
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://link.springer.com/chapter/10.1007/978-3-642-54423-1_58

DOI: 10.1007/978-3-642-54423-1_58

Direitos autorais / Publisher's copyright statement:

©2014 by Springer. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

http://www.repositorio.unicamp.br/

Sorting Permutations by Prefix and Suffix

Versions of Reversals and Transpositions

Carla Negri Lintzmayer and Zanoni Dias

Institute of Computing, University of Campinas (Unicamp), Brazil
{carlanl,zanoni}@ic.unicamp.br

Abstract. Reversals and transpositions are the most common kinds of
genome rearrangements, which allow us to establish the divergence be-
tween individuals along evolution. When the rearrangements affect seg-
ments from the beginning or from the end of the genome, we say they
are prefix or suffix rearrangements, respectively. This paper presents the
first approximation algorithms for the problems of Sorting by Prefix Re-
versals and Suffix Reversals, Sorting by Prefix Transpositions and Suffix
Transpositions and Sorting by Prefix Reversals, Prefix Transpositions,
Suffix Reversals and Suffix Transpositions, all of them with factor 2. We
also present the intermediary algorithms that lead us to the main results.

1 Introduction

We assume that the evolution distance between two individuals is given by the
minimum number of rearrangements needed to transform one genome into an-
other. If we represent them as permutations and assume that one is the identity,
the problem is to find the minimum number of operations that sort the other.

The problems of Sorting by Reversals and Sorting by Transpositions (the most
common rearrangements) are well studied, so that their best-known algorithms
have approximation factor 1.375 [3,8]. In addition, both are NP-hard [6,5].

When rearrangements affect segments from the beginning of the genome they
are prefix rearrangements. For Sorting by Prefix Reversals and for Sorting by
Prefix Transpositions, the best-known algorithms have approximation factor
of 2 [9,7]. The former was proved to be NP-hard [4] while the latter remains an
open problem. Sharmin et al. [11] considered a variation in which prefix reversals
and prefix transpositions were allowed and gave a 3-approximation algorithm.

In addition to rearrangements restricted to the prefix of a permutation, it is
also possible to consider their suffix version. It is reasonable to believe that it
is easier to break a genome at one point than at two or more. Besides, if this
happens, either the first or the second part could be reversed; thus, characterizing
the prefix/suffix reversals. The same analogy can be used for the prefix/suffix
transpositions since it would require breaking a genome at two points, which can
be more difficult, but it is still easier than at three points, as a transposition
would. However, notice that if a problem involves only prefix rearrangements,
there is no need to study a problem that allows only the suffix versions of the

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 671–682, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

672 C.N. Lintzmayer and Z. Dias

same rearrangements, since they are equivalent. Hence, this paper will study
problems of sorting permutations by reversals and transpositions involving both
prefix and suffix versions of them. Note that there are no records of a similar
study in the literature.

The paper is divided as follows: Section 2 presents important definitions re-
lated to our problems. Section 3 describes the algorithms developed. Section 4
shows the results. Finally, Section 5 concludes and suggests future work.

2 Definitions

Given a permutation Θ = (Θ1 Θ2 . . . Θn), the identity permutation ι = (1 2 . . . n)
and the reverse permutation Δ = (n . . . 2 1), we introduce now some concepts
important to this paper and to the Genome Rearrangements area.

A composition between two permutations Θ and Γ is the operation “·” in
which Θ ·Γ = (ΘΔ1 ΘΔ2 . . . ΘΔn). The inverse permutation of Θ is Θ−1, in which
Θ−1Σi

= i, for 1 ⊕ i ⊕ n, and it satisfies Θ · Θ−1 = ι.
We extend Θ by setting Θ0 = 0 and Θn+1 = n + 1. We can now define some

important concepts related to permutations.
A reversal Ψ(i, j), 1⊕ i < j ⊕ n, is a rearrangement that transforms Θ into

Θ·Ψ(i, j)=(Θ1 ... Θi−1 Θj Θj−1 ... Θi+1 Θi Θj+1 ... Θn). A prefix reversal Ψp(j) is

a reversal Ψ(1, j), 1<j⊕n, while a suffix reversal Ψs(i) is Ψ(i, n), 1⊕ i<n.
A transposition Π(i, j, k), 1⊕i<j<k⊕n+1, is a rearrangement that transforms

Θ into Θ · Π(i, j, k) = (Θ1 ... Θi−1 Θj Θj+1 ... Θk−1 Θi Θi+1 ... Θj−1 Θk ... Θn). A

prefix transposition Πp(j, k) is a transposition Π(1, j, k), 2 ⊕ j < k ⊕ n+1,
while a suffix transposition Πs(i, j) is a transposition Π(i, j, n+1), 1⊕ i<j⊕n.

If a problem involves some kind of reversal, a breakpoint exists between a pair
of consecutive elements Θi and Θi+1 if |Θi+1−Θi| ≤=1. For both Sorting by Prefix
Reversals (Sbpr) and Sorting by Prefix Reversals and Prefix Transpositions
(Sbprpt), 1⊕ i⊕n and Θ0 and Θ1 never form a breakpoint. For both Sorting by
Suffix Reversals (Sbsr) and Sorting by Suffix Reversals and Suffix Transpositions
(Sbsrst), 0 ⊕ i ⊕ n−1 and Θn and Θn+1 never form a breakpoint. For them,
ι is the unique permutation without breakpoints. For both Sorting by Prefix
Reversals and Suffix Reversals (Sbprsr) and Sorting by Prefix Reversals, Prefix
Transpositions, Suffix Reversals and Suffix Transpositions (Sbprptsrst), 1 ⊕
i⊕n−1 and neither Θ0 and Θ1, nor Θn and Θn+1 form breakpoints. For them, ι
and Δ are the unique permutation without breakpoints.

If a problem involves only some kind(s) of transposition(s), then a breakpoint
exists between a pair of consecutive elements Θi and Θi+1 if Θi+1−Θi ≤= 1. For
Sorting by Prefix Transpositions (Sbpt), 1⊕ i⊕n and Θ0 and Θ1 never form a
breakpoint. For Sorting by Suffix Transpositions (Sbst), 0⊕ i⊕n−1 and Θn and
Θn+1 never form a breakpoint. For Sorting by Prefix Transpositions and Suffix
Transpositions (Sbptst), 1⊕ i⊕n−1 and neither Θ0 and Θ1, nor Θn and Θn+1

form breakpoints. For them, ι is the unique permutation without breakpoints.
Given a set Σ of rearrangements allowed in a sorting problem, we denote

the number of breakpoints of a permutation by bΛ(Θ). If there is no breakpoint

Sorting Permutations by Prefix and Suffix Versions 673

between two elements, we say there is an adjacency between them. The sorting
distance of a permutation Θ, denoted by dΛ(Θ), is defined as the minimum
number of operations in Σ needed to transform Θ into ι. Since the identity has the
smallest number of breakpoints and it is (usually) the only one with this feature,
we can say that sorting Θ is equivalent to reducing its number of breakpoints.
This allows us to establish lower bounds for rearrangement distances.

For Sbr, it was proved [1] that dδ(Θ) ≥ ⊗bδ(Θ)/2∈. For Sbpr, dδp(Θ) ≥ bδp(Θ),
as demonstrated by Fischer and Ginzinger [9]. For Sbt [2], dΘ (Θ) ≥ ⊗bΘ (Θ)/3∈.
For Sbpt, Dias and Meidanis [7] showed that dΘp(Θ) ≥ ⌈

bΘp(Θ)/2
⌉
. For Sbprpt,

Sharmin et al. showed that dδpΘp(Θ) ≥ ⌈
bδpΘp(Θ)/2

⌉
.

Since the other problems were yet to be considered in the literature, we now
define their trivial lower bounds. Because of the equivalences, for Sbsr, dδs(Θ) ≥
bδs(Θ), for Sbst, dΘs(Θ) ≥ ⊗bΘs(Θ)/2∈, and for Sbsrst, dδsΘs(Θ) ≥ ⊗bδsΘs(Θ)/2∈.
Theorem 1. For an arbitrary permutation Θ, dδpδs(Θ) ≥ bδpδs(Θ), dΘpΘs(Θ) ≥⌈
bΘpΘs(Θ)/2

⌉
, and dδpΘpδsΘs(Θ) ≥ ⌈

bδpΘpδsΘs(Θ)/2
⌉
.

A strip is a subsequence Θi, . . . , Θj of Θ, with 1 ⊕ i ⊕ j ⊕ n, such that (i) either
i = 1 or Θi−1 and Θi form a breakpoint; (ii) either j = n or Θj and Θj+1 form
a breakpoint; and (iii) the other elements of the subsequence form adjacencies.
A strip of length greater or equal to two is ascending if Θk = Θk+1 − 1 for all
i ⊕ k < j. It is descending if Θk = Θk+1 + 1. Otherwise, it is a singleton.

A breakpoint graph [1] of a permutation Θ is a graphG(Θ)=(V,E) in which
V ={Θ0, Θ1, . . . , Θn+1} and E contains black edges and gray edges. A black edge e
exists if and only if (i) e=(Θi, Θi+1) and Θi and Θi+1 form a breakpoint, 0⊕ i⊕n;
(ii) e= (Θ0, Θ1) and prefix operations are involved; and (iii) e= (Θn, Θn+1) and
suffix operations are involved. A gray edge e exists if and only if e=(Θi, Θj) for
some 0⊕ i < j ⊕ n+1 with Θj = Θi±1 and j ≤= i+1. The convention is to draw
black edges as straight lines and gray edges as dashed arcs.

Let (Θi, Θj) be a gray edge. Since Θj = Θi±1, at least one black edge either
begins or ends at Θi as well as at least one black edge either begins or ends at Θj .
Hence, we can classify such edge into at least one of the four types in Fig. 1.

Fig. 1. Classification of gray edges

3 Algorithms

The following subsections describe the algorithms that we have developed, in
addition to some of the existing algorithms related to ours.

674 C.N. Lintzmayer and Z. Dias

3.1 Algorithms for Sbprsr

Fischer and Ginzinger [9] published the first 2-approximation algorithm (and
the best so far) for Sbpr, which we will call 2-PR. They used the breakpoint
graph and defined requirements for each type of gray edge. Based on that, it
is possible to establish what to do when considering not only prefix reversals,
but also suffix reversals. Lemma 1 shows what we called good edges: edges for
which is possible to remove one breakpoint with one or two reversals. 2-PR only
deals with good prefix edges, that is, items 1, 3, 5, and 7 of Lemma 1 without
the constraints over j.

Lemma 1. Let Θ be an arbitrary permutation. There is a sequence of at most
two prefix reversals or suffix reversals that removes one breakpoint if G(Θ) con-
tains at least one gray edge (Θi, Θj): (1) of type 1 with i= 1 and j ⊕ n; (2) of
type 2 with j=n and i≥1; (3) of type 3 with i=1 and j⊕n; (4) of type 3 with
j=n and i≥ 1; (5) of type 2 with i ≤= 0 and j⊕n; (6) of type 1 with j ≤=n + 1
and i≥1; (7) of type 3 with i>1 and j⊕n; (8) of type 3 with j<n and i≥1.

Proof. If (Θi, Θj) is a gray edge, then Θj = Θi±1. To create an adjacency between
Θi and Θj without creating new breakpoints one must perform, for each type of
edge: (1) one prefix reversal Ψp(j − 1); (2) one suffix reversal Ψs(i + 1); (3) one
prefix reversal Ψp(j− 1); (4) one suffix reversal Ψs(i+ 1); (5) two prefix reversals
Ψp(j) and Ψp(j − i); (6) two suffix reversals Ψs(i) and Ψs(n+ 1− (j− i)); (7) two
prefix reversals Ψp(i) and Ψp(j−1); (8) two suffix reversals Ψs(j) and Ψs(i+1). ∗≥
If a permutation Θ does not contain good prefix edges, then it is of the form
Θ = (p1 . . . 1

︸ ︷︷ ︸
�1

p2 . . . p1+1
︸ ︷︷ ︸

�2

. t . . . pbρp (Σ)−1+1
︸ ︷︷ ︸

�bρp (π)

t+1 t+2 . . . n) with t ⊕ n,

that is, Θ consists in bδp(Θ) ≥ 2 decreasing strips of size Λi ≥ 2, 1 ⊕ i ⊕ bδp(Θ) [9].
The following 2bδp(Θ) prefix reversals transforms Θ into ι: Ψp(t) ·Ψp(t−Λ1) ·Ψp(t) ·
Ψp(t− Λ2) · . . . · Ψp(t) · Ψp(t− Λbρp (Σ)).

2-PR scans Θ from left to right trying to find a good prefix edge in G(Θ) in the
order that the four appear in Lemma 1. If a good prefix edge does not exist, the
algorithm applies the sequence given above, guaranteeing that dδp(Θ) ⊕ 2bδp(Θ).
Using the lower bound, we can see that it is indeed a 2-approximation algorithm.

By searching for a good prefix edge from right to left on a permutation, we
created a new algorithm, 2-PRg. Other than that, it works exactly as 2-PR. Then
we simply modified 2-PR and 2-PRg for Sbsr and called the new algorithms 2-SR
and 2-SRg, respectively. They only deal with the gray edges presented in items 2,
4, 6, and 8 of Lemma 1 without the constraints over i, called good suffix edges.

Finally, we created two algorithms for Sbprsr, which will be called 2-PRSR

and 2-PRSRg, respectively. Both of them search for any of the eight good edges
given by Lemma 1, in that order. The only difference between them is how to
scan the permutation: 2-PRSR searches for good prefix edges from right to left
and for good suffix edges from left to right and 2-PRSRg does the opposite.

When a permutation does not contain a good edge, it is of one of the forms
shown by Lemma 2. Now, we can transform it into ι with at most bδpδs(Θ) + 2

Sorting Permutations by Prefix and Suffix Versions 675

reversals, as Lemma 3 shows. Despite this, 2-PRSR and 2-PRSRg still use 2 oper-
ations to eliminate one breakpoint sometimes, leading to either the identity or
the reverse permutation. Therefore, dδpδs(Θ)⊕2bδpδs(Θ)+1 and both algorithms
have asymptotic approximation factor of 2.

Lemma 2. If a permutation Θ does not contain a good edge, then it is
of one of the three forms: (1) Δ; or (2) Γ1 = (p1 . . . 1

︸ ︷︷ ︸
�1

p2 . . . p1 + 1
︸ ︷︷ ︸

�2

.

n . . . pb + 1
︸ ︷︷ ︸

�b+1

); or (3) Γ2 = (pb + 1 . . . n
︸ ︷︷ ︸

�1

. p1 + 1 . . . p2︸ ︷︷ ︸
�b

1 . . . p1︸ ︷︷ ︸
�b+1

) where

b = bδpδs(Θ) and Λi ≥ 2 for all 1 ⊕ i ⊕ b+ 1.

Proof. Omitted due to space restrictions. ∗≥

Lemma 3. Let Θ be one of the three permutations shown by Lemma 2. If Θ=Δ,
one reversal Ψp(n) sorts Θ. Otherwise, at most bδpδs(Θ)+2 reversals sort Θ.

Proof. Let b = bδpδs(Θ). If Θ = Γ1 and b is an odd number, then the b + 1
reversals Ψs(Λ1 + 1) · Ψp(n − Λ2) · Ψs(Λ3 + 1) · Ψp(n − Λ4) · . . . · Ψs(Λb + 1) ·
Ψp(n − Λb+1) transform Θ into ι, as we show next. Let Θk, 1⊕ k ⊕ b−1

2 , be the
permutation we obtain after applying the first 2k prefix reversals of the sequence
given above: Ψs(Λ1 +1) ·Ψp(n− Λ2) · . . . · Ψs(Λ2k−1 +1) · Ψp(n− Λ2k). We will show
by induction on k that Θk is of the form (p2k+1 . . . p2k + 1

︸ ︷︷ ︸
�2k+1

p2k+2 . . . p2k+1 + 1)
︸ ︷︷ ︸

�2k+2

. n . . . pb + 1
︸ ︷︷ ︸

�b+1

1 2 . . . p2k−2 + 1 . . . p2k−1 p2k−1 + 1 . . . p2k︸ ︷︷ ︸
�1+�2+...�2k

).

It is easy to see that it holds for k = 1. Now, assume that Θk−1 is of the form
given above. Since Θk = Θk−1 · Ψs(Λ2k−1 + 1) · Ψp(n− Λ2k), the result follows. At
the end, ι = Θ(b−1)/2 · Ψs(Λb + 1) · Ψp(n− Λb+1).

If Θ = Γ2 and b is odd, one must apply Ψp(n) to transform it into Γ1 and then
apply the b+ 1 reversals given above.

If Θ = Γ2 and b is an even number, then the b + 1 reversals Ψp(n − Λb+1) ·
Ψs(Λb + 1) · Ψp(n− Λb−1) · Ψs(Λb−2 + 1) · . . . · Ψp(n− Λ3) · Ψs(Λ2 + 1) · Ψp(n− Λ1) sort
Θ. This also can be shown by a similar induction as the one above. If Θ = Γ1

and b is even, one must apply Ψp(n) to transform it into Γ2 and then apply the
reversals given. ∗≥

3.2 Algorithms for Sbptst

Dias and Meidanis [7] presented a 2-approximation algorithm for Sbpt, here
called 2-PT, which always removes one breakpoint with one prefix transposi-
tion. They also demonstrated that there is at most one prefix transposition that
removes two breakpoints at once, which leads to a greedy 2-approximation algo-
rithm for the problem, called 2-PTg [10]: first it tries to remove two breakpoints
and if this is not possible, it removes only one, as 2-PT does. Therefore, both

676 C.N. Lintzmayer and Z. Dias

guarantee that dΘp(Θ)⊕ bΘp(Θ)−1, since the last transposition always removes
two breakpoints [7], and both are 2-approximation algorithms.

It is simple to make suffix versions of both 2-PT and 2-PTg, which we will
call 2-ST and 2-STg, respectively. 2-STg also tries to remove two breakpoints
at once. If this is not possible, then it removes only one, as 2-ST does. So, both
also guarantee that dΘs(Θ) ⊕ bΘs(Θ)− 1.

We created two algorithms for Sbptst, called 2-PTST and 2-PTSTg. The for-
mer always removes one breakpoint at a time, randomly choosing between a
prefix or a suffix transposition to do so. To remove one breakpoint with one
prefix transposition Πp(i+ 1, j), let Θi be the last element of the first strip of an
arbitrary permutation Θ. If Θi = n, then choose j = Θ−1Σ1−1+1. Otherwise, choose

j = Θ−1Σi+1. To remove one breakpoint with one suffix transposition Πs(i+1, j), let

Θj be the first element of the last strip of Θ. If Θj = 1, then choose i = Θ−1Σn+1−1.

Otherwise, choose i = Θ−1Σj−1. The basic idea is to increase the first or last strip
with either their previous or their next element.

2-PTSTg is more interesting, since it tries to remove two breakpoints using
either prefix or suffix. A prefix transposition Πp(i, j) removes two breakpoints
from Θ if j = Θ−1Σ1−1+1, i = Θ−1Σj−1 +1 and 2 ⊕ i < j ⊕ n. It is easy to see that Θ1
determines uniquely j and j determines uniquely i. A suffix transposition Πs(i, j)
removes two breakpoints from Θ if i = Θ−1Σn+1, j = Θ−1Σi−1+1 and 2 ⊕ i < j ⊕ n.
Again, Θn determines uniquely i and i determines uniquely j. If this removal
is not possible, then we have to choose how to remove only one breakpoint as
described above, which is always possible. Therefore, dΘpΘs(Θ)⊕ bΘpΘs(Θ). Also,
note that the last transposition removes only one breakpoint. Hence, 2-PTST

and 2-PTSTg are 2-approximation algorithms.

3.3 Algorithms for Sbprptsrst

Sharmin et al. [11] presented the Sorting by Prefix Reversals and Prefix Transpo-
sitions problem and provided a 3-approximation algorithm, called here 3-PRPT.
It also uses the breakpoint graph to decide which operation to perform and it
is similar to 2-PR; however, the use of a second operation allows the four types
of gray edges to be considered good edges. In addition, they gave an important
concept for their algorithm and for ours, presented in Lemma 4. Now, based
on their work we can define what to do with each type of gray edge while also
considering suffix reversals and suffix transpositions, as Lemma 5 shows.

Lemma 4. [11] Let (Θi, Θj) be a gray edge of type 1. Then there is at least one
black edge (Θk−1, Θk) for some i < k < j, that is called a trapped black edge.

Lemma 5. Let Θ be an arbitrary permutation. There is a sequence of at most
three prefix reversals, prefix transpositions, suffix reversals or suffix transposi-
tions that removes at least one breakpoint if G(Θ) contains at least one gray edge
(Θi, Θj): (1) of type 4 with Θ1 ≤= 1, i = 1, and j ⊕ n; (2) of type 4 with Θn ≤= n,
j = n, and i ≥ 1; (3) of type 1 with Θ1 ≤= 1, i = 1, and j ⊕ n; (4) of type 2
with Θn ≤= n, j = n, and i ≥ 1; (5) of type 3 with Θ1 = 1, i ≥ 1, and j ⊕ n;

Sorting Permutations by Prefix and Suffix Versions 677

(6) of type 3 with Θn = n, i ≥ 1, and j ⊕ n; (7) of type 2 with Θ1 = 1, i ≥ 1,
and j ⊕ n, where Θi is the last element of the first strip of Θ; (8) of type 1 with
Θn = n, i ≥ 1, and j ⊕ n, where Θj is the first element of the last strip of Θ.

Proof. If there is a gray edge (Θi, Θj) then Θj = Θi ± 1. To create an adjacency
between Θi and Θj without creating new breakpoints one must perform, respec-
tively, for each type of edge: (1) one prefix transposition Πp(k, j + 1) where
(Θk−1, Θk) is a trapped black edge, i < k < j; (2) one suffix transposition
Πs(k, j + 1) where (Θk−1, Θk) is a trapped black edge, i < k < j; (3) one prefix
reversal Ψp(j − 1); (4) one suffix reversal Ψs(i + 1); (5) one prefix transposition
Πp(i+ 1, j); (6) one suffix transposition Πs(i+ 1, j); (7) one prefix reversal Ψp(j),
followed by one prefix reversal Ψp(j − i), and by one operation to handle an
edge of type 4 or 1; (8) one suffix reversal Ψs(i), followed by one suffix reversal
Ψs(n+1−(j−i)), and by one operation to handle an edge of type 4 or 2. ∗≥

3-PRPT only deals with the gray edges shown in items 1, 3, 5, and 7 of Lemma 5
without the constraints over j, also called good prefix edges. It scans G(Θ) from
left to right to find its first good prefix edge, it decides its type (in the order
that the four appear in the lemma), in addition to performing the required
operation(s). Thus, it guarantees that dδpΘp(Θ) ⊕ 3bδpΘp(Θ)/2, which, using the
lower bound, proves that it has an approximation factor of 3.

As explained, if a good prefix edge is of types 3 or 4, the algorithm applies one
prefix transposition. However, since a prefix transposition can remove at most 2
breakpoints, we developed a greedy version, which we will call 3-PRPTg, whose
features are: (i) it scans the permutation from right to left; (ii) it tries to find
gray edges in a different order, namely items 1, 5, 3, and 7 of Lemma 5; (iii) when
there is an edge (Θi, Θj) of type 4, it tries to find the best trapped black edge
(Θk−1, Θk), i < k < j, such that Θj+1 = Θk ± 1 and j ⊕ n − 1; (iv) when it is
trying to find an edge of type 3, it searches for a Θj such that Θ1 = Θj−1 ± 1.

The suffix versions of both 3-PRPT and 3-PRPTg will be called 3-SRST and
3-SRSTg, respectively. Of course, they only deal with gray edges given by items 2,
4, 6, and 8 of Lemma 5 without the constraints over i, which are good suffix
edges. They work similarly to their prefix versions, but 3-SRST scans the permu-
tation from right to left and 3-SRSTg scans from left to right. Besides, 3-SRSTg
(i) searches for gray edges in the order of the items 2, 6, 4, and 8 of Lemma 5;
(ii) when there is an edge (Θi, Θj) of type 4, it tries to find the best trapped black
edge (Θk−1, Θk), i < k < j, such that Θj+1 = Θk ± 1 and i ≥ 2; and (iii) tries to
find a Θi such that Θn = Θi+1 ± 1 when it is searching for a type 3 edge.

Finally, we created 2-PRPTSRST and 2-PRPTSRSTg, algorithms for Sbprpt-
srst. They can handle all the good edges described in Lemma 5, but they do
not consider the edges described in items 7 and 8. When the other six edges does
not exist, Θ is of one of the forms shown by Lemma 6 and the algorithms perform
either a prefix reversal Ψp(n) or a prefix transposition to concatenate the first
strip with the last one. Because of this, they can never separate the elements n
and 1, unless the black edge between them is the last one (disregard the edges
(Θ0, Θ1) and (Θn, Θn+1)). This will guarantee that dδpΘpδsΘs(Θ) ⊕ bδpΘpδsΘs(Θ)+2,

678 C.N. Lintzmayer and Z. Dias

Algorithm 1. Good edges of type 4

PRPTSRST edge type 4(π, n)
1 if π1 ⊕= 1 and G(π) has a GPE (1, πjp) of type 4 and jp ← n then
2 (kp− 1, kp) ◦ trapped black edge;
3 if πn ⊕= n and G(π) has a GSE (πis, n) of type 4 and is ⊇ 1 then
4 (ks− 1, ks) ◦ trapped black edge;
5 if πkp − 1 = πjp+1 ± 1 then π ◦ π · τp(kp, jp + 1)
6 else if πks − 1 = πjs+1 ± 1 then π ◦ π · τs(ks, js + 1)
7 else if jp < n− is then π ◦ π · τp(kp, jp + 1)
8 else π ◦ π · τs(ks, js + 1)
9 else π ◦ π · τp(kp, jp + 1)

10 else if πn ⊕= n and G(π) has a GSE (πis, n) of type 4 and is ⊇ 1 then
11 (ks-1, ks) ◦ trapped black edge;
12 π ◦ π · τs(ks, js + 1)
13 return π

Algorithm 2. Good prefix edges of type 1 and good suffix edges of type 2

PRPTSRST edge type 1 2(π, n)
1 if π1 ⊕= 1 and G(π) has a GPE (1, πjp) of type 1 and jp ← n then
2 if πn ⊕= n and G(π) has a GSE (πis, n) of type 2 and is ⊇ 1 then
3 if jp < n− is then π ◦ π · ρp(jp− 1)
4 else π ◦ π · ρs(is + 1)
5 else π ◦ π · ρp(jp− 1)
6 else if πn ⊕= n and G(π) has a GSE (πis, n) of type 2 and jp ← n then
7 π ◦ π · ρs(is + 1)
8 return π

as Theorem 2 shows. With the lower bound, we can prove that the asymptotic
approximation factor of both algorithms is 2.

The difference between 2-PRPTSRST and 2-PRPTSRSTg is that the former
searches for good prefix edges from left to right, searches for good suffix edges
from right to left and follows the order given by the lemma. The latter searches
for good prefix edges from right to left, searches for good suffix edges from left
to right, follows the order of items 1, 2, 5, 6, 3, and 4 of Lemma 5, and tries
to find edges of types 3 and 4 that allow the removal of 2 breakpoints at once.
Algs. 4 and 5 present them, respectively. In the algorithms, GPE stands for good
prefix edge while GSE stands for good suffix edge.

Lemma 6. Let Θ ≤= ι be a permutation without the first six edges of Lemma 5.
Then Θ is either Δ, or of the form Θ = (1 2 . . . k k+i . . . k+2 k+1
. j−1 j−2 . . . j−Λ j j+1 . . . n) with i ≥ 2 and Λ ≥ 2, or of the
form Θ = (n n−1 . . . j Θn−j+2 Θn−k k k−1 . . . 1) with Θn−j+2 ≤= j − 1
and Θn−k ≤= k + 1.

Lemma 7. Let Θ ≤= Δ be of one of the two other permutations given in Lemma 6.
One transposition Πp(i+1, n+1), where Θi is the last element of the first strip,
transforms Θ into either Θ · Πp = (....... j j+1 ... n−1 n 1 2 ... k−1 k) or Θ · Πp

Sorting Permutations by Prefix and Suffix Versions 679

Algorithm 3. Good edges of type 3

PRPTSRST edge type 3(π, n)
1 if π1 = 1 and G(π) has a GPE (πip, πjp) of type 3 then
2 if πn = n and G(π) has a GSE (πis, πjs) of type 3 then
3 if π1 = πjp−1 ± 1 then π ◦ π · τp(ip + 1, jp)
4 else if πn = πis+1 ± 1 then π ◦ π · τs(is + 1, js)
5 else if jp < n− is then π ◦ π · τp(ip + 1, jp)
6 else π ◦ π · τs(is + 1, js)
7 else π ◦ π · τp(ip + 1, jp)
8 else if πn = n and G(π) has a GPE (πis, πjs) of type 3 then
9 π ◦ π · τs(is + 1, js)

10 return π

Algorithm 4. A 2-approximation algorithm for Sbprptsrst

2-PRPTSRST(π, n)
1 while π ⊕= ι do
2 if π1 ⊕= 1 and G(π) has a GPE of type 4 or

πn ⊕= n and G(π) has a GSE of type 4 then
3 π ◦ PRPTSRST edge type 4(π, n)
4 else if π1 ⊕= 1 and G(π) has a GPE of type 1 or

πn ⊕= n and G(π) has a GSE of type 2 then
5 π ◦ PRPTSRST edge type 1 2(π, n)
6 else if π1 = 1 and G(π) has a GPE of type 3 or

πn = n and G(π) has a GSE of type 3 then
7 π ◦ PRPTSRST edge type 3(π, n)
8 else if π = η then
9 π ◦ π · ρp(n)

10 else
11 Let k be the position of the last element of the first strip of π
12 π ◦ π · τp(k + 1, n + 1)

= (....... k k−1 ... 2 1 n n−1 ... j+1 j) without changing the number of break-
points. After that, it is always possible to keep removing at least one breakpoint
with one operation, if the algorithms never separate the elements 1 and n.

Lemma 8. Let (Θi, Θj) be a gray edge of type 4 of either prefix or suffix of an
arbitrary permutation Θ ≤= ι. If the edge between the elements 1 and n is the only
trapped black edge between Θi and Θj, then actually i = 1, j = n and the permu-
tation is either of the form Θ∗ = (k k−1 k−2 . . . 2 1 n n−1 . . . k+2 k+1) or
of the form Θ∗∗ = (k+1 k+2 . . . n−1 n 1 2 . . . k−2 k−1 k).

Besides, by acting on such edge, 2-PRPTSRST and 2-PRPTSRSTg will be per-
forming either their last or their last but one operation.

Lemma 9. The operation explained at Lemma 7 is performed at most once by
2-PRPTSRST and 2-PRPTSRSTg, if both never separate the elements 1 and n.

Theorem 2. Both algorithms 2-PRPTSRST and 2-PRPTSRSTg sort any permu-
tation Θ ≤= ι using at most bδpΘpδsΘs(Θ) + 2 operations.

680 C.N. Lintzmayer and Z. Dias

Algorithm 5. A 2-approximation algorithm for Sbprptsrst, greedy version

2-PRPTSRSTg(π, n)
1 while π ⊕= ι do
2 if π1 ⊕= 1 and G(π) has a GPE of type 4 or

πn ⊕= n and G(π) has a GSE of type 4 then
3 π ◦ PRPTSRST edge type 4(π, n)
4 else if π1 = 1 and G(π) has a GPE of type 3 or

πn = n and G(π) has a GSE of type 3 then
5 π ◦ PRPTSRST edge type 3(π, n)
6 else if π1 ⊕= 1 and G(π) has a GPE of type 1 or

πn ⊕= n and G(π) has a GSE of type 2 then
7 π ◦ PRPTSRST edge type 1 2(π, n)
8 else if π = η then
9 π ◦ π · ρp(n)

10 else
11 Let k be the position of the last element of the first strip of π
12 π ◦ π · τp(k + 1, n + 1)

Proof. Directly from Lemmas 6, 7, 8, and 9, whose proofs were omitted due to
space restrictions.

4 Results

All the algorithms have complexity O(n2), since the distance is O(n) and they
spent linear time to choose and to apply an operation at each step. They were
implemented in C language and executed in a Intel Core 2 of 2.13 GHz, 4GB
RAM running Ubuntu 12.04.2 LTS under the same set of 190000 arbitrary per-
mutations, being 10000 of each size n, for n varying between 10 and 1000 in
intervals of 5. Figure 2 shows the results. The x-axis presents a value of n and
the y-axis presents the average of the approximation factors of the permutations
of that size, calculated using the theoretical lower bound of the distance.

We can see that the simple change of scanning the permutation at a different
order had better results. This means that bigger operations (specially reversals)
are preferable. As expected, problems which involve only prefix rearrangements
are equivalent to their suffix versions. Besides, it was expected that problems
with both prefix and suffix versions of a rearrangement would obtain better re-
sults than those that allow only the prefix version. It is interesting to notice that
this did not happen for 2-PTST. Finally, for n ≥ 100, the average approximation
factor of 2-PRSRg is below 1.131, of 2-PTSTg is below 1.314 and of 2-PRPTSRSTg
is below 1.382, which are the best algorithms for the three new problems we pre-
sented. Besides, the maximum factor of this three problems over all permutations
tested is below 1.342, 1.596 and 1.600, respectively, when n ≥ 100.

Sorting Permutations by Prefix and Suffix Versions 681

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

2-PR
2-PRg

2-SR
2-SRg

2-PRSR
2-PRSRg

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

2-PT
2-PTg

2-ST
2-STg

2-PTST
2-PTSTg

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

3-PRPT
3-PRPTg

3-SRST
3-SRSTg

2-PRPTSRST
2-PRPTSRSTg

Fig. 2. Average approximation factor of all implemented algorithms when the
permutation size grows

682 C.N. Lintzmayer and Z. Dias

5 Conclusion

We introduced the study of suffix rearrangements along with prefix rearrange-
ments. We showed lower bounds for the distances and described approximation
algorithms of factor 2 to three new problems, considering some existing algo-
rithms. Simple considerations, such as bigger operations and greedy choices,
proved to be better options and improved the first versions of the algorithms.
Future work will be directed not only to create new algorithms, but also to find
results related to both distance and diameter of the problems.

Acknowledgements. This work was partially supported by São Paulo Re-
search Foundation - FAPESP (grants 2013/01172-0 and 2013/08293-7) and Na-
tional Counsel of Technological and Scientific Development - CNPq (grants
477692/2012-5 and 483370/2013-4). We thank Espaço da Escrita - Coordenado-
ria Geral da Universidade - UNICAMP - for the language services provided.

References

1. Bafna, V., Pevzner, P.A.: Genome Rearrangements and Sorting by Reversals. In:
Proceedings of the 34th Annual Symposium on Foundations of Computer Science
(FOCS 1993), pp. 148–157 (1993)

2. Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM Journal on Discrete
Mathematics 11(2), 224–240 (1998)

3. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-Approximation Algorithm for
Sorting by Reversals. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 200–210. Springer, Heidelberg (2002)

4. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer,
Heidelberg (2012)

5. Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions Is Difficult. SIAM
Journal on Computing 26(3), 1148–1180 (2012)

6. Caprara, A.: Sorting Permutations by Reversals and Eulerian Cycle Decomposi-
tions. SIAM Journal on Discrete Mathematics 12(1), 91–110 (1999)

7. Dias, Z., Meidanis, J.: Sorting by Prefix Transpositions. In: Laender, A.H.F.,
Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg
(2002)

8. Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 3(4), 369–379 (2006)

9. Fischer, J., Ginzinger, S.W.: A 2-Approximation Algorithm for Sorting by Prefix
Reversals. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp.
415–425. Springer, Heidelberg (2005)

10. Galvão, G.R., Dias, Z.: On the performance of sorting permutations by prefix
operations. In: Proceedings of the 4th International Conference on Bioinformatics
and Computational Biology (BICoB 2012), Las Vegas, Nevada, USA, pp. 102–107
(2012)

11. Sharmin, M., Yeasmin, R., Hasan, M., Rahman, A., Rahman, M.S.: Pancake Flip-
ping with Two Spatulas. Electronic Notes in Discrete Mathematics 36, 231–238
(2010), International Symposium on Combinatorial Optimization (ISCO 2010)

