C4. Let C ′ = ypv3v4v0.
Clearly, v1 /∈ S′3 as v1 is anti-complete to {v4, v3, p}, and x ∈ S′3(v0), z ∈ S′3(v4) and v2 ∈ S′3(p). If
S′3 = {x, z, v2} then we are in the case C is of type (1,0,1,1,0). So, let r ∈ S′3 \ {x, z, v2}. Clearly,
r /∈ S2(v0, v1) ∪ S2(v1, v2). If r ∈ S2(v2, v3) then r ∈ S′3(p) and G = G2,2. So, r ∈ S2(v3, v4). As
py ∈ E, pz /∈ E and then rz ∈ E since v1v2prv4z 6= P6. Hence, y and z are complete to S2(v1, v2) and
S2(v3, v4), respectively. So, S2(v1, v2) = {q} and S2(v3, v4) = {r}. If S2(v2, v3) = {p, p′} and p′y ∈ E,
then p′ ∈ S′3(p) and thus G = G2,2. Note x is anti-complete to S2. Now G has a 4-coloring: {x, q, v3},
{v0, r, v2}, {v1, z, p}, {v4, y, p′}.

Now we have shown that py /∈ E and thus qy ∈ E. Since p is an arbitrary vertex in S2(v2, v3), we
may assume that y is anti-complete to S2(v2, v3). Also, replacing any q′ ∈ S2(v1, v2) we obtain yq′ ∈ E
and so S2(v1, v2) = {q} or K5 would arise. If S2(v3, v4) 6= ∅, then z is anti-complete to S2(v1, v2)
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and complete to S2(v3, v4) by symmetry. Thus, S2(v3, v4) = {r} and G has a 4-coloring: {x, q, v3},
{v0, r, v2}, {y, z, p}, {v4, v1, p′}, where p′ might be another vertex in S2(v2, v3). If S2(v0, v1) 6= ∅, then
y is complete to S2(v0, v1)∪S2(v1, v2) and thus S2(v0, v1) = {r}. Also, xr /∈ E or {x, y, v0, v1, r} would
induce a K5. Note that z is anti-complete to S2 and thus G has a 4-coloring: {x, r, v2}, {v0, q, v3},
{y, z, p}, {v4, v1, p′}, where p′ might be another vertex in S2(v2, v3). Finally, we have S2 = {q} ∪
S2(v2, v3). If S2(v2, v3) = {p, p′} and z is complete to {p, p′}, then {p, p, v3, v2, z} = K5 − e and
{x, y, v0, v1} induce a G2,2. Otherwise in case of S2(v2, v3) = {p, p′}, we may assume p′z /∈ E and thus
G has a 4-coloring: {x, v2}, {v0, q, v3}, {y, z, p′}, {v4, v1, p′}

Therefore, S2(v1, v2) = S2(v3, v4) = ∅. As {v2, v3} is not a clique cutset, S2(v2, v3) is not anti-
complete to {y, z}. By symmetry, we may assume that py ∈ E. Let C ′ = ypv3v4v0. v1 /∈ S′3. Clearly,
x ∈ S′3(v0), z ∈ S′3(v4) and v2 ∈ S′3(p). If S′3 = {x, z, v2} then we are in the case C is of type
(1,0,1,1,0). So, let t ∈ S′3 \ {x, z, v2}. Note that t /∈ S2(v0, v1) as S2(v0, v1) is anti-complete to
{v3, v4, p}. If t ∈ S2(v2, v3), t ∈ S′3(p) and thus G = G2,2. So, t ∈ S2(v0, v4) and t ∈ S′3(v0), namely t is
complete to {v0, v4, y}. Thus, xt ∈ E. By (P9), y is complete to S2 and hence 2 ≤ |S2| ≤ 3. Note that
zt /∈ E or {v0, v4, x, t, z} would induce a K5. Now if S2(v2, v3) = {p, p′} then p′ ∈ S′3(p) and G = G2,2.
So, S2(v2, v3) = {p}. If S2 = {p, t}, then G has a 4-coloring φ: {x, v3}, {v0, v2}, {p, t, z, v1}, {v4, y}.
If S2(v0, v4) = {t, t′} then t′x /∈ E or {v0, v4, x, t, t′} would induce a K5. Then G has a 4-coloring by
adding t′ to {x, v3} in φ. This completes the proof of Case 3.

Note that if S3(vi) has two vertices then S3(vi) is not complete to S3(vi+1) as G is K5-free.
Moreover if S3(vi+1) also has two vertices, then there is at most one edge between S3(vi) and S3(vi+1)
as G is (K5, C4)-free.

Case 4. |S3| = 4. There are five possible configurations for S3.

C is of type (2,2,0,0,0). Let S3(v0) = {x, x′} and S3(v1) = {y, y′}. As G is (K5, C4)-free, we may
assume that x is anti-complete to {y, y′} and y is anti-complete to {x, x′}. Let C ′ = C \ {v0} ∪ {x}.
Note that y, y′ /∈ S′3. It is easy to check that S′3 ∩ (S1 ∪ S2) ⊆ S′3 ∩ (S2(v1, v2) ∪ S2(v3, v4)). Hence,
|S′3 ∩ (S2(v1, v2) ∪ S2(v3, v4))| ≥ 2 by the minimality of C. Suppose that p ∈ S′3 ∩ S2(v3, v4). Note
that px ∈ E. Then as x′xpv3v2y 6= P6, we have x′p ∈ E. Further, S′3 ∩ S2(v3, v4) is a clique and thus
|S′3 ∩ S2(v3, v4)| ≤ 1 or K5 would arise. Next we show that |S′3 ∩ S2(v1, v2)| ≤ 1. If not, let p, p′ be
two vertices in S′3∩S2(v1, v2). Then {p, p′, y, y′, x, x′, v0, v1} contains a W5. Therefore, we may assume
q ∈ S2(v1, v2) and p ∈ S2(v3, v4). Moreover, x is complete to {p, q} by definition. As shown above,
we obtain that x′p ∈ E. So, {x, x′} is complete to S2(v1, v2) ∪ S2(v3, v4) and S2(v3, v2) = ∅ by (P9).
Thus, S2(v1, v2) = {q} and S2(v1, v2) = {p}. If t ∈ S1(v3), then tv3v4xv1y = P6. So, S1(v3) = ∅ and
now N(v3) = {v2, v4, p} which contradicts that δ(G) ≥ 4.

C is of type (1,1,0,2,0). Let S3(v3) = {x, x′}, S3(v0) = {z} and S3(v1) = {y}. Note that yz /∈ E
or G = G2,2. Let C ′ = C\{v0}∪{z}. As y /∈ S′3 we have S′3∩(S2(v0, v1)∪S2(v3, v4)) 6= ∅. Let p be such a
vertex. If p ∈ S2(v3, v4), then p is not complete to {x, x′}, say xp /∈ E. Now yv1zpv3x = P6. Therefore,
p ∈ S2(v1, v2). Let C ′′ = C \ {v1}∪{y}. By symmetry, we obtain that there exists q ∈ S′′3 ∩S2(v0, v4).
Note that pz ∈ E and qy ∈ E by definition of p and q. Further, qz /∈ E or qzv1y = C4. If xp /∈ E,
then xq /∈ E by (P9) and thus qv0zpv2x = P6. Thus xp ∈ E and now zv4xp = C4.

C is of type (2,1,0,0,1). Let S3(v0) = {x, x′}, S3(v1) = {z} and S3(v4) = {y}. As G is K5-
free, each of {y, z} is not complete to {x, x′}. We may assume that zx /∈ E. If t ∈ S1(v2) then
tv2v1x(x′)v4y = P6. Thus, S1(v2) = ∅. Similarly S1(v3) = ∅. Let C ′ = C\{v1}∪{z}. By the minimality
of C, we have S′3 ∩ (S2(v0, v4) ∪ S2(v2, v3)) 6= ∅. We first show that S′3 ∩ S2(v2, v3) = ∅. Otherwise let
p ∈ S′3 ∩S2(v2, v3). Note that pz ∈ E, and py /∈ E or pyv0z = C4. As xv1zpv3y 6= P6, we have yx ∈ E
and so x′y /∈ E. Moreover, x′z ∈ E since x′v1zpv3y 6= P6, and so yxx′z = P4. Let C ′′ = C \{v4}∪{y}.
Then there exists q ∈ S′′3 ∩(S2(v0, v1)∪S2(v2, v3)). It is clear that qy ∈ E by definition of q. As py /∈ E
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and qy ∈ E, we have q ∈ S2(v2, v3) by (P9). Note that p 6= q. Also qz /∈ E or qzv0y = C4. Then pq ∈ E
since qyxx′zp 6= P6. Let Cx = C \{v0}∪{x}. Then there exists r ∈ Sx

3 ∩(S2(v1, v2)∪S2(v3, v4)) by the
minimality of C. If r ∈ S2(v1, v2), then rxyq = C4. Thus, r ∈ S2(v3, v4). Symmetrically considering
Cx′ = C \ {v0}∪{x′} we obtain that there exists r′ ∈ S2(v1, v2). However, this contradicts (P9), since
xr ∈ E. Therefore, S′3∩S2(v0, v4) 6= ∅. Symmetrically considering C ′′ = C \{v4}∪{y} we can conclude
that S′′3 ∩ S2(v0, v1) 6= ∅. Hence, S2(v2, v3) = ∅. Since d(v2) ≥ 4 and d(v3) ≥ 4, we have S2(v1, v2) 6= ∅
and S2(v3, v4) 6= ∅. This contradicts (P8).

C is of type (2,0,1,0,1). Let S3(v0) = {x, x′}, S3(v2) = {z} and S3(v4) = {y}. We may assume
that xy /∈ E. If t ∈ S1(v2) then tv2v1xv4y = P6. So, S1(v2) = ∅. Let Cx = C \ {v0} ∪ {x} and
Cy = C \ {v4} ∪ {y}. Then there exists p ∈ Sy

3 ∩ (S2(v0, v1) ∪ S2(v2, v3)). and q ∈ Sx
3 ∩ (S2(v2, v1) ∪

S2(v4, v3)). Note that py ∈ E and qx ∈ E by definition. We first claim that Sy
3 ∩S2(v3, v2) = ∅. If not,

suppose that p ∈ S2(v2, v3). Note that pz ∈ E or zv2pyv0x = P6. If q ∈ S2(v3, v4), then qy ∈ E or
yv4qp = C4. But then qyv0x = C4. So, q ∈ S2(v1, v2). Now S2(v0, v1) = S2(v3, v4) = ∅ by the fact that
py, qx ∈ E and (P9). Moreover, S2(v0, v4) = ∅. By Observation 1 (2), z is complete to S2 and hence
S2(v3, v2) = {p} and S2(v1, v2) = {q}. Note that S1 = ∅ as S1(v2) = ∅. Thus, G has a 4-coloring:
{v1, v4, p}, {v0, v3, q}, {v2, x, y}, {x′, z}. Therefore, p ∈ S2(v0, v1). Suppose first that q ∈ S2(v3, v4).
Then S2(v1, v2) = S2(v2, v3) = ∅ by (P8). Thus, d(v2) = 3, a contradiction. Hence, q ∈ S2(v1, v2).
Note that px, qy /∈ E. If x′y ∈ E then px′ ∈ E or yx′v1p = C4, and so {v1, p, y, v4, x} ∪ {v0} induces
a W5. So, x′y /∈ E. Hence, |Sy

3 ∩ S2(v0, v1)| ≥ 2 by the minimality of C and the above argument. Let
p and p′ be two vertices in Sy

3 ∩ S2(v0, v1), and then {p, p′, x, x′, y, v0, v1, v4} contains a W5.

C is of type (2,0,0,1,1). Let S3(v0) = {x, x′}, S3(v3) = {z} and S3(v4) = {y}. We may assume
that xy /∈ E. If t ∈ S1(v2) then tv2v1xv4y = P6. So S1(v2) = ∅. Let Cx = C \ {v0} ∪ {x} and
Cy = C \ {v4} ∪ {y}. Then there exists q ∈ Sy

3 ∩ (S2(v0, v1) ∪ S2(v2, v3)). and p ∈ Sx
3 ∩ (S2(v2, v1) ∪

S2(v4, v3)) by minimality of C. px, qy ∈ E by definition of p and q. Suppose first that p ∈ S2(v3, v4).
py /∈ E or pyv0x = C4. If q ∈ S2(v2, v3) then pqyv4 = C4. So q ∈ S2(v0, v1). As S2(v3, v4) 6= ∅ and
S2(v0, v1) 6= ∅, we have S2(v1, v2) = S2(v2, v3) = ∅. Now d(v2) = 3 since S1(v2) = ∅, a contradiction.
Thus p ∈ S2(v1, v2). p is anti-complete to {y, z} since G is C4-free. zv2pxv0y implies that yz ∈ E. If
Sx
3 ∩ S2 = {p}, then we are in the case C is of type (2,0,1,0,1). So we let p′ ∈ Sx

3 ∩ S2(v1, v2) with
p′ 6= p. p′x ∈ E. So x′ is not complete to {p, p′}, say x′p /∈ E. x′xpv2v3y implies that x′y ∈ E. Now we
consider q. If q ∈ S2(v2, v3) then S2(v0, v1) = S2(v3, v4) = ∅ by the fact that xp, qy ∈ E and (P9). Also,
S2(v0, v4) = ∅. Now S2 = {p, p′, q} and S1 = ∅. G has a 4-coloring: {v1, v4, q}, {x, y, v2}, {v0, v3, p′},
{z, p, x′}. Thus q ∈ S2(v0, v1). Then qx′ ∈ E or x′yqv1 = C4. But now {v1, v4, x, y, q} ∪ {v0} induces
a W5.

C is of type (1,1,1,1,0). Let S3(v0) = {x}, S3(v1) = {y}, S3(v2) = {z} and S3(v3) = {w}. Note
that {x, y, z, w} does not induce a P4 or G = GP4

. So, there are at most two edges in {x, y, z, w}. We
shall consider two subcases.

Case a. There is at most one edge in {x, y, z, w}. Suppose that yz /∈ E. Without loss of generality,
assume xy /∈ E. Let Cy = C \{v1}∪{y}. As x, z /∈ Sy

3 we have |Sy
3 ∩S2| ≥ 2. If |Sy

3 ∩S2(v0, v4)| ≥ 2 or
|Sy

3∩S2(v3, v2)| ≥ 2, then |Sy
3∩S2| ≥ 3 or we are in one of previous four cases. Thus, Sy

3∩S2(v3, v2) 6= ∅
and Sy

3 ∩ S2(v0, v4) 6= ∅ or K5 would arise. Also, y is complete to S2(v0, v4) and S2(v3, v2) and hence
S2 = S2(v3, v2)∪S2(v0, v4) by (P7) to (P9). But now Cz = C\{v2}∪{z} has |Sz

3 | < 4, which contradicts
the minimality of C. So, it must be the case that yz ∈ E and xy, zw /∈ E. Consider Cy and Cz as above.
Let p ∈ Sy

3 ∩ (S2(v0, v4) ∪ S2(v2, v3)) by the minimality of C. Suppose that Sy
3 ∩ S2(v0, v4) = ∅. Then

p ∈ S2(v2, v3). Note that py ∈ E by definition of p, and pz /∈ E or pyzv3 = C4. So Sy
3 ∩S2(v2, v3) = {p}

or K5 would arise. Now |Sy
3 | = 4 and we are in one of previous four cases. So, we may assume that

p ∈ S2(v0, v4). By symmetry, there exists a vertex q ∈ Sz
3 ∩ S2(v4, v3). by definition of p and q,

py, qz ∈ E. Now pyzq = C4.
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Case b. There are two edges in {x, y, z, w}. Suppose first that xy,wz ∈ E but yz /∈ E. Define
Cy and Cz as above. As y /∈ Sz

3 and z /∈ Sy
3 , we have Sy

3 ∩ S2 6= ∅ and Sz
3 ∩ S2 6= ∅. We claim

that Sy
3 ∩ S2(v2, v3) 6= ∅. Otherwise, let p ∈ Sy

3 ∩ S2(v0, v4). Note that py ∈ E, and px ∈ E or
v4pyx = C4. Also, Sy

3 ∩ S2(v0, v4) is a clique and hence Sy
3 ∩ S2(v0, v4) = {p} or K5 would arise.

Now Sy
3 = {x, p, v1, w} with x, p ∈ Sy

3 (v0) and so we are in one of four previous cases. Hence, the
claim holds. Similarly, Sz

3 ∩ S2(v0, v1) 6= ∅. Let p ∈ Sy
3 ∩ S2(v2, v3) and q ∈ Sz

3 ∩ S2(v0, v1). Note
that py, qz ∈ E. Also, qy /∈ E or qyv2z = C4. As yxv4wzq 6= P6, we have qx ∈ E. Also, qy /∈ E or
{v0, v1, q, x, y} would induce a K5. Then {v2, z, q, x, y} ∪ {v1} induces a W5.

Now we consider the case xy, yz ∈ E but zw /∈ E. Let Cz = C \{v2}∪{z} and Cw = C \{v3}∪{w}.
As zw /∈ E, we have that Sz

3 ∩S2 6= ∅ and Sw
3 ∩S2 6= ∅. We claim that Sz

3 ∩S2(v3, v4) 6= ∅. If not, there
exists p ∈ Sz

3 ∩ S2(v0, v1). Note that pz ∈ E, and so py ∈ E or v0yzp = C4. So, Sz
3 ∩ S2(v0, v1) = {p}

or K5 would arise. Hence, Sz
3 = {x, y, v2, p} with y, p ∈ Sz

3 (v1) and we are in one of previous four
cases. So, the claim holds and let p ∈ Sz

3 ∩ S2(v3, v4). Note that pz ∈ E and py /∈ E. Also, pw /∈ E
or pwv2z = C4, and px /∈ E or pxv1z = C4. Let q ∈ Sw

3 ∩ S2. qw ∈ E. If q ∈ S2(v0, v4), then pq ∈ E
and thus wv3pq = C4. So, q ∈ S2(v1, v2). Also, qz /∈ E or qzv3w = C4, and qx /∈ E or qxv4w = C4.
Hence, x is anti-complete to S2(v1, v2) ∪ S2(v3, v4). As qwv4xyz 6= P6, we have qy ∈ E. Note that
S2(v3, v2) = ∅ by the fact wp /∈ E and Observation 1 (2). Thus, S2 = S2(v1, v2) ∪ S2(v3, v4). So,
S1 = S1(v1) ∪ S1(v4). Now consider C∗ = xyzpv4. Note that v0 ∈ S∗3 (x), v1 ∈ S∗3 (y), and v3 ∈ S∗3 (p).
but v2, q, w /∈ S∗3 . By the minimality of C, we have S∗3 ∩ (S1 ∪ S2) 6= ∅. Let r ∈ S∗3 ∩ (S1 ∪ S2).
If r ∈ S2(v3, v4), then r must be in S∗3 (p) as r is anti-complete {x, y}. Thus G = G2,2. Moreover,
any vertex t ∈ S2(v1, v2) is anti-complete to {x, v4, p}, and any vertex t ∈ S1(v4) is anti-complete to
{p, y, z}. Therefore, r ∈ S1(v1). If r is complete to {x, y, z}, then there exists r′ ∈ S∗3 ∩ S1(v1) with
r′ 6= r otherwise |S∗3 | = 4 and we are in one of four pervious cases. Note that r′ must be complete to
{p, y, z}. Hence, in any case there exists a vertex r ∈ S1(v1) that is complete to {p, y, z} but px /∈ E.
Now wv3prv1x = P6.

Case 5. |S3| = 5. There are five possible configurations for S3.

C is of type (2,2,0,0,1). S3(v0) = {x, x′}, S3(v1) = {y, y′}, S3(v4) = {w}. We may assume that
y is anti-complete to {x, x′} and x is anti-complete to {y, y′}. If t ∈ S1(v3) then tv3v4xv1y = P6.
So, S1(v3) = ∅. Let C ′ = C \ {v1, v4} ∪ {y, w} be an induced C5. Let p ∈ S′3 ∩ S2 by x /∈ S′3
and the minimality of C. Suppose first that p ∈ S2(v0, v1). Note that S2(v3, v4) ∪ S2(v2, v3) 6= ∅ by
d(v3) ≥ 4. Let q ∈ S2(v3, v4) ∪ S2(v2, v3). Without loss of generality, we assume that q ∈ S2(v2, v3).
Since qv3v4xv1y(y′) 6= P6, we have q is complete to {y, y′}. As q is an arbitrary vertex in S2(v3, v4),
we have S(v2, v3) is complete to {y, y′} and so S2(v2, v3) = {q}. Note that S2(v3, v2) = ∅ by (P8) and
so N(v3) = {v2, v4, q, w}. Now as G is a minimal obstruction, G − v3 has a 4-coloring φ. Note
that φ(q) = φ(v1) = φ(v4) and therefore we can extend φ to G, a contradiction. As x, x′ /∈ S′3, there
exists two different vertices p and q in S′3 ∩ S2. If p, q ∈ S2(v0, v4), then {p, q, v0, v4, w} induces a
K5. Note that S2(v2, v3) is complete to {y, y′} and S2(v2, v3) contains at most one vertex. Hence, we
may assume that p ∈ S2(v0, v4) and S2(v2, v3) = {q}. By the fact that yq ∈ E and (P10), we have
S2(v3, v4) = ∅. Hence, we derive a similar contradiction as above.

C is of type (0,1,0,2,2). S3(v3) = {x, x′}, S3(v4) = {y, y′}, S3(v1) = {w}. We may assume that
y is anti-complete to {x, x′} and x is anti-complete to {y, y′}. Let C ′ = C \ {v1, v4} ∪ {y, w} be an
induced C5. Then x, x′ /∈ S′3 and hence S′3 ∩ (S1 ∪ S2) contains at least two vertices. Let p and q be
such two vertices. Let t ∈ S1(v0). If t is not anti-complete to {y, y′}, say ty ∈ E, then tyv4xv2v1 = P6.
Thus p, q /∈ S1(v0). Now suppose that q ∈ S2(v0, v4). Then q is complete to {w, y}. Note that qy′ /∈ E.
Then the fact that y′yqwv2x 6= P6 implies that qx ∈ E and thus qxv2w = C4. Thus, p, q /∈ S2(v0, v4).
If p, q ∈ S2(v0, v1), then {p, q, v0, v1, w} would induce a K5. Now let p, q ∈ S2(v2, v3). If {p, q} is
complete to y or w, then G = G3,1 otherwise G would contain an induced W5. Hence, we may assume
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that py ∈ E and qw ∈ E. Thus pw, qy /∈ E. By (P10), S2(v0, v1) = S2(v0, v4) = ∅. Also, S1(v1) = ∅
since S2(v3, v2) 6= ∅. By d(v1) ≥ 4 we have S2(v1, v2) 6= ∅ and thus S2(v2, v3) = {p, q}. Now let
Cy = C \ {v4} ∪ {y}. Then |Sy

3 ∩ S2(v2, v3)| ≥ 2. But this is impossible since qy /∈ E. Therefore,
p ∈ S2(v0, v1) and q ∈ S2(v2, v3). By definition of q, py ∈ E and hence S2(v1, v2) = ∅ by (P10).
Moreover, S2(v4, v0) = ∅ by (P7). Now consider Cx = C \ {v3} ∪ {x} and thus |Sx

3 | < 5 contradicting
the minimality of C.

C is of type (2,1,1,0,1). S3(v0) = {x, x′}, S3(v1) = {y}, S3(v2) = {z}, S3(v4) = {w}. If yz ∈ E
and one of {x, x′} is complete to {y, w}, then G = GP4

. Hence, either yz /∈ E or no vertex in {x, x′}
is complete to {y, w}. Let C ′ = C \ {v1, v4} ∪ {y, w} be an induced C5. Thus |S′3 ∩ (S1 ∪ S2)| ≥ 2. Let
p, q ∈ S′3. Note that p, q ∈ S2(v0, v1)∪S2(v0, v4)∪S2(v2, v3). If {p, q} ⊆ S2(v0, v1) or {p, q} ⊆ S2(v0, v4),
then K5 would arise. Next we show that {p, q} * S2(v2, v3). If not, then both p and q are adjacent
to exactly one of {y, w}. If pw ∈ E, then the fact that zv2pwv0x(x′) 6= P6 implies that pz ∈ E. We
may assume that xy /∈ E. If py ∈ E, Since wv3pyv1x 6= P6, we have wx ∈ E. Thus, x′w /∈ E. As
wv3pyv1x

′ 6= P6, we have x′y ∈ E. Now zy ∈ E since wxx′yv2z 6= P6. Hence, pz ∈ E or ypv3z = C4.
We have showed if p ∈ S2(v3, v2) then pz ∈ E. Therefore, pq /∈ E or {p, q, v2, v3, z} would induce a
K5. Further, y or w cannot be complete to {p, q}. Thus, we may assume that py ∈ E and qz ∈ E. By
previous argument we have that {y, x, x′, w} induces a P4 and hence qwxx′yp = P6.

Therefore, three cases remain. If p ∈ S2(v0, v1) and q ∈ S2(v0, v4), then pq ∈ E by (P1) to (P3).
By Observation 1 (2), we have {x, x′} is complete to {p, q} and thus {x, x′, v0, p, q} induces a K5.
If p ∈ S2(v0, v4) and q ∈ S2(v2, v3), then p is complete to {y, w} by definition. By (P9), we have
yq ∈ E and wq /∈ E. We may assume that xy /∈ E. Thus wxx′y = P4 as shown above. Also px /∈ E or
pxv1y = C4 and hence px′ /∈ E or px′xw = C4. Now we have wxx′yp is an induced C5 with v0 being a
5-vertex. Finally, let p ∈ S2(v0, v1) and q ∈ S2(v2, v3). By definition, p is complete to {y, w}. By (P9),
qw ∈ E and qy /∈ E. Moreover, qz ∈ E, and pz ∈ E or zqwp = C4. If x is complete to {y, w}, then
px ∈ E or xwpy = C4 and thus {x, y, v0, v1, p} would induce a K5. Hence, none of {x, x′} is complete
to {y, w}. Therefore, yz ∈ E or |S′3 ∩ (S1 ∪ S2)| ≥ 3, which is impossible by previous argument. Now
{p, v1, v2, q, w, v0, y, z, v3} induces a GP4

with respect to C∗ = wv0yzv3 and S∗3 = {q, v2, v1, p} for
which qv2v1p induces a P4.

C is of type (1,1,2,0,1). S3(v0) = {x}, S3(v1) = {y}, S3(v2) = {z, z′}, S3(v4) = {w}. Note
that xw /∈ E or G = G2,2. We may assume that yz /∈ E. Let C ′ = C \ {v1, v4} ∪ {y, w}. Hence,
|S′3 ∩ (S1 ∪ S2)| ≥ 2. Let p, q ∈ S′3 ∩ (S1 ∪ S2). If p ∈ S1(v0), then p is complete to {x, y, w} and
hence pxv4w = C4. If |S′3 ∩ (S1 ∪ S2)| ≥ 2 or |S′3 ∩ (S1 ∪ S2)| ≥ 2 then K5 would arise. Next we
show that {p, q} * S2(v2, v3). If not, let q, p ∈ S2(v2, v3). Note that p is not complete to {z, z′}, say
zp /∈ E. If pw ∈ E then zv2pwv0x = P6. Hence, y is complete to {p, q}. But now {v1, v2, v3, y, z, z′, p, q}
contains an induced W5. Therefore, three cases remains. If p ∈ S2(v0, v1) and q ∈ S2(v0, v4), then x
is complete to {p, q} by Observation 1 (2). By definition of p, we have pw ∈ E and thus pxv4w = C4.
If p ∈ S2(v0, v1) and q ∈ S2(v2, v3), then wp ∈ E. By (P9), we have wq ∈ E. Now zv2qwv0x = P6 or
z′v2qwv0x = P6. Finally, p ∈ S2(v0, v4) and q ∈ S2(v2, v3). By definition of p, we have py ∈ E and
hence qy ∈ E by (P9). We may assume that qz /∈ E. Then zy /∈ E or v3qyz = C4. Thus the fact that
zv3qyv0x 6= P6 implies that xy ∈ E and so xp ∈ E or v4xyp = C4. Now qv3wpxv1 = P6.

C is of type (1,1,1,1,1). Let S3(vi) = {ui} for each i. Note that there are at most 3 edges within
S3 or G = GP4

. We consider the following three cases.

Case a. S3 has at most two edges and does not induce a P3. Without loss of generality, we may
assume that u0u1, u1u2, u3u4 /∈ E. Let C ′ = C \ {v1, v4} ∪ {u1, u4}. Note that u0, u2, u3 /∈ S′3 and
hence |S′3 ∩ (S1 ∪S2)| ≥ 3 by the minimality of C. Let p ∈ S′3 ∩ (S1 ∪S2). If p ∈ S1(v1), then pu0 ∈ E
by properties (P11) and (P12). and thus pu0v1u1 = C4. Hence, S′3 ∩S1 = ∅. If |S′3 ∩S2(v0, v1)| ≥ 2 or
|S′3 ∩ S2(v0, v1)| ≥ 2, then K5 would occur. Now suppose that p, q, r ∈ S′3 ∩ S2(v2, v3). If u1 or u4 is
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complete to {p, q, r}, then K5 would occur. So, we may assume that pu1, qu1 ∈ E and ru4 ∈ E. Since
rv3pu1v0u0 6= P6, we have rp ∈ E. Replacing q with p we have rq ∈ E and so {v2, v3, p, q, r} induces
a K5. By (P8), we have that |S′3 ∩ S2(v2, v3)| = 2 and S′3 ∩ (S2(v0, v1)∪ S2(v0, v4)) 6= ∅. Suppose that
p ∈ S2(v0, v1). We repeat the argument for C ′′ = C \{v1, v3}∪{u1, u3} and obtain that S2(v0, v4) 6= ∅.
This contradicts (P8). Hence, let p ∈ S2(v0, v4) and q, r ∈ S2(v2, v3). Note that pu1 ∈ E by definition
of p and hence u1 is complete to {p, q, r}. So, S2(v2, v3) = {q, r} and S2(v0, v4) = {r}. But this
contradicts the fact that |S′′3 ∩ S2(v0, v4)| ≥ 2.

Case b. S3 does induce a P3. Without loss of generality, we assume that u4u0, u0u1 ∈ E. Let
C1 = C \ {v0, v2} ∪ {u0, u2}. Note that S1

3 ∩ S1 = ∅. Since u1, u3 /∈ S1
3 , we have |S1

3 ∩ S2| ≥ 2
by the minimality of C. If |S1

3 ∩ S2(v0, v1)| ≥ 2 or |S1
3 ∩ S2(v1, v2)| ≥ 2, then K5 would arise. If

p ∈ S1
3 ∩ S2(v0, v1) and q ∈ S1

3 ∩ S2(v1, v2), then u1 is complete to {p, q} by Observation 1 (2). Also,
pu0 ∈ E by definition of p and thus {u0, u1, v0, v1, p} induces a K5. Therefore, S2(v3, v4) 6= ∅. Now we
repeat the argument for C4 = C \ {v0, v3} ∪ {u0, u3} and obtain that S2(v1, v2) 6= ∅. So, S2(v4, v0) =
S2(v0, v1) = ∅. Let p ∈ S1

3 ∩ S2(v3, v4) and q ∈ S4
3 ∩ S2(v1, v2). Let C2 = C \ {v1, v3} ∪ {u1, u3} and

C3 = C \ {v2, v4} ∪ {u2, u4}. Note that |S2
3 ∩ S2| ≥ 2 and |S2

3 ∩ S2| ≥ 2. Since S2(v0, v4) = ∅ and
|S2

3 ∩ S2(v2, v1)| ≤ 1, S2
3 ∩ S2(v2, v3) 6= ∅. Let r ∈ S2

3 ∩ S2(v2, v3). By definition of r, we have r is
complete to {u1, u3}. Similarly, S3

3∩S2(v2, v3) 6= ∅. If r ∈ S3
3∩S2(v2, v3), then r is complete to {u2, u4}.

So, u0u1ru4 = C4. Hence, there exists r′ 6= r such that r′ ∈ S3
3 ∩ S2(v2, v3). Thus, S2(v3, v4) = {p},

S2(v3, v2) = {r, r′}, and S2(v2, v1) = {q}. Now p ∈ S3
3 and q ∈ S2

3 , i.e., p (respectively q) is complete
to {u2, u4} (respectively {u1, u3}). By the fact that ru3 ∈ E and Observation 1 (2), we have u3 is
complete to {p, r, r′} and thus {u3, v3, p, r, r′} induces a K5.

Case c. S3 is isomorphic to P3 +P2. Without loss of generality, we assume that u0u1, u1u2, u3u4 ∈
E. Let Ci = C \ {vi} ∪ {ui} for each i. By the minimality of C, we have Si

3 ∩ S2 6= ∅ for each i 6= 1.
Let r ∈ S3

3 and s ∈ S4
3 . If r ∈ S2(v1, v2) and s ∈ S2(v0, v1), then u4sru3 = C4. If r ∈ S2(v0, v4) and

s ∈ S2(v2, v3), let t ∈ S2
3 ∩S2. Note that t ∈ S2(v3, v4). By Observation 1 (2), we have t is complete to

{u3, u4} and so {u3, u4, v3, v4, t} = K5. The remaining two cases are symmetric and we may assume
that r ∈ S2(v0, v4) and s ∈ S2(v0, v1). Let t ∈ S0

3 ∩ S2. If t ∈ S2(v1, v2), then s is complete to {u0, u1}
by Observation 1 (2). Hence, {u0, u1, v0, v1, s} = K5. So, t ∈ S2(v3, v4). Then u4 is complete to {r, t}.
Since G is K5-free, tu3 ∈ E and thus tru3v3 = C4.

Case 6. |S3| = 6. There are three possible configurations for S3.

C is of type (2,1,1,1,1). Let S3(v0) = {x, x′}, S3(v1) = {y}, S3(v2) = {r}, S3(v3) = {t},
S3(v4) = {z}. We may assume that xy /∈ E. We also assume that rt /∈ E or G = G2,2. Let C ′ =
C \ {v1, v4}∪ {y, z} be an induced C5. As xy /∈ E, we have S′3 ∩ (S1 ∪S2) 6= ∅ by the minimality of C.
Let p ∈ S′3. Then p is complete to {y, z}. It is easy to check that p ∈ (N(v0) ∩ (S1 ∪ S2)) ∪ S2(v2, v3).
If p ∈ S1(v0), then px ∈ E and so pxv1y = C4. If p ∈ S1(v0, v1), then the fact that pyv2v3v4x 6= P6

implies that px ∈ E. Thus xz ∈ E or pxv4z = C4. Hence, x′z /∈ E and thus x′p /∈ E. So, x′ /∈ S′3. By
symmetry, if p ∈ S2(v0, v4), then x′ /∈ S′3. If p ∈ S2(v2, v3), then by symmetry we assume that py ∈ E.
Since tv3pyv0x does not induce a P6, we have tp ∈ E. Therefore p is the only vertex in S2(v2, v3) that
is adjacent to y otherwise K5 would occur. Thus there is also at most one vertex in S2(v2, v3) that is
adjacent to z. Also, ry /∈ E otherwise tv3ryv0x = P6. By symmetry, zt /∈ E. Hence, |S′3∩(S1∪S2)| ≥ 3
and |S′3 ∩ (S1 ∪S2)| ≥ 4 if S′3 ∩ (S2(v0, v4)∪S2(v0, v1)) 6= ∅ by the minimality of C. But now we either
have a K5 or contradicts (P9).

C is of type (2,2,0,1,1). Let S3(v0) = {x, x′}, S3(v1) = {y, y′}, S3(v3) = {t}, S3(v4) = {w}.
Note that wt /∈ E or G = G2,2. We may assume that y is anti-complete to {x, x′}. Let C ′ = C \
{v1, v4} ∪ {w, y}. Thus by the minimality of C we have S′3 ∩ (S1 ∪ S2) 6= ∅. Let p ∈ S′3 and it is
easy to check that p ∈ S2(v0, v1) ∪ S2(v0, v4) ∪ S2(v2, v3). Suppose first that p ∈ S2(v0, v1). Then p
is complete to {y, w}. Note that tp /∈ E or tpv0v4 = C4. Since tv4wpv1y

′ 6= P6, we have py′ ∈ E and

31



thus {v0, v1, y, y′, p} induces a K5. Suppose now that p ∈ S2(v0, v4). Again, p is complete to {y, w}.
Note that tp /∈ E or tpyv2 = C4. Then the fact that tv3wpyy

′ 6= P6 implies that py′ ∈ E. Now
{x, x′, y, y, v0, v1, v4, p} induces a Hajos graph with one additional dominating vertex. Finally, assume
that p ∈ S2(v2, v3). Then p is adjacent to exactly one of {y, w}. Suppose that pw ∈ E. Then tp /∈ E
or v4wpt = C4. By G is K5-free, w is not complete to {x, x′}, say wx /∈ E, and hence xp /∈ E or
xv4wp = C4. Now tv2pwv0x = P6. Therefore, py ∈ E and pw /∈ E. We may assume that xw /∈ E, and
now pv2v1xv4w = P6.

C is of type (2,2,,1,0,1). Let S3(v0) = {x, x′}, S3(v1) = {y, y′}, S3(v2) = {t}, S3(v4) = {w}.
We may assume that y is anti-complete to {x, x′} and x is anti-complete to {y, y′}. Let C ′ = C \
{v1, v4} ∪ {y, w}. By the minimality of C, we have S′3 ∩ (S1 ∪ S2) 6= ∅. Let p ∈ S′3 and it is easy to
check that p ∈ S2(v0, v1)∪S2(v0, v4)∪S2(v2, v3). Suppose first that p ∈ S2(v0, v1). Then p is complete
to {y, w}. Now Since pyv2v3v4x(x′) 6= P6, we have p is complete to {x, x′} and thus {v0, v1, p, x, x′}
induces a K5. Now suppose that p ∈ S2(v0, v4). Again, p is complete to {y, w}. Note that tp /∈ E or
pv0v1t = C4. If py′ ∈ E, then xp ∈ E or xv1y

′pv4 and v0 would induce a W5. But now xpy′v1 = C4.
Hence, py′ /∈ E. Now the fact that tv3v4pyy

′ 6= P6 implies that ty ∈ E or ty′ ∈ E. If ty ∈ E, then
y′ytv3v4x = P6. Otherwise, ty′ ∈ E. Then px /∈ E or pxv1y = C4. Now ty′ypv4x = P6. Thus there
exist vertices p, p′ ∈ S′3 ∩ S2(v2, v3). Suppose that py ∈ E and so pw ∈ E. Since xv4v3pyy

′ 6= P6,
we have py′ ∈ E. Note that t is not complete to {y, y′}. Thus, tp ∈ E as tv3py(y′)v0x 6= P6 . Now
py(y′)v1t = C4. Hence, w is complete to {p, p′}. Now {y, y′, v0, v1, v2, p, p′v3, w} induces a G3,1.

Case 7. |S3| = 7. Suppose that S3(v0) = {x}, S3(v1) = {y} , S3(v4) = {z}, S3(v2) = {r, r′} and
S3(v3) = {t, t′}. We may assume that r is anti-complete to {t, t′} and t is anti-complete to {r, r′} or
K5 would occur. Let Cr = C \ {v2} ∪ {r}. Since t, t′ /∈ Sr

3 we have |Sr
3 ∩ (S1 ∪ S2)| ≥ 2 by minimality

of C. Let p and p′ be two vertices in the Sr
3 ∩ (S1 ∪ S2). Then r is complete to {p, p′}. It is routine

to check that p and p′ belong to S2(v0, v1) ∪ S2(v3, v4). First suppose that {p, p′} ⊆ S2(v0, v1). Let
Ct = C \ {v3} ∪ {t}. Then there exist q and q′ such that q and q′ belong to S2(v4, v0) or S2(v1, v2).
If {q, q′} ⊆ S2(v4, v0) or {q, q′} ⊆ S2(v1, v2) then {p, p′q, q′, v1} would induce a K5. Hence there
must be the case that q ∈ S2(v4, v0) and q′ ∈ S2(v1, v2). By definition of q and q′, t is complete to
{q, q′}, which contradicts (P10). Therefore, S2(v3, v4) 6= ∅. Repeating the argument for Ct we have
S2(v1, v2) 6= ∅. So, S2(v0, v4) = S2(v0, v1) = ∅ and thus p, p′ ∈ S2(v3, v4) and q, q′ ∈ S2(v1, v2). Now
Let Cy = C \ {v1} ∪ {y} and Cz = C \ {v4} ∪ {z}. The same argument shows that Sy

3 ∩ S2(v2, v3) 6= ∅
and Sz

3 ∩ S2(v2, v3) 6= ∅. As |S2(v1, v2)| ≥ 2, we obtain that S2(v2, v3) contains only one vertex u.
Thus uy ∈ E and uz ∈ E. But now uyv0z = C4.

This completes the proof. ut
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