Skip to main content

A Divide and Conquer Method to Compute Binomial Ideals

  • Conference paper
  • 1155 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Abstract

A binomial is a polynomial with at most two terms. In this paper, we give a divide-and-conquer strategy to compute binomial ideals. This work is a generalization of the work done by the authors in [12,13] and is motivated by the fact that any algorithm to compute binomial ideals spends a significant amount of time computing Gröbner basis and that Gröbner basis computation is very sensitive to the number of variables in the ring. The divide and conquer strategy breaks the problem into subproblems in rings of lesser number of variables than the original ring. We apply the framework on five problems – radical, saturation, cellular decomposition, minimal primes of binomial ideals, and computing a generating set of a toric ideal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigatti, A.M., Scala, R., Robbiano, L.: Computing toric ideals. J. Symb. Comput. 27(4), 351–365 (1999)

    Article  MATH  Google Scholar 

  2. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bull. 10(3), 19–29 (1976)

    Article  MathSciNet  Google Scholar 

  3. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, vol. 539, pp. 130–139. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  4. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag New York, Inc., Secaucus (2007)

    Google Scholar 

  5. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry. Springer, New York (1995)

    MATH  Google Scholar 

  6. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Mathematical Journal 84(1), 1–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

    Google Scholar 

  8. Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models. The Annals of Statistics 34(3), 1463–1492 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilmer, R.: Commutative semigroup rings. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  10. Hemmecke, R., Malkin, P.N.: Computing generating sets of lattice ideals and Markov bases of lattices. Journal of Symbolic Computation 44(10), 1463–1476 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hosten, S., Sturmfels, B.: Grin: An implementation of Gröbner bases for integer programming. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  12. Kesh, D., Mehta, S.K.: Generalized Reduction to Compute Toric Ideals. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 483–492. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Kesh, D., Mehta, S.K.: A Saturation Algorithm for Homogeneous Binomial Ideals. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 357–371. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society (December 1995)

    Google Scholar 

  15. Tayur, S.R., Thomas, R.R., Natraj, N.R.: An algebraic geometry algorithm for scheduling in the presence of setups and correlated demands. Mathematical Programming 69(3), 369–401 (1995), citeseer.ist.psu.edu/tayur94algebraic.html

    MATH  MathSciNet  Google Scholar 

  16. Thomas, R., Weismantel, R.: Truncated Gröbner bases for integer programming. Applicable Algebra in Engineering, Communication and Computing 8(4), 241–256 (1997), dx.doi.org/10.1007/s002000050062

    Google Scholar 

  17. Thomas, R.R.: A Geometric Buchberger Algorithm for Integer Programming. Mathematics of Operations Research 20, 864–884 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Urbaniak, R., Weismantel, R., Ziegler, G.M.: A variant of the Buchberger algorithm for integer programming. SIAM J. Discret. Math. 10(1), 96–108 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kesh, D., Mehta, S.K. (2014). A Divide and Conquer Method to Compute Binomial Ideals. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics