

Approximating Vector Scheduling: Almost Matching
Upper and Lower Bounds
Citation for published version (APA):

Bansal, N., Oosterwijk, T., Vredeveld, T., & Van Der Zwaan, R. (2016). Approximating Vector Scheduling:
Almost Matching Upper and Lower Bounds. Algorithmica, 76(4), 1077-1096.
https://doi.org/10.1007/s00453-016-0116-0

Document status and date:
Published: 01/12/2016

DOI:
10.1007/s00453-016-0116-0

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 25 Apr. 2024

https://doi.org/10.1007/s00453-016-0116-0
https://doi.org/10.1007/s00453-016-0116-0
https://cris.maastrichtuniversity.nl/en/publications/ced6d00e-acc1-42d3-b22b-faeb17dbffaf

Algorithmica
DOI 10.1007/s00453-016-0116-0

Approximating Vector Scheduling: Almost Matching
Upper and Lower Bounds

Nikhil Bansal1 · Tim Oosterwijk2 ·
Tjark Vredeveld2 · Ruben van der Zwaan1

Received: 17 November 2014 / Accepted: 2 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We consider the Vector Scheduling problem, a natural generalization
of the classical makespan minimization problem to multiple resources. Here, we
are given n jobs, represented as d-dimensional vectors in [0, 1]d , and m identical
machines, and the goal is to assign the jobs to machines such that the maximum
load of each machine over all the coordinates is at most 1. For fixed d, the problem
admits an approximation scheme, and the best known running time is n f (ε,d) where
f (ε, d) = (1/ε)Õ(d) (Õ suppresses polylogarithmic terms in d). In particular, the
dependence on d is double exponential. In this paper we show that a double exponen-
tial dependence on d is necessary, and give an improved algorithm with essentially
optimal running time. Specifically, we let exp(x) denote 2x and show that: (1) For
any ε < 1, there is no (1 + ε)-approximation with running time exp

(
o(�1/ε�d/3)

)

unless the Exponential Time Hypothesis fails. (2) No (1 + ε)-approximation with
running time exp

(�1/ε�o(d)
)
exists, unless NP has subexponential time algorithms.

(3) Similar lower bounds also hold even if εm extra machines are allowed (i.e. with
resource augmentation), for sufficiently small ε > 0. (4) We complement these lower

B Tim Oosterwijk
t.oosterwijk@maastrichtuniversity.nl

Nikhil Bansal
n.bansal@tue.nl

Tjark Vredeveld
t.vredeveld@maastrichtuniversity.nl

Ruben van der Zwaan
g.r.j.v.d.zwaan@tue.nl

1 Eindhoven University of Technology, Eindhoven, The Netherlands

2 Maastricht University, Maastricht, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0116-0&domain=pdf
http://orcid.org/0000-0002-8509-7002

Algorithmica

bounds with a (1 + ε)-approximation that runs in time exp
(
(1/ε)O(d log log d)

) + nd.
This gives the first efficient approximation scheme (EPTAS) for the problem.

1 Introduction

We consider theVector Scheduling problem defined as follows. The input consists
of a collection J of n jobs p1, . . . ,pn, viewed as d-dimensional vectors from [0, 1]d ,
andm identical machines. The goal is to find an assignment of the jobs to the machines

such that the load satisfies
∥∥∥
∑

p∈Pi p
∥∥∥∞ ≤ 1 for each machine i ∈ [m], where Pi is

the set of jobs assigned to machine i . That is, the maximum load on any machine in
any coordinate is at most 1.

Vector Scheduling is the naturalmulti-dimensional generalization of the classic
Multiprocessor Scheduling problem (also known as makespan minimization,
P||Cmax, or load balancing). In the latter problem, the goal is to assign n jobs with
arbitrary processing times to m machines in order to minimize the maximum sum of
processing times (load) over all the machines. However, for many applications, the
jobs may use different resources and the load of a job cannot be described by a single
aggregate measure. For example, if jobs have both CPU and memory requirements,
their processing requirement is best modeled as a two-dimensional vector, where
the value in each coordinate corresponds to each of the requirements. Note that the
assumption that the maximum load of a machine in any coordinate is 1 is without loss
of generality, as the different coordinates can be scaled independently.

In this paper we are concerned with approximation algorithms. We say that an
algorithm is an α-approximation for some α > 1 if it finds an assignment with load
at most α, whenever there exists a feasible schedule with load at most 1.

1.1 Previous Work

Multiprocessor Scheduling and the related Bin Packing problem are two of the
most fundamental problems in combinatorial optimizationwith a long and rich history.
We only describe the work on Multiprocessor Scheduling in the setting where
the number of machinesm is part of the input. It is well-known thatMultiprocessor

Scheduling is strongly NP-hard [10].
The first polynomial time approximation scheme (PTAS), that is, a (1 + ε)-

approximation algorithm with polynomial running time for every fixed ε > 0, was
obtained by Hochbaum and Shmoys [11]. The running time of their algorithm is

O
(
nO(1/ε2)

)
. Note that by the strong NP-Hardness of the problem one cannot hope

to have a running time with polynomial dependence in ε (i.e. an FPTAS), unless P =
NP.

An efficient polynomial time approximation scheme (EPTAS), i.e. an algorithm
with running time f (ε)nO(1), was implicit in [11] by replacing the dynamic program
by an integer linear program and using fast integer programming algorithms in fixed
dimensions. Alon et al. [1] developed a more general framework to obtain EPTASes

123

Algorithmica

for parallel machine scheduling that runs in f (ε)+O(n) time, where f (ε) is a double
exponential function in 1/ε.

Recently, this running time was substantially improved by Jansen [14] to

O
(
2Õ(1/ε2) + nO(1)

)
. His main idea is to use fast integer programming in fixed

dimensions, together with an elegant result of Eisenbrand and Shmonin [6] about
the existence of optimum integer solutions with small support. Most of these results
also extend to the setting of uniformmachines, i.e. a setting where the machine speeds
differ (see e.g. [12,14]).

Fewer results are known for the case when the number of dimensions exceeds one.
Chekuri and Khanna [5] gave the first polynomial-time approximation scheme for a
fixed number of dimensions. They gave an algorithm with running time ng(ε,d), where

g(ε, d) = (1/ε)d log log d+o(d) and hence the running time is n(1/ε)Õ(d)
. This seems to

be the currently best known running time for this problem. PTASes for several other
generalizations are also known [3,7,8].

When d is part of the input, Chekuri and Khanna [5] gave a polynomial time
O(ln2 d)-approximation and proved that it is NP-hard to approximate the problem
within any constant factor. This approximation factor has been recently improved to
O(log d) by Meyerson et al. [18]. The latter result even holds in the online setting.

1.2 Our Contribution

A natural question is whether there exists an approximation scheme for Vec-

tor Scheduling with a single exponential running time in 1/ε and d, e.g.
exp(poly(1/ε, d)). We rule out this possibility by showing the following strong lower
bound.

Theorem 1 For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is no (1 +
ε)-approximation algorithm with running time O

(
2o

(
(1/ε)d/3

)
(nd)O(1)

)
for Vector

Scheduling in d ≥ d(ε) dimensions, unless the Exponential Time Hypothesis (ETH)
fails.

This follows froma relatively simple reduction from the 3- Dimensional Match-

ing problem. The same reduction also implies the following hardness under a more
standard complexity assumption.

Theorem 2 For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is no

(1+ε)-approximationalgorithmwith running time O
(
2(1/ε)o(d)

(nd)O(1)
)
forVector

Scheduling in d ≥ d(ε) dimensions, unless NP has subexponential time algorithms,
i.e. NP ⊆ ∩ε>0DTIME(2n

ε
).

One may wonder whether these lower bounds are robust or whether they crucially
exploit the fact that no additional machines are allowed. It is instructive to consider
the case of d = 1 (i.e. Multiprocessor Scheduling). Recall that no FPTAS is
possible for the problem. However, if one allows some extra machines (say
εm� of
them), then the running time dependence on ε reduces dramatically and in particular,

123

Algorithmica

an FPTAS is possible. In fact, the known FPTASes for Bin Packing imply that even
very few extra machines (poly-logarithmic in m) suffice [16,20], and in fact one does
not even need to violate the capacity of any machine.

Somewhat surprisingly, we show that extra machines do not help for Vector

scheduling, provided that the desired approximation ratio is sufficiently small.

Theorem 3 For any ε < ε0 with 1/ε ∈ N, there is a d(ε) such that there is

no (1 + ε)-approximation algorithm with running time O
(
2(1/ε)o(d)

(nd)O(1)
)
for

Vector Scheduling in d ≥ d(ε) dimensions, even with
εm� extra machines,
unless NP has subexponential time algorithms, i.e. NP ⊆ ∩ε>0DTIME(2n

ε
), where

ε0 < 1 is a universal constant. Assuming the ETH, no such algorithm can run in time

O
(
2o

(
(1/ε)d/6

)
(nd)O(1)

)
.

To complement the lower bounds above, we show the following algorithmic result.

Theorem 4 For any ε > 0 and d ≥ 1, there is a deterministic (1 + ε)-
approximation algorithm for d-dimensional Vector scheduling that runs in time

O
(
2(1/ε)O(d log log d) + nd

)
.

By the lower bounds above, the running time is essentially the best possible (modulo
the O(log log d) factor in the exponent), and the nd term is simply the time required
to read the input. Theorem 4 gives the first EPTAS for Vector Scheduling.

1.2.1 Techniques

At a high level, the algorithm is similar to that of [14], and relies on integer program-
ming in fixed dimensions and the existence of optimum integer solutions with small
support. However, there are some important differences between d = 1 and d > 1.
In particular, for d = 1 the small jobs (with size ≤ ε) do not cause any problems and
can later be assigned greedily in the remaining space, after solving the problem for
just big jobs. However, for d ≥ 2, the big and small jobs (by small we mean jobs that
are small in every dimension) interact in more complex ways and must be considered
together. The following example illustrates this difficulty.

Example 1 Consider the following instance in d = 2 dimensions, with m = 2
machines and the following jobs: p1 = (1

2 , 0
)
,p2 = (1

2 , 0
)
and pi = (

ε
2 , ε

)
for 3 ≤

i ≤ 2/ε. Clearly, these jobs can be scheduled on two machines by assigning the first
two jobs to separate machines and splitting the small jobs evenly. However, if the two
large jobs are assigned to the same machine, there is no assignment of the small jobs
such that the maximum load of the machines is exceeded by a constant factor depen-
dent on ε. The two large jobs have total load (1, 0). As the small jobs have total load
(1, 2), no matter how these are assigned to the two machines, one machine will have
load at least min {max{1 + x, 2x},max{1 − x, 2(1 − x)}}, which is 4/3 (attained for
x = 1/3).

Chekuri and Khanna [5] overcame this problem by ‘guessing’ the division between
small and large jobs for each machine. This allows them to decouple the assignment

123

Algorithmica

of small and big vectors. However, as there are roughly m(1/ε)d different possible
divisions, with ε precision, this is not useful to obtain an efficient polynomial time
approximation scheme.

To get around this, we incorporate both large and small vectors in our mixed integer
linear program (MILP), but ensure that it has only few constraints by tracking only
some coarse-grained information for the small jobs. We find an optimum solution to
this MILP, which gives an integral assignment of large jobs, but small jobs might be
assigned fractionally. We then show how to assign the small jobs to machines without
overloading them. To do this, we first assign the jobs greedily guided by a potential
function, which guarantees that the aggregate amount of overload on machines is
small. This load is small enough to ensure that the jobs on overloaded machines
can be redistributed in a round-robin manner. A naive implementation of the greedy
assignment requires O(mn) time (as for each job,we need to determinewhichmachine
causes the least increase in potential), so we also present some additional ideas to show
how everything can be done in linear time.

1.2.2 Organization

In Sect. 2 we state our notation and the hypotheses on which our lower bounds are
based, and we describe the relevant background on integer programming. In Sect. 3
we prove our lower bounds for Vector Scheduling and we present our algorithm
in Sect. 4.

2 Preliminaries

Let [n] denote the set of positive integers 1 to n, i.e. [n] := {1, . . . , n}. Let 1 be the
all-ones vector. For a d-dimensional vector v = (v1, . . . , vd), let v j denote its j-th
coordinate. For two vectors a,b we say that a ≤ b if ai ≤ bi for all i . Throughout the
paper the logarithm log is taken with base 2 and we let exp(x) denote 2x . We say that a

function f (n) is sub-exponential if f (n) ∈ O
(
2O(no(1))

)
. Without loss of generality

we assume that the number of machines is less than the number of jobs (otherwise
assign one job per machine or conclude infeasibility).

In the 3- CNF- Sat problem, we are given a Boolean expression in conjunctive
normal form, consisting of N variables and M clauses that each consist of three
literals. The question is whether or not there exists an assignment of logical values
to the variables such that the expression evaluates to TRUE. Impagliazzo, Paturi and
Zane formulated the Exponential Time Hypothesis, which in combination with the
sparsification lemma [4] can be stated as follows.

Hypothesis 1 (Exponential Time Hypothesis (ETH) [13]) 3- CNF- Sat with N vari-
ables and M clauses cannot be solved in time O

(
2o(M)(N + M)O(1)

)
.

We will use the following well-known result for fast integer linear programs with
few integer variables.

123

Algorithmica

Theorem 5 (Lenstra [17], Kannan [15], Frank and Tardos [9]) Consider a mixed-
integer linear program min{cT x | Ax ≥ b and ∀i ∈ I : xi ∈ Z} with n variables
and m constraints, and where I ⊆ [n] denotes the set of indices of integer variables.
Let s denote the binary encoding length of the input. There is an algorithm that finds
a feasible solution or decides that there is no feasible solution in O

(
n2.5n+o(n) · s)

arithmetic operations.

Relatively recently, based on an elegant pigeonhole argument, Eisenbrand and
Shmonin [6] showed that every feasible integer linear program has an optimum solu-
tion with small support.

Theorem 6 (Eisenbrand and Shmonin [6]) Let min{cT y|Ay = b, y ≥ 0, y ∈ Z
n}

be an integer program, where A ∈ Z
m×n and c ∈ Z

n. If this integer program has a
finite optimum, then there exists an optimal solution y∗ ∈ Z

n≥0 in which the number of
nonzero components is at most 2(m + 1)(log(m + 1) + s + 2), where s is the largest
size in binary representation of any coefficient of A and c.

3 Lower Bounds on the Running Time

We prove our lower bounds by a reduction from 3- Dimensional Matching (3-
DM) to Vector Scheduling. In Sect. 3.1 we prove Theorem 1 by describing the
reduction and proving that an approximate solution to the Vector Scheduling

instance implies an exact solution for 3- DM and hence 3- CNF- Sat. In Sect. 3.2 we
outline how the same reduction implies Theorem 2. Finally, in Sect. 3.3 we give the
proof for Theorem 3 concerning resource augmentation.

Before we give our reduction, we first define the 3- Dimensional Matching

problem. An instance of 3- DM consists of three disjoint sets X , Y , and Z , satisfying
|X | = |Y | = |Z | := q, and a set T ⊂ X × Y × Z of triples. The goal is to find a
subset of triples T ′ ⊂ T such that each element of X , Y , and Z occurs in exactly one
triple of T ′.

In [10], a reduction from 3- CNF- Sat to 3- DM is given, that transforms instances
of 3- CNF- SAT with N variables and M clauses into instances for 3- DM with q =
6M and |T | = 2MN + 3M + 2M2N (N − 1) (using better bookkeeping you can
prove that |T | = 17M suffices). Therefore, the ETH (Hypothesis 1) implies there is
no O(2o(q)|T |O(1)) time algorithm for 3- DM.

3.1 Lower Bound Assuming the ETH

3.1.1 The Construction

Themain idea of the reduction is the following construction of aVector Scheduling

instance from 3- DM. For each triple in T we construct a job (that we call a triple-job),
and for each element in X , Y or Z we construct as many jobs as the number of times
this element occurs in the triples (we call such jobs element-jobs). We explicitly refer
to X-jobs, Y -jobs and Z-jobs if we want to distinguish the element-jobs of the three

123

Algorithmica

Table 1 Construction of the jobs from elements and triples of the 3- DM problem

Job name Values of the coordinates

T/X/Y/Z Real/dummy Encoding of element(s)

Real X -job i : 0, b, 0, 0 b, 0, 0 〈i〉1, . . . , 〈i〉� 0, . . . , 0 0, . . . , 0

Dummy X -job i : 0, b, 0, 0 0, b, 0 〈i〉1, . . . , 〈i〉� 0, . . . , 0 0, . . . , 0

Real Y -job j : 0, 0, b, 0 0, b, 0 0, . . . , 0 〈 j〉1, . . . , 〈 j〉� 0, . . . , 0

Dummy Y -job j : 0, 0, b, 0 0, 0, b 0, . . . , 0 〈 j〉1, . . . , 〈 j〉� 0, . . . , 0

Real Z -job k: 0, 0, 0, b 0, 0, b 0, . . . , 0 0, . . . , 0 〈k〉1, . . . , 〈k〉�
Dummy Z -job k: 0, 0, 0, b b, 0, 0 0, . . . , 0 0, . . . , 0 〈k〉1, . . . , 〈k〉�
Triple (i, j, k): b, 0, 0, 0 0, 0, 0 〈i〉1, . . . , 〈i〉� 〈 j〉1, . . . , 〈 j〉� 〈k〉1, . . . , 〈k〉�

sets. For each element i , we designate exactly one of its jobs as the real element-job
corresponding to i , and refer to the other element-jobs of i as dummy jobs. The number
of machines is equal to the number of triples. We will assign sizes to these jobs such
that to obtain a schedule where the maximum load in any coordinate is at most 1, we
need to schedule each triple together with its corresponding three element-jobs, and
moreover these element-jobs are either all real or all dummy element-jobs.

Let ε > 0 be such that 1/ε is integer. Let b = 1/ε − 1 and let b denote the vector
that has b in every coordinate. By 〈i〉we denote the (b+1)-ary encoding of the integer
i and by 〈i〉 we denote its complement, that is, 〈i〉 := b− 〈i〉. Let 〈i〉 j denote the j-th
digit from the right of 〈i〉. For ease of notation, we scale the jobs by a factor b. That
is, all jobs are vectors in {0, . . . , b}d and we want to know whether we can schedule
the jobs such that the maximum load in each coordinate is at most b. To make the
proofs easier to read, we rename the elements in the sets X , Y and Z by assuming that
X = Y = Z = {1, . . . , q}.

3.1.2 The Formal Reduction

Given an instance (X,Y, Z; T) of 3- DM, let nX (i) denote the number of triples
(x, y, z) for which x = i ; in a similar way, we define nY (i) and nZ (i). For each
element i ∈ X , we create nX (i) jobs, one real X -job i and nX (i) − 1 dummy X -jobs.
In a similar way, we create nY (j) Y -jobs for each element j ∈ Y and nZ (k) Z -jobs
for each element k ∈ Z . Finally, we have |T | triple-jobs, one for each triple l ∈ T .
The number of machines is equal to m := |T |. Note that the total number of jobs is∑

i∈X nX (i) + ∑
j∈Y nY (j) + ∑

k∈Z nZ (k) + |T | = 4|T |.
Recall that |X | = |Y | = |Z | = q, and let � :=
log(1/ε) q�. We associate a vector

to each of the jobs as in Table 1. These vectors are d-dimensional, where d := 7+ 3�.
In particular, the first four coordinates of a job indicate whether the job corresponds
to an element in X , Y , Z or to a triple in T . The following three coordinates encode
for each X , Y , or Z -job whether it is a real job or a dummy job. The last part of each
job encodes the element to which the job corresponds.

123

Algorithmica

3.1.3 Proof of the Reduction

We now show that the reduction has the desired properties.

Lemma 1 (Completeness) If the 3- DM instance has a solution, then there exists an
assignment of the jobs to the m machines such that the load on every machine in each
coordinate is at most b.

Proof Consider the collection T ′ of disjoint triples that cover X , Y and Z . For each
triple (i, j, k) ∈ T ′ we assign the corresponding triple-job and the real element-jobs
corresponding to i , j and k to a single machine. Clearly, every coordinate on every
such machine has load at most b. We place each of the remaining triples (i, j, k) on
a machine with a dummy job for i , for j and for k. It is easily verified that this is a
feasible assignment. ��
Lemma 2 If the Vector Scheduling instance has a solution with load at most
(1 + ε)b, then there is a solution to the corresponding 3- DM instance.

Proof Consider any solution with load at most (1+ ε)b. We begin with various prop-
erties of such a solution.

Property 1 The load is exactly b in each coordinate on each machine.

Proof The load of each machine is at most (1+ ε)b = b+ b/(b+ 1) < b+ 1. As all
jobs have integer coordinates, the load of each machine is at most b.

Moreover, since
∑

i∈X nX (i) = ∑
j∈Y nY (j) = ∑

k∈Z nZ (k) = |T | = m, observe
that the total amount of work in the i-th coordinate summed over all jobs is mb. As
all jobs are scheduled and the load is at most b, it is exactly b. ��
Property 2 Each machine processes exactly one triple-job, one X -job, one Y -job, and
one Z -job.

Proof This follows immediately from the values in the first four coordinates and the
previous property. ��
Property 3 Element-jobs assigned to the same machine are either all real jobs or all
dummy jobs.

Proof From Property 1 and the values in the fifth, sixth and seventh coordinate we
see that the following three statements are simultaneously true:

1. There is exactly one real X -job or dummy Z -job (coordinate 5);
2. There is exactly one real Y -job or dummy X -job (coordinate 6);
3. There is exactly one real Z -job or dummy Y -job (coordinate 7).

The claim now follows by combining this with the fact that by Property 2 there is
exactly one (real or dummy) job of each of the types X , Y and Z . ��
Property 4 If a machine processes the triple-job (i, j, k) and a (real or dummy)
element-job a, then a is equal to i , j or k, depending on whether a is an X , Y or
Z -job.

123

Algorithmica

Proof We only consider the case that a is an X -element; the other cases are similar.
By Properties 1 and 2, we know that 〈i〉 + 〈a〉 = b. Therefore, 〈a〉 = b − 〈i〉 =
b − (b − 〈i〉) = 〈i〉 and thus a = i . ��

If a machine processes three real element-jobs, then by the last property the corre-
sponding three elements form a triple in the 3- DM instance. Let T ′ consist of all triples
corresponding to the triple-jobs that are scheduled together with real elements. Then,
the triples in T ′ have no overlap as there is only one real element-job corresponding
to an element. Moreover, T ′ covers all elements, because all jobs, and therefore also
all real element-jobs, need to be scheduled. ��

Therefore we have the following lemma.

Lemma 3 Given an instance of 3- Dimensional Matching with |X | = |Y | =
|Z | = q, T ⊆ X × Y × Z, b ∈ N+, b ≥ 2 and ε = 1/(b + 1), there is a polynomial
time reduction to an instance of Vector Schedulingwith 4|T | vectors in dimension
d := 3

⌈
log(1/ε) q

⌉ + 7. Moreover, a (1 + ε)-approximate solution to the Vector

Scheduling instance defines a solution to the 3- DM problem.

Thus, Lemma 3 in combination with the ETH and the reduction from 3- CNF- Sat
to 3- Dimensional Matching yields the following theorem.

Theorem 1 For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is no (1 +
ε)-approximation algorithm with running time O

(
2o

(
(1/ε)d/3

)
(nd)O(1)

)
for Vector

Scheduling in d ≥ d(ε) dimensions, unless the Exponential Time Hypothesis (ETH)
fails.

Proof Suppose that there exists a (1+ε)-approximation forVector Scheduling that
runs in time O

(
exp

(
o((1/ε)d/3)

)
(nd)O(1)

)
. By Lemma 3 we get an O

(
2o(q)|T |O(1)

)

time algorithm for 3- DM, which in turn implies an algorithm for 3- CNF- Sat that
runs in time O

(
2o(M)(N + M)O(1)

)
, which contradicts the ETH. ��

3.2 Lower Bound Assuming NP has no Subexponential Time Algorithms

Lemma 3 also implies the following.

Theorem 2 For any ε > 0 with 1/ε ∈ N, there is a d(ε) such that there is no

(1+ε)-approximationalgorithmwith running time O
(
2(1/ε)o(d)

(nd)O(1)
)
forVector

Scheduling in d ≥ d(ε) dimensions, unless NP has subexponential time algorithms,
i.e. NP ⊆ ∩ε>0DTIME(2n

ε
).

Proof Any problem in NP of size n can be reduced to an NP-complete problem of
size nO(1) in polynomial time. In particular, any problem P in NP can be formulated
as a 3- DM problem with at most nc elements and triples, for some constant c.

Suppose, by contradiction, that there is a (1 + ε)-approximation for Vec-

tor Scheduling that runs in time O
(
exp

(
(1/ε)o(d)

)
(nd)O(1)

)
. Setting d =

log(1/ε)(n
c) + 7 ≤ c log(1/ε) n + 7 gives an O

(
exp

(
(1/ε)o(log(1/ε)(n))

)
nO(1)

)
=

O
(
exp

(
no(1)

))
time algorithm for P , which is subexponential. ��

123

Algorithmica

Table 2 New construction of the X -jobs and triple-jobs of the 3- DM- 3 problem

Job name Values of the coordinates

T/X/Y/Z Real/dummy Encoding of element(s)

Real X -job i : 0, b, 0, 0 b, 0, 0 〈i〉1, . . . , 〈i〉�, 〈i〉1, . . . , 〈i〉� 0, . . . , 0 0, . . . , 0

Dummy X -job i : 0, b, 0, 0 0, b, 0 〈i〉1, . . . , 〈i〉�, 〈i〉1, . . . , 〈i〉� 0, . . . , 0 0, . . . , 0

Triple (i, j, k): b, 0, 0, 0 0, 0, 0 〈i〉1, . . . , 〈i〉�, 〈i〉1, . . . , 〈i〉� 〈 j〉 〈k〉

3.3 Lower Bound with Resource Augmentation

In this subsectionwe show a lower bound on the running time of (1+ε)-approximation
algorithms for Vector Scheduling that are allowed resource augmentation, i.e.
besides exceeding the optimal load by a factor (1 + ε), it is also allowed to use εm
extra machines.

To show this, we reduce from a stricter version of 3- Dimensional Matching,
namely 3- Dimensional Matching- B, abbreviated as 3- DM- B. In this problem
we are given a set of triples T ⊆ X ×Y × Z , where X , Y and Z are disjoint finite sets
and each element in X ∪ Y ∪ Z appears at most B times in the triples of T . The goal
is to find a subset of triples T ′ that maximizes the number of elements in X ∪ Y ∪ Z
that appear exactly once in T ′.

Theorem 7 (Petrank [19]) For 3- Dimensional Matching- 3 it is NP-hard to dis-
tinguish between instances where all elements can be covered by disjoint triples and
those instances where at most a (1 − ε

3- DM
) fraction of the elements can be covered

by disjoint triples, where ε
3- DM

< 1 is some universal constant.

Using this result we prove the following lemma.

Lemma 4 For Vector Scheduling in d ≥ d0 dimensions it is NP-hard to distin-
guish between instanceswhere all jobs can be scheduled onm machineswithmaximum
load 1 and those instances where all jobs can be scheduled on (1+ε0)m machines with
maximum load 1 + ε0, where 0 < ε0 < 1 and d0 ≥ 1 are some universal constants
and 1/ε0 is integer.

Proof Construct a Vector Scheduling instance from the 3- DM- 3 problem in
almost the same way as for 3- DM. The only difference is that for every (real or
dummy) X -job i and triple (i, j, k), instead of only encoding 〈i〉 (respectively 〈i〉), we
append this by encoding 〈i〉 (respectively 〈i〉) (all other jobs get extra zero-entries).
See Table 2. Consequently, if a triple (i, j, k) is scheduled on a machine where also an
X -job x is scheduled, then i = x . Previously we established this through the fact that
the load in each coordinate is exactly b. However, here we do not have this property
because of the extra machines.

There are at most 3q triples, where q = |X | = |Y | = |Z |. One direction is clear,
if all 3q elements can be covered by disjoint triples then there is a schedule of height
at most b on m = 3q machines. For the other direction, suppose we found a (1 + ε)-

123

Algorithmica

approximate solution with 3qε extra machines. Using the same reasoning as before,
we now have the following properties:

• The maximum load is b;
• On each machine there is at most one triple, one X -, one Y -, and one Z -job;
• On each machine, if there are three element-jobs, then all three are real jobs or all
three are dummy jobs;

• If a triple (i, j, k) and an X -job x , Y -job y and Z -job z are scheduled on the same
machine, then i = x , j = y and k = z.

Therefore, every machine on which a triple and three real elements are scheduled,
corresponds to a triple in the solution to the 3- DM- 3 problem.

Wewill now show that there is a universal constant such that it is hard to distinguish
between instances where everything fits on m machines with maximum load 1 and
instances where everything fits on (1 + ε)m machines with maximum load 1 + ε.
Consider the 3qε machines without a triple. These 3qε machines contain at most 9qε

element-jobs. Considering that there are 3q machines onwhich 9q−9qε element-jobs
must be scheduled together with triples, there are at most 9qε machines with a triple
but with atmost two elements. Hence, there are atmost 9qε+2(9qε) real elements that
are scheduled on either a machine without a triple, or with a triple but with only one
other element. Therefore, at least 3q−27qε real elements are scheduled together with
triples, which corresponds to q − 9qε disjoint triples that cover 3q − 27qε elements.
If 27ε < ε

3- DM
, we found a solution where more than a (1 − ε

3- DM
)-fraction of the

elements are covered in the 3- DM- 3 instance, which is NP-hard. ��
Following the proof of Theorem 2, this immediately implies the following.

Theorem 3 For any ε < ε0 with 1/ε ∈ N, there is a d(ε) such that there is

no (1 + ε)-approximation algorithm with running time O
(
2(1/ε)o(d)

(nd)O(1)
)
for

Vector Scheduling in d ≥ d(ε) dimensions, even with
εm� extra machines,
unless NP has subexponential time algorithms, i.e. NP ⊆ ∩ε>0DTIME(2n

ε
), where

ε0 < 1 is a universal constant. Assuming the ETH, no such algorithm can run in time

O
(
2o

(
(1/ε)d/6

)
(nd)O(1)

)
.

4 Linear Time Approximation Algorithm

In this section we describe our linear time algorithm. Roughly, it works as follows.
First, we preprocess the instance such that there are relatively few different types
of large jobs at the cost of a small factor in the approximation guarantee. Next, we
formulate and solve a mixed-integer linear program from which we obtain a multiset
of configurations of large jobs, each of which can fit on one machine. We assign each
configuration to a distinct machine, thereby assigning large jobs integrally tomachines
and small jobs fractionally. In the randomized algorithm, we assign the small jobs
according to the probabilities obtained from theMILP and redistribute the small jobs
on the overloaded machines over the other machines in such a way that no machine is
overloaded. In the deterministic algorithm, we derandomize this step by assigning the

123

Algorithmica

small jobs integrally to machines in a greedy manner guided by a potential function
that tracks the aggregate overload on the machines. Finally, we distribute this overload
evenly over all machines ensuring the final loads of all machines is at most 1 + ε.

Linear time algorithm

1. Preprocess the instance.
2. Solve the MILP, and assign big jobs according to this solution.
3. Assign small jobs to machines randomly according to the probabilities obtained

from the MILP solution.
4. Remove small jobs from the overloaded machines and evenly distribute them

over all machines.

4.1 Preprocessing

The preprocessing uses the same ideas used before in the design of approximation
schemes. Typically, it is much easier to work with a few distinct jobs as we will see
in the formulation of our mixed-integer linear program.

Preprocessing

1. Round each coordinate of every job down to the nearest power of (1+ ε) times
ε4/d2 (Lemma 5).

2. Set coordinates of jobs that are small in comparison to the biggest coordinate
to zero (Lemma 6).

The first step is to round all coordinates of each job down to the nearest power of
(1 + ε) times a small polynomial in ε and 1/d.

Lemma 5 ([5]) Given a set V of jobs and ε > 0, let W be a modified (multi)set of V
where we replace each job v in V with a job w as follows:

w j :=
{

ε4/d2 · (1 + ε)k if ∃k ∈ N : ε4/d2 · (1 + ε)k ≤ v j < ε4/d2 · (1 + ε)k+1,

0 otherwise.

Then, for any subset of jobs V ′ ⊆ V with corresponding subset W ′ ⊆ W , we have∑
v∈V ′ v ≤ (1 + ε)

∑
w∈W ′ w.

Next, we ensure that the non-zero values of coordinates of a job are not too small
compared to the largest coordinate of a job.

Lemma 6 ([5]) Given a set V of jobs and η > 0, let W be a modified (multi)set of V
where we replace each job v in V with a job w as follows:

123

Algorithmica

w j :=
{
0 if v j < η ‖v‖∞ ,

v j otherwise.

Then, for any subset of jobs V ′ ⊆ V with corresponding subset W ′ ⊆ W, we have∑
v∈V ′ v ≤ ∑

w∈W ′ w + (
η

∑
w∈W ′ ‖w‖∞

)
1.

The following lemma states that the error due to the preprocessing of any schedule
is small, and follows from the previous lemmata, setting η := ε/d.

Lemma 7 Let ε > 0, let V be the original set of jobs and W be the (multi)set of jobs
preprocessed by Lemmata 5 and 6. Then for any w ∈ W and coordinate j ∈ [d],
– if w j �= 0 then there exists a k ∈ N such that w j = ε4/d2 · (1 + ε)k ,
– if w j �= 0 then w j/‖w‖∞ ≥ ε/d.

Moreover, for any subset of jobs V ′ ⊂ V such that
∑

v∈V ′ v ≤ 1 with corresponding
modified subset W ′ ⊆ W, we have

∑
w∈W ′ w ≤ ∑

v∈V ′ v ≤ (1 + ε)
∑

w∈W ′ w + ε1.

From now on, by job we mean the job preprocessed by Lemma 7.

4.2 The Mixed-Integer Linear Program

In this subsection we describe our mixed-integer linear program and how to solve it
fast. We distinguish between small and big jobs and treat them differently. A job p is
small if ‖p‖∞ < ε3/d and otherwise the job is big.

As all non-zero coordinates are at most a factor d/ε apart by Lemma 7, the smallest
possible coordinate of any big job is ε4/d2. Let Tbig be the set of all types of big
jobs, Tbig := {0, ε4/d2, (1 + ε)ε4/d2, (1 + ε)2ε4/d2, . . . , 1}d . A big job p has type
t ∈ Tbig if and only ifp = t. Every big job has a corresponding type, since the rounding
procedure rounded these jobs to exactly these values.

Similarly, we define a set Tsmall of all types of small jobs. We define the type of a
small job based on its relative size in each coordinate, that is, a small job p has type
t = (t1, . . . , td) ∈ Tsmall if and only if p j/ ‖p‖∞ = t j for all coordinates j ∈ [d].
As the smallest non-zero coordinate in p/ ‖p‖∞ is at least ε/d, we define Tsmall :=
{0, (1 + ε)−�, (1 + ε)−�+1, . . . , (1 + ε)−1, 1}d , where � := ⌈

log(1+ε)(d/ε)
⌉
is such

that (1+ε)−� is the smallest power of 1+ε that is at least ε/d. Note that each small job
has exactly one type in Tsmall and that there are at most T := ⌈

4 log(1+ε)(d/ε) + 2
⌉d

types of big and small jobs.
Themixed-integer linear programming has a variable for every configuration,which

is a collection of big jobs together with available space for small jobs. We will call
the (rounded) space for small jobs a profile, which is a vector from F := {0, ε, (1 +
ε)ε, (1+ε)2ε, . . . , 1}d . A configuration C is a tupleC = (B, f), where B is a multiset
of rounded processing times of big jobs and f is a profile for small jobs such that the
big jobs and the profile fit together on one machine, exceeding the maximum load

by only a little, i.e.
(∑

p∈B p j

)
+ f j ≤ (1 + ε) for all coordinates j . As each big

job has a coordinate of at least ε3/d, there can be no more than d2/ε3 big jobs on

123

Algorithmica

a machine. As there are at most T types of big jobs, we know that there are at most
N ≤ T

⌈
d2/ε3

⌉
· T different configurations.

We now describe our mixed-integer linear program. Let C be the set of all config-
urations and let xC denote the number of machines that have jobs assigned to them
according to configuration C ∈ C. Let n(C, t) denote the number of big jobs of type
t in configuration C , and let n(t) denote the total number of big jobs of type t in the
instance. Denote the set of small jobs of type t assigned to configurations having pro-
file f by J (f, t), and let the variables yf,t = ∑

p∈J (f,t) ‖p‖∞ denote the sum of their
largest coordinates, their amount. Let a(t) := ∑

p:p is of small type t ‖p‖∞ denote the
total amount of small jobs of type t in the instance. Consider the following program.

min
∑

C∈C
xC (MILP)

s.t.
∑

C∈C
xC · n(C, t) ≥ n(t) ∀t ∈ Tbig (C1)

∑

f∈F
yf,t ≥ a(t) ∀t ∈ Tsmall (C2)

∑

t∈Tsmall

yf,t · ti/ ‖t‖∞ ≤ fi ·
∑

C :C=(B,f)

xC ∀i ∈ [d], f ∈ F (C3)

x ∈ Z
C

y, x ≥ 0

The first and second constraint ensure that the big and the small jobs are covered
integrally (respectively fractionally). The third constraint ensures that small jobs fit in
the machine profiles, as it requires that for each profile f , the cumulative amount of
small jobs of type t that are assigned to f is at most the total amount of f . These are
valid constraints for any feasible solution.

Lemma 8 Anoptimal solution toMILP canbe found in time O
(
exp

(
(1/ε)O(d log log d)

)

· log(nd)) .

Proof First, we bound the number of choices for non-zero integer variables. To do
that, suppose that there is a finite solution and suppose that the continuous variables
yf,t are fixed: this allows us to disregard constraints (C2), only containing contin-
uous variables. Then introduce slack variables such that all constraints are equality
constraints and the MILP matches the form of Theorem 6. For the application of this
theorem we can disregard the non-negativity constraints [6]. Thus, we are left with
at most |Tbig| + d|F | ≤ (d + 1)T constraints. The largest size of the coefficients
are the constants n(C, t), ti , ‖t‖∞ and fi , all of which require at most d2/ε3 bits
to describe. By Theorem 6 there is an optimal solution such that there are at most
2 ((d + 1)T + 1)

(
log ((d + 1)T + 1) + d2/ε3 + 2

)
non-zero integer variables. As

123

Algorithmica

log((d + 1)T + 1) = log
(
(d + 1)

⌈
4 log(1+ε)(d/ε) + 2

⌉d + 1
)

≤ d log
(
4 log(1+ε)(d/ε)

) ≤ d2/ε3,

the number of non-zero integer variables is at most

2 ((d + 1)T + 1)
(
2d2/ε3 + 2

)
= 4

((
(d3 + d2)/ε3 + d + 1

)
T + d2/ε3 + 1

)

≤ 8
((

d3/ε3 + d
)
T + d2/ε3

)
≤ 16Td3/ε3.

Therefore, we can bound the number of choices for non-zero variables by

N 16Td3/ε3 ≤
(
T d2/ε3+2

)16Td3/ε3 = 2(d2/ε3+2)16T log Td3/ε3 .

Using that T log T ≤ T 2 and plugging in the definition of T , we bound this by

2(16d6/ε6)T 2 = exp
(
16d6/ε6

⌈
3 log(1+ε)(d/ε) + 2

⌉2d)
.

As the first part is (1/ε)O(log(d)) and the second part is (1/ε)O(d log log d), the number
of choices for non-zero variables is at most exp

(
(1/ε)O(d log log d)

)
.

Now we ‘guess’ the non-zero variables by enumerating all possible choices, and
solve theMILP for only those variables. Since there are atmost 16Td3/ε3 variables, by

Theorem 5 solving theMILP takes time O
(
(16Td3/ε3)40Td

3/ε3 · s
)
, where s denotes

themaximum length of the binary encoding of themixed-integer linear program.Using
the same rewriting as above, we can rewrite this to O

(
exp

(
(1/ε)O(d log log d)

) · s). As
the mixed-integer linear program can be described using s = T N log(nd) bits, the
proof is complete. ��

4.3 Randomized Algorithm

In this subsection we sketch step 3 and 4 of the algorithm, the integral assignment of
small jobs to machines using the solution toMILP.

For step 3, recall that yf,t is the amount of small jobs of type t that are assigned to
profile f . For each small job type t, let β(f, t) denote the fraction of type t assigned to
profile f :

β(f, t) := yf,t∑
g∈F yg,t

.

For each small job p of type t, pick a profile f randomly with probability βf,t and
then pick a machine uniformly at random among the ones with profile f . Assign job p
to this machine.

For step 4, we call a machine with profile f overloaded if the load of small jobs
exceeds f+ε ·1 in some coordinate.We take all the small jobs on overloadedmachines

123

Algorithmica

and distribute them among all machines using a linear time simple sequential assign-
ment. We will prove that the probability that the load on a machine in a coordinate
exceeds the profile bymore than ε is exponentially small. This implies that the expected
overload on each machine is small, hence, the total overload over all the machines is
small.

For the following proofs we fix a machine. Define for each small job p and coordi-
nate j the random variables X j

p with μ
j
p as its mean, which is the contribution of job

p to the j-th coordinate of the machine:

X j
p =

{
p j , if job p is assigned to the machine;
0, otherwise.

For a coordinate j , let X j := ∑
small job p X j

p denote the load of small jobs on the
machine. We need the following Bernstein’s inequality.

Theorem 8 Let X1, . . . , Xn be independent random variables with E[Xi] = μi and
|Xi − μi | ≤ M for all i . Let μ = ∑

i E[Xi] and σ 2
i = E[(Xi − μi)

2]. Then for any
t > 0, it holds that

Pr

(
∑

i

Xi > μ + t

)

≤ exp

(

− t2/2
(∑

i σ
2
i

) + Mt/3

)

.

We first show that the probability that the load of small jobs exceeds the profile in
a coordinate is small.

Lemma 9 For any machine with profile f and 0 < ε < 1 we have

Pr [X j ≥ f j + ε] ≤ e−ε2/4δ for all coordinates j ∈ [d],

where δ is the maximum coordinate of any small job.

Proof Let m(f) denote the number of machines with profile f . Since a job p of type
t is assigned to this machine with probability β(f, t)/m(f), the expected load on
coordinate j on that machine is

∑

t∈Tsmall

∑

p:p of type t

p j
β(f, t)
m(f)

=
∑

t∈Tsmall

∑

p:p of type t

p j
yf,t

m(f)(
∑

g∈F yg,t)
.

Recall that f j is the space available for small jobs in coordinate j of profile f and that
a(t) is the amount of small jobs of type t. Therefore,

∑
p:p of type t p j = a(t)t j/‖t‖∞,

and hence the expected load is at most

∑

t∈Tsmall

a(t)yf,tt j
‖t‖∞m(f)

∑
g∈F yg,t

≤
∑

t∈Tsmall

t j yf,t
‖t‖∞m(f)

≤ f j .

123

Algorithmica

Both inequalities follow from the MILP constraints: the first follows as
∑

f∈F yf,t ≥
a(t) and the second follows as

∑
t∈Tsmall

yf,tt j/‖t‖∞ ≤ m(f) f j .
We now apply Bernstein’s inequality to our setting. We have that

(σ
j
p)2 := E[(X j

p − μ
j
p)

2]

=
(
p j − p j

β(f, t)
m(f)

)2
β(f, t)
m(f)

+
(
0 − p j

β(f, t)
m(f)

)2 (
1 − β(f, t)

m(f)

)

= p2j

(
1 − β(f, t)

m(f)

)
β(f, t)
m(f)

≤ (p j)
2 β(f, t)

mf
.

Thus,
∑

small job p

(σ
j
p)2 ≤

(
max

small job p
p j

) ∑

small job p

β(f, t)
m(f)

p j ≤ δ f j ≤ δ.

Moreover |X j
p − μ

j
p| ≤ δ, so choose M = δ. Then

Pr
[
X j > f j + x

] ≤ exp

(−x2/2

δ + δx/3

)
.

For x ≤ 3, we bound this by exp(−x2/(4δ)). For x ≥ 3, we bound this by

exp

(
− x2/2

2δx/3

)
= exp(−3x/4δ).

So, for any ε ≤ 1, Pr [X j ≥ f j + ε] ≤ e−ε2/4δ . ��

We now bound E[X j |X j ≥ f j + ε]Pr [X j ≥ f j + ε], i.e. the average load on
overloaded machines.

Lemma 10 For any machine with profile f and 0 < ε < 1/5 we have

E[X j |X j ≥ f j + ε]Pr [X j ≥ f j + ε] ≤ 2ε3/d3 for all coordinates j.

Proof Recall that for any non-negative random variable Y with finite mean,

E[Y] =
∫ ∞

0
Pr [Y ≥ y]dy.

This implies that

E[Y |(Y > t)] = t + 1

Pr [Y ≥ t]
∫ ∞

y=0
Pr [Y ≥ t + y]dy.

123

Algorithmica

Applying this to our setting, we get

E[X j |X j ≥ (f j + ε)]Pr [X j ≥ f j + ε]
≤ (f j + ε)Pr [X j ≥ f j + ε] +

∫ ∞

x=0
Pr [X j > fi + ε + x]dx .

As fi ≤ 1 and by the proof of Lemma 9, this is at most

(1 + ε)Pr [X j ≥ fi + ε] +
∫ 3

ε

exp(−x2/4δ)dx +
∫ ∞

3
exp(−3x/4δ)dx, (1)

where δ := maxp:p small job |p‖∞ is the maximum coordinate of any small job.
The last term is (4δ/3) exp(−9/4δ). The second term can be upper bounded by∫ ∞
ε

exp(−x2/4δ)dx . Let f (x) = 1√
2π

exp(−x2/2) denote the pdf of the standard

gaussian N (0, 1). Let
(x) = ∫ ∞
x f (y)dy. Using that
(x) ≤ f (x)/x for any x > 0,

it follows that
∫ ∞

ε

exp(−x2/4δ)dx = √
2δ

∫ ∞

ε/
√
2δ
e−y2/2dy ≤ (2δ

√
2π/ε) exp(−ε2/4δ).

We plug this in Eq. (1), bounding δ by ε2/(4 ln(d/ε)), which is larger than ε3/d if
d/ε ≥ 9. As d ≥ 2 and ε < 1/5 this is a valid upper bound for all small jobs. This
yields that the total expected load on overloaded machines is at most

(
1 + ε + 2δ

√
2π/ε

)
exp(−ε2/4δ) + (4δ/3) exp(−9/4δ)

=
(

1 + ε + ε
√
2π

2 ln(d/ε)

)

ε/d + ε2

3 ln(d/ε)
(ε/d)9/ε

2
.

This is at most 2ε/d. ��
We can now prove the following theorem.

Theorem 9 There is an algorithm that runs in O
(
2(1/ε)O(d log log d) + nd

)
time and

finds a schedule such that the load on each machine is at most 1 + ε with high
probability.

Proof Let ε′ := ε/9. First we prove the approximation ratio. For an overloaded
machine k, let Lk be the sum of the �1-norm of all small jobs assigned to k, and let L
be the sum of the �1-norm of all small jobs on all overloaded machines. By Lemma
10 we know that E[Lk] ≤ 2ε′ for all machines k and thus, by linearity of expectation,
E[L] ≤ 2mε′. Therefore Pr [L > 4mε′] < 1/2 by Markov’s inequality. (One can
prove the Lk variables are negatively associated, and therefore by standard Chernoff-
Hoeffding bounds the probability of having at least total overload t is exponentially
small for any t > 0.)Remove all small jobs assigned from the overloadedmachines and
order them arbitrarily. Greedily group them together until the �1-norm exceeds 4ε′ and

123

Algorithmica

then start a new group. Every group has size at most 4ε′ + δ. Now assign every group
to a non-overloaded machine. The small jobs on the overloaded machines have now
been redistributed such that the extra load on every machine is in expectation at most
the average plus the largest small job size, i.e. 4ε′ + δ ≤ 4ε′ + ε′3/d ≤ 5ε′. All other
machines exceeded their profile in each coordinate by at most ε′. Additionally, from
the mixed-integer linear programwe lost another ε′ since we only required that the big
jobs and the profile add up to atmost 1+ε′. This gives a total of 7ε′ on the preprocessed
instance and factoring in the preprocessing we get (1 + ε′)(7ε′) + ε′ ≤ 9ε′ = ε.

The preprocessing and randomized rounding steps can be implemented in O(nd)

time. To bound the time of solving the mixed-integer linear program, we use the
fact that ab ≤ a2 + b2. Choosing a = 2(1/ε′)O(d log log d)

and b = log(nd), we get

O
(
2(1/ε′)O(d log log d)

log(nd)
)

≤ O
(
22(1/ε

′)O(d log log d) + log2(nd)
)
, so the total running

time is at most O
(
2(1/ε′)O(d log log d) + nd

)
. ��

By simply repeating the rounding and grouping step until a solution is found, we get
an O(nd) time algorithm for assigning small jobs that returns a (1+ε)-approximation
with high probability.

4.4 Deterministic Algorithm

Recall that the MILP only gives an assignment of small job types to profiles, while
we need an assignment of individual jobs to machines for a deterministic algorithm.
This can be done in three steps using standard techniques. First, small job types are
assigned integrally to profiles. Then, using a pessimistic estimator, small jobs are
integrally assigned to machines having a fixed profile. Finally, a direct calculation
shows that the the total load on overloaded machines is at most O(εm/d), so the small
jobs from these machines can be redistributed over all machines in a round-robin
fashion without increasing the loads too much.

From this and Theorem 9, we have our main theorem.

Theorem 4 For any ε > 0 and d ≥ 1, there is a deterministic (1 + ε)-
approximation algorithm for d-dimensional Vector scheduling that runs in time

O
(
2(1/ε)O(d log log d) + nd

)
.

Acknowledgments The first author is supported by the NWOVIDI Grant 639.022.211 and the ERC con-
solidator Grant 617951. The authors thank Vincent Kreuzen, Veerle Timmermans and Andrej Winokurow
for their helpful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel
machines. J. Sched. 1, 55–66 (1998)

2. Bansal, N., Vredeveld, T., van der Zwaan, R.: Approximating vector scheduling: almostmatching upper
and lower bounds. In: Proceedings of 11th Latin American Symposium on Theoretical Informatics of
Theoretical Computer Science and General Issues, vol. 8392, pp. 47–59. Springer, Berlin Heidelberg
(2014)

3. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types. CoRR, abs/1205.0974,
(2012)

4. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause density for SAT.
In IEEE conference on computational complexity, pp. 252–260. IEEE computer society, (2006)

5. Chekuri, C., Khanna, S.: On multidimensional packing problems. Soc. Ind. Appl. Math. J. Comput.
33(4), 837–851 (2004)

6. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34(5), 564–568
(2006)

7. Epstein, L., Tassa, T.: Vector assignment problems: a general framework. J. Algorithm 48(2), 360–384
(2003)

8. Epstein, L., Tassa, T.: Vector assignment schemes for asymmetric settings. Acta Inform. 42(6–7),
501–514 (2006)

9. Frank, A., Tardos, E.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7, 49–65 (1987)

10. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York (1979)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: the-
oretical and practical results. J. Assoc. Comput. Mach. 34(1), 144–162 (1987)

12. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation approach. Soc. Ind. Appl. Math. J. Comput. 17(3), 539–551
(1988)

13. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-
put. Syst. Sci. 63(4), 512–530 (2001)

14. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a
constant number of integral variables. Soc. Ind. Appl. Math. J. Discret. Math. 24(2), 457–485 (2010)

15. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

16. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing
problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science. SFCS
’82, pp. 312–320. IEEE Computer Society, Washington, DC (1982)

17. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548
(1983)

18. Meyerson, A., Roytman, A., Tagiku, B.: Online multidimensional load balancing. In: Raghavendra,
P., Raskhodnikova, S., Jansen, K., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, volume 8096 of Lecture Notes in Computer Science, pp.
287–302. Springer, Berlin Heidelberg (2013)

19. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4, 133–157 (1994)
20. Rothvoss, T.: Approximating bin packing within O(log OPT * Log Log OPT) bins. In: IEEE 54th

Annual Symposium on Foundations of Computer Science, pp. 20–29. IEEE, Berkeley, CA (2013)

123

	Approximating Vector Scheduling: Almost Matching Upper and Lower Bounds
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution
	1.2.1 Techniques
	1.2.2 Organization

	2 Preliminaries
	3 Lower Bounds on the Running Time
	3.1 Lower Bound Assuming the ETH
	3.1.1 The Construction
	3.1.2 The Formal Reduction
	3.1.3 Proof of the Reduction

	3.2 Lower Bound Assuming NP has no Subexponential Time Algorithms
	3.3 Lower Bound with Resource Augmentation

	4 Linear Time Approximation Algorithm
	4.1 Preprocessing
	4.2 The Mixed-Integer Linear Program
	4.3 Randomized Algorithm
	4.4 Deterministic Algorithm

	Acknowledgments
	References

