
Algorithmic and Hardness Results for the
Colorful Components Problems

Anna Adamaszek1 and Alexandru Popa2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany,
anna@mpi-inf.mpg.de

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic,
popa@fi.muni.cz

Abstract. In this paper we investigate the colorful components frame-
work, motivated by applications emerging from comparative genomics [10].
The general goal is to remove a collection of edges from an undirected
vertex-colored graph G such that in the resulting graph G′ all the con-
nected components are colorful (i.e., any two vertices of the same color
belong to different connected components). We want G′ to optimize an
objective function, the selection of this function being specific to each
problem in the framework.
We analyze three objective functions, and thus, three different prob-
lems, which are believed to be relevant for the biological applications:
minimizing the number of singleton vertices, maximizing the number of
edges in the transitive closure, and minimizing the number of connected
components.
Our main result is a polynomial time algorithm for the first problem. This
result disproves the conjecture of Zheng et al. [11] that the problem is
NP -hard (assuming P 6= NP). Then, we show that the second problem
is APX-hard, thus proving and strengthening the conjecture of Zheng
et al. [11] that the problem is NP -hard. Finally, we show that the third
problem does not admit polynomial time approximation within a factor
of |V |1/14−ε for any ε > 0, assuming P 6= NP (or within a factor of
|V |1/2−ε, assuming ZPP 6= NP).

1 Introduction

In this paper we consider the following framework.

Colorful components framework: Given a simple, undirected graph
G = (V,E), and a coloring c : V → C of the vertices with colors from a given set
C, remove a collection of edges E′ ⊆ E from the graph such that each connected
component in G′ = (V,E\E′) is a colorful component (i.e., it does not contain
two identically colored vertices). We want the resulting graph G′ to be optimal
according some fixed optimization measure.

In this paper we consider three optimization measures and, respectively,
three different problems: Minimum Singleton Vertices (MSV), Minimum Edges

ar
X

iv
:1

31
1.

12
98

v1
 [

cs
.D

S]
 6

 N
ov

 2
01

3

in Transitive Closure (MEC), and Minimum Colorful Components (MCC). We
now introduce the optimization measures for all these problems.

Problem 1 (Minimum Singleton Vertices). The goal is to minimize the number
of connected components of G′ that consist of one vertex.

Problem 2 (Maximize Edges in Transitive Closure). The goal is to maximize the
number of edges in the transitive closure of G′.

If a graph consists of k connected components, each containing respectively
a1, a2, . . . , ak vertices, the number of edges in the transitive closure equals

k∑
i=1

ai · (ai − 1)

2
.

Problem 3 (Minimum Colorful Components). The goal is to minimize the num-
ber of connected components in G′.

The first two problems have been introduced in [11], while the third one is
newly introduced in this paper.

Motivation. The colorful components framework is motivated by applications
originating from comparative genomics [10,11], which is a fundamental branch
of bioinformatics that studies the relationship of the genome structure between
different biological species. The information achieved from this field can help
scientists to improve the understanding of the structure and the functions of
human genes and, consequently, find treatments for many diseases [8].

As pointed out in [10,11], one of the key problems in this area, the multiple
alignment of gene orders, can be captured as a graph theoretical problem, using
the colorful components framework. We refer the reader to [11] for an overview
of the connection between the multiple alignment of gene orders and the graph
theoretic framework considered, and for a discussion about the biological moti-
vation of two particular problems we consider, Minimum Singleton Vertices and
Maximize Edges in Transitive Closure.

Related work. We now discuss the collection of known problems which fit into
the connected components framework.

We start with a problem named either Colorful Components [5,4] or Mini-
mum Orthogonal Partition [7,11], since this problem has received the most at-
tention so far. In this problem the objective function is to minimize the number
of edges removed from G to obtain the graph G′ in which all the components
are colorful. Bruckner et al. show [5] that the problem is NP -hard for three or
more colors and they study fixed parameter tractable algorithms for the problem.
Their NP -hardness reduction can be modified slightly (starting the reduction
from a version of 3SAT when each variable occurs only O(1) times, instead of
from the general 3SAT) to show the APX-hardness of the problem. Zheng et
al. [11] and Bruckner et al. [4] study heuristic approaches for the problem, and

He et al. [7] present an approximation algorithm for some special case of the prob-
lem. As the general problem is a special case of the Minimum Multi-Multiway
Cut, it admits a O(log |C|) approximation algorithm [2].

Other objective functions have been proposed, with the hope that some of
them are both tractable and biologically meaningful. The MSV and the MEC
problems have been introduced by Zheng et al. [11], who presented heuristic
algorithms for the problems, without giving any worst-case approximation guar-
antee. They also conjectured both problems to be NP-hard. We are not aware
of any other results concerning the MSV and MEC problems, or of any previous
research on the MCC problem.

Our results. Our main result is a polynomial time exact algorithm for the MSV
problem, presented in Section 2. This disproves the conjecture of Zheng et al. [11]
that the problem is NP -hard (assuming P 6= NP). Our algorithm maintains a
feasible solution G′ = (V,E′) for the MSV problem, starting with an empty
graph G′ = (V, ∅). Then, in each step G′ is modified by applying to it a carefully
chosen alternating path p, starting at a singleton vertex. The alternating path
consists of the edges of G, and its every second edge is in G′. Applying p to G′

means that the edges from p which are not in G′ are added to G′, and at the
same time the edges of p which are in G′ are removed from G′. The algorithm
ensures that at each step G′ is a feasible solution to the problem, and satisfies
an invariant that all connected components in G′ are either singletons, edges or
stars. In the analysis we show that when the algorithm does not find any new
alternating path, the number of singleton components in G′ matches the lower
bound presented in Section 2.1.

In Section 3 we study the MEC problem and we show that the problem is
NP -hard and APX-hard when the number of colors in the graph is at least 4.
This proves the conjecture of Zheng et al [11]. We show the result via a reduction
from the version of the MAX-3SAT problem, where each variable appears at most
some constant number of times in the formula (see [1], Section 8.4).

Finally, in Section 4 we consider the MCC problem, which is introduced for
the first time in this paper. We prove that MCC does not admit polynomial
time approximation within a factor of |V |1/14−ε, for any ε > 0, unless P = NP
(or within a factor of |V |1/2−ε, unless ZPP = NP), even if each vertex color
appears at most two times. We show the inapproximability result via a reduction
from the Minimum Clique Partition problem which is equivalent to Minimum
Graph Coloring [9].

Due to space constraints some proofs have been moved to the appendix.

2 A Polynomial Time Exact Algorithm for the MSV

In this section we present a polynomial time algorithm MSVexact which finds
an optimal solution for the MSV problem. First, in Section 2.1 we show a lower
bound on the number of singleton vertices in any feasible solution for the prob-
lem. Then, in Section 2.2 we describe the algorithm, with its key procedure

presented in Section 2.3. The analysis of the algorithm is then performed in
Section 2.4.

2.1 Lower Bound

Let G = (V,E), together with a coloring c : V → C, be an input instance for
the MSV problem. For any color c let Vc ⊆ V denote the set of vertices of color
c. For any set of vertices V ′ ⊆ V we denote by N(V ′) the set of neighbors of
V ′ in G, i.e. N(V ′) = {v ∈ V \ V ′ : ∃v′ ∈ V ′ (v′, v) ∈ E}. For any set of colors
C ′ ⊆ C and set of vertices V ′ ⊆ V we denote by NC′(V ′) the set of neighbors
of V ′ in G which have colors in C ′, i.e. NC′(V ′) = {v ∈ N(V ′) : c(v) ∈ C ′}.

Lemma 1. For any color c let

sc = max
V ′⊆Vc

(|V ′| − |NC\{c}(V ′)|) .

Then in every feasible solution for the MSV problem there are at least sc single-
tons of color c.

Proof. Let G′ = (V,E′), where E′ ⊆ E, be a feasible solution for G. Fix a
color c for which sc > 0 and let V ′ ⊆ Vc be the subset maximizing the value
of sc. (Notice that sc depends only on the graph G, and not on G′.) For each
vertex v′ ∈ V ′ which is not a singleton in G′ we pick an arbitrary neighbor
n(v′) in G′. We have n(v′) ∈ NC\{c}(V ′). As any two vertices from V ′ belong to
different connected components in G′, the vertices n(v′) are pairwise different.
The number of vertices of V ′ which are not singletons in G′ is therefore at most
|NC\{c}(V ′)|. The number of singletons amongst vertices from V ′, and therefore
also the number of singletons of color c, is therefore at least |V ′|−|NC\{c}(V ′)| =
sc. ut

Corollary 1. In any feasible solution for the MSV problem there are at least∑
c∈C sc singleton vertices.

2.2 Idea of the Algorithm

We now present an algorithm MSVexact which finds an optimal solution for
the MSV problem. The input of the algorithm consists of a simple, undirected
graph G = (V,E), together with a coloring c : V → C. The algorithm maintains
a feasible solution G′ = (V,E′) for the MSV problem (i.e., G′ is a subgraph of the
input graph G, and every connected component of G′ is a colorful component),
starting with an empty graph G′ = (V, ∅). In each step the graph G′ is modified
by adding to it a carefully chosen alternating path p. The alternating path
consists of the edges of G, and its every second edge is in G′. Applying p to
G′ means that the edges from p which are not in G′ are added to G′, and at the
same time the edges of p which are in G′ are removed from G′. See Algorithm 1
for the formal description of the algorithm.

Input: A simple, undirected graph G = (V,E), a coloring c : V → C
Output: A subgraph of G minimizing the number of connected components,

and in which each connected component is colorful
1 G′ := (V, ∅)
2 foreach c ∈ C do
3 while p=Alternating Path(G’,C,G,c) is a path do
4 apply p to G′

5 end

6 end

Algorithm 1: MSVexact(G,c)

The path p is chosen in such a way, that adding it to G′ decreases the number
of singleton vertices of color c, without increasing the number of singleton vertices
of other colors. Additionally, at each step of the algorithm the graph G′ satisfies
an invariant, that each connected component of G′ is a singleton vertex, an
edge, or a star (where a star is a tree of diameter 2, in particular it has at least
3 vertices).

We will show that when the algorithm stops, i.e., when it does not find any
alternating path p which can be added to G′ to decrease the number of singletons
of any color, the number of singleton vertices in G′ matches the lower bound from
Corollary 1.

2.3 Finding an Alternating Path

Let G′ = (V,E′) be a feasible solution for an instance (G = (V,E), C) of the
MSV problem, such that each connected component of G′ is a singleton ver-
tex, an edge, or a star. Let c ∈ C be an arbitrary color, and let Sc ⊆ V be
the set of all singletons of color c in G′. We describe a procedure Alternat-
ing Path(G,C,G’,c) which outputs an alternating path p for G′ in G. In the
following section we prove that the path p satisfies the properties outlined in
Section 2.2, and that when no path is found, the number of singletons of color c
in G′ matches the lower bound from Lemma 1.

The idea behind the path construction is as follows. We want to find a path
starting in some singleton vertex of color c, connecting each vertex of color c with
a vertex of color different than c using an edge e ∈ E \ E′; and each vertex of
color different than c with an vertex of color c using an edge e ∈ E′. We end the
construction of the path when the current endpoint v /∈ Vc of the path belongs
to a connected component of G′ to which we can attach an additional vertex
of color c (possibly while splitting the component into two parts). Such a case
occurs when v is a leaf of a star (which will result in removing v from the star-
component and connecting it with the vertex of color c), or when the connected
component of v does not contain color c. Then applying the alternating path to
the graph G′ results in “switching” vertices of color c between different connected
components of G′, and removing one singleton of color c, as the start point of
the path will not be a singleton in the new graph. The algorithm performs a BFS

Input: A simple, undirected graph G = (V,E), a coloring c : V → C, a feasible
subgraph G′ = (V,E′) of G, and a color c ∈ C

Output: A path p or no path found
1 V ′ := Sc
2 N ′ := NC\{c}(V

′) // Neighbors in G
3 ∀v ∈ N ′ pred(v) := any v′ ∈ Sc s.t. (v, v′) ∈ E
4 while |N ′| > 0 do
5 if ∃v ∈ N ′ : v is a leaf of a star in G′ then
6 p :=Path From(v)
7 return p ∪ (v, v′) s.t. (v, v′) ∈ E′

8 end
9 if ∃v ∈ N ′ : the connected component of v in G′ has no color c then

10 p :=Path From(v)
11 return p

12 end
13 V ′′ := {v′′ ∈ Vc : ∃v ∈ N ′ s.t. (v, v′′) ∈ E′}
14 ∀v′′ ∈ V ′′pred(v′′) := any v ∈ N ′ s.t. (v, v′′) ∈ E′

15 V ′ := V ′ ∪ V ′′
16 N ′ := NC\{c}(V

′) \NC\{c}(V ′ \ V ′′)
17 ∀v ∈ N ′ pred(v) := any v′ ∈ V ′′ s.t. (v, v′) ∈ E

18 end
19 return no path found

Procedure 2: Alternating Path(G,C,G’,c)

Input: A vertex v ∈ V
Output: A path starting in Sc and ending in v

1 if pred(v) ∈ Sc then
2 return (pred(v),v)
3 end
4 return Path From(pred(v)) ∪ (pred(v),v)

Procedure 3: Path From(v)

search of the path satisfying the required conditions, starting with the collection
of all singleton vertices of color c. See Procedure 2 for a formal description of
the procedure.

Procedure Alternating Path constructs the path p as follows. It keeps a
set of vertices V ′ of color c, initially setting V ′ := Sc (line 1). For each ele-
ment v /∈ Sc considered by the procedure, its predecessor pred(v) is fixed (line
3, 14, 17). Intuitively pred(v) is an element such that (pred(v), v) ∈ E, and pro-
cessing pred(v) by the procedure resulted in adding v to one of the sets V ′, N ′.
Procedure Path From(v), invoked in lines 6 and 10, can then reconstruct the
whole path, starting from the final vertex v and finding the predecessors until it
reaches a vertex from Sc (see Procedure 3 for a formal description).

Each loop of the algorithm (lines 4 – 18) considers the set N ′ of new neighbors
of the vertices from V ′ (i.e., the neighbors of V ′ which have not been considered

in the previous loops), see lines 2 and 16, in search for vertices which can yield
an end of the path (see lines 5, 9). If no such vertex is found, the set V ′ will
be further increased to include the neighbors of N ′ of color c (line 13, 15). The
process continues until an appropriate vertex v is found in N ′ (lines 5, 9), and
then the algorithm returns the path reconstructed from v, or the set N ′ becomes
empty, in which case the answer no path found is returned (line 19).

2.4 Analysis

Lemma 2. When the procedure Alternating Path(G,C,G′, c) invoked for a
graph G′ which is a feasible solution for MSV for G = (V,E), and s.t. each con-
nected component of G′ is a singleton, an edge or a star returns no path found,
then |Sc| = sc.

Lemma 3. Let G′ = (V,E′) be a feasible solution for MSV for G = (V,E), s.t.
each connected component of G′ is a singleton, an edge or a star. Let p be a path
returned by Alternating Path(G,C,G′, c) for some color c, and let G′′ be the
result of applying p on G′. Then:

a) p is an alternating path for G′ in G,

b) the number of singleton vertices of color c in G′′ is smaller than in G′; the
number of singleton vertices of any other color does not increase,

c) each connected component of G′′ is colorful,

d) each connected component of G′′ is a singleton, an edge or a star.

We now have all tools to prove the main theorem of this section.

Theorem 1. The algorithm MSVexact(G,c) finds an optimal solution for the
MSV problem in polynomial time.

Proof. The algorithm MSVexact(G,c) starts by choosing a feasible solution
G′ = (V, ∅) for the problem, in which every connected component is a singleton.
Lemma 3 implies that after each step of executing the procedure Alternat-
ing Path(G,C,G′, c), the new graph G′ obtained is a feasible solution (Lemma
3c) which is a collection of singletons, edges and stars (Lemma 3d). As in each
step where finding an alternating path has been successful the number of sin-
gleton vertices of the currently processed color c′ ∈ C decreases, and for other
colors does not increase (Lemma 3b), after O(|V |) steps the algorithm does not
find any more alternating paths. Thus, as each color c′ ∈ C has been processed
by the algorithm, from Lemma 2 for each color c′ ∈ C the number of singleton
vertices of color c′ equals sc′ and the resulting graph G′ is an optimal solution
to the MSV problem (see Corollary 1). As each execution of the procedure Al-
ternating Path takes polynomial time (as in each loop, possibly except of the
last one, the set V ′ grows), the running time of the algorithm MSVexact(G,c)
polynomial in the size of the input graph G. ut

vx1 wx
1 vx2 wx

2

ax1 bx1 ax2 bx2

vz1

wz
1

az1

bz1 vw1

ww
1

aw1

bw1

vy1 wy
1 vy2 wy

2

ay1 by1 ay2 by2

c1 c2

Fig. 1. An instance G of the MEC problem corresponding to the 3SAT formula (x ∨
y ∨ z) ∧ (¬x∨ y ∨¬w) (both black and gray edges). The subgraph G′′ consisting of all
vertices and only black edges represents a solution for G corresponding to the following
assignment: f(x) = f(y) = f(w) = TRUE, f(z) = FALSE.

3 Hardness of MEC

In this section we prove the NP -hardness and the APX-hardness of the MEC
problem, for |C| ≥ 4. We show our result via a reduction from MAX-3SAT(β), a
version of the MAX-3SAT problem where each variable appears at most β times
in the formula. For β = 3 the problem is APX-hard (see [1], Section 8.4).

3.1 Reduction from MAX-3SAT(β)

Given an instance of the MAX-3SAT(β) problem, i.e., a 3-CNF formula φ with
m clauses and n variables, where each variable appears at most β times, we
construct an instance of the MEC problem. Our instance is a vertex colored
graph G = (V,E), where the vertices are colored with colors from a four-element
set {a, b, c, v}. An example of the reduction is illustrated in Figure 1.

First we describe the set of vertices V .

1. We add to V a set of vertices c1, . . . , cm, each colored with color c, where
vertex ci corresponds to the i-th clause of the formula.

2. For a variable x, let nx be the number of occurrences of the literals x and ¬x
in the formula. For each variable x, we add to V : nx vertices of color a (de-
noted by ax1 , a

x
2 , . . . , a

x
nx

), nx vertices of color b (denoted by bx1 , b
x
2 , . . . , b

x
nx

),
and 2nx vertices of color v (denoted by vx1 , v

x
2 , . . . , v

x
nx

and wx1 , w
x
2 , . . . , w

x
nx

).
Intuitively, the vertices vxi are associated with x, and the vertices wxi with
¬x.

We now show how to construct the set of edges E.

1. For each variable x, we construct a cycle of length 4nx by adding to E
the collection of edges (axi , v

x
i), (vxi , b

x
i), (bxi , w

x
i) and (wxi , a

x
(i mod nx)+1) for

i = 1, .., nx.
2. For each clause we add to E three edges, where each edge connects the vertex
ci representing the clause with a vertex representing one literal of ci. More
formally, if a literal x (¬x) occurs in the i-th clause, we add to E an edge
connecting ci with some vertex vxj (wxj , respectively). We do this operation
in such a way, that each vertex vxj and wxj representing a literal is incident
with at most one clause-vertex ci. Notice that since we have more vertices
vxj and wxj than actual literals, some of the vertices vxj and wxj will not be
connected with any clause-vertex ci.

3.2 Analysis of the Reduction

Let φ be a MAX-3SAT(β) formula on m clauses, and G = (V,E) a vertex-colored
graph obtained from φ by our reduction. Let G′ = (V,E′) be a subgraph of G
which is an optimal solution for the MEC problem on G.

Lemma 4. If the formula φ is satisfiable, then the transitive closure of G′ has
at least 12m edges.3

Lemma 5. If any assignment can satisfy at most a (1 − ε) fraction of the m
clauses of the formula φ, then the transitive closure of G′ has at most 12m −
Θ(ε)m edges.

Theorem 2. The Maximum Edges in the Transitive Closure problem is APX-
hard, even for graphs with only four colors.

Proof. Let φ be a MAX-3SAT(β) formula on m clauses, and G = (V,E) a vertex-
colored graph obtained from φ by our reduction. Let G′ = (V,E′) be a subgraph
of G which is an optimal solution for the MEC problem on G. From Lemma 4
we know, that if the formula φ is satisfiable, then the transitive closure of G′ has
at least 12m edges. From Lemma 5 we know, that if any assignment can satisfy
at most a (1− ε) fraction of the m clauses of φ, then the transitive closure of G′

has at most 12m−Θ(ε)m edges.
As the MAX − 3SAT (β) problem is APX-hard [1], we obtain that MEC is

also APX-hard. ut

4 Hardness of MCC

In this section we prove that the MCC problem does not admit polynomial-time
approximation within a factor of |V |1/14−ε, for any ε > 0, unless P = NP , or
within a factor of |V |1/2−ε, unless ZPP = NP . The results hold even if each

3 It can be proven that in this case the transitive closure of G′ has exactly 12m edges,
but that is not needed in the later part of the reasoning.

a

b c
d

e a

b c
d

e

ac ad ae

bd be ca

da

db

ea eb

Fig. 2. Creating an instance of the MCC problem (right) from an instance of the
Minimum Clique Partition (left). Base vertices and edges are drawn in black, and the
additional ones in gray. An optimal solution for both problems is obtained by removing
an edge (b, c).

vertex color appears at most two times in the input graph. We prove our results
via a reduction from the Minimum Clique Partition problem.

Minimum Clique Partition: Given a simple, undirected graph G = (V,E),
find a partition of V into a minimum number of subsets V1, . . . , Vk such that the
subgraph of G induced by each set of vertices Vi is a complete graph.

The Minimum Clique Partition problem is equivalent to Minimum Graph
Coloring [9], and therefore it cannot be approximated in polynomial time within
a factor of |V |1/7−ε for any ε > 0 [3], unless P = NP , or within a factor of
|V |1−ε, unless ZPP = NP [6].

4.1 Reduction from Minimum Clique Partition

Let G = (V,E) be an instance of the Minimum Clique Partition problem. We cre-
ate an instance of the MCC problem, i.e., a vertex colored graph G′ = (V ′, E′),
as follows. The reduction is illustrated in Figure 2.

1. The vertex set V ′ = V ′b ∪ V ′a consists of two parts. Firstly, the set V ′b = V
is the set of all vertices in G, each colored with a distinct color. We term
these vertices base vertices. The set V ′a has two vertices, uv and vu, for each
pair of vertices u, v ∈ V such that (u, v) /∈ E. Both vertices uv and vu have
the same color, which is different from other colors in the graph. We refer
to the vertices from V ′a as additional vertices. We emphasize that each color
appears at most two times in G′.

2. The set of edges E′ = E′b ∪E′a consists of two parts. First, E′b = E is the set
of edges in G, which we term base edges. The set E′a has two edges, (uv, u)
and (vu, v), for each pair of vertices u, v ∈ V such that (u, v) /∈ E (i.e., each
additional vertex uv is connected with a base vertex u). We refer to the edges
from E′a as additional edges.

4.2 Analysis of the Reduction

We first show that the cost of an optimal solution for an instance of the Minimum
Clique Partition problem is the same as the cost of an optimal solution of an
instance of the MCC problem obtained by the reduction.

Lemma 6. Let G = (V,E) be an instance of the Minimum Clique Partition
problem, and G′ = (V ′, E′) the corresponding instance of the MCC problem,
obtained by our reduction. If there is a partition of G into k cliques, then the
optimal solution for the MCC problem for G′ has cost at most k.

Lemma 7. Let G = (V,E) be an instance of the Minimum Clique Partition
problem, and G′ = (V ′, E′) the corresponding instance of the MCC problem,
obtained by our reduction. If the optimal solution for the MCC problem for G′

has cost k, then there exists a partition of G into k cliques.

Theorem 3. The Minimum Colorful Components problem does not admit poly-
nomial time approximation within a factor of n1/14−ε, for any ε > 0, unless
P = NP , or within a factor of n1/2−ε, for any ε > 0, unless ZPP = NP , where
n is the number of vertices in the input graph.

5 Conclusions and future work

In this paper we study the Colorful Components framework, which arises from
applications in biology. We study three problems from this framework: Minimum
Singleton Vertices, Maximum Edges in Transitive Closure and Minimum Colorful
Components. First, we show a polynomial time exact algorithm for MSV, thus
disproving the conjecture of Zheng et al. [11] that the problem is NP -hard. Then,
we prove and strengthen another conjecture in [11], by showing that MEC is NP -
hard and APX-hard. Finally, we show that MCC does not admit polynomial
time approximation within a factor of |V |1/14−ε, for any ε > 0, unless P = NP ,
or within a factor of |V |1/2−ε, unless ZPP = NP .

Notice that the APX-hardness result for the MEC problem requires that
the input graphs are colored with at least 4 colors. A natural question is, thus,
to settle the complexity of the problem for 3 colors (as for the case of two
colors MEC is easily solvable in polynomial time, using a maximum matching
algorithm). Another open question is to design approximation algorithms for the
MEC problem or to strengthen the hardness of approximation result.

From the biological perspective it is interesting to analyze how our MSV
algorithm behaves on real data. Finally, we mention that an intriguing and chal-
lenging task is to find others problems in this framework that admit practical
algorithms and are also meaningful for the biological applications.

References

1. Giorgio Ausiello, Marco Protasi, Alberto Marchetti-Spaccamela, Giorgio Gambosi,
Pierluigi Crescenzi, and Viggo Kann. Complexity and Approximation: Combinato-
rial Optimization Problems and Their Approximability Properties. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.

2. Adi Avidor and Michael Langberg. The multi-multiway cut problem. Theoretical
Computer Science, 377(13):35 – 42, 2007.

3. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability-towards tight results. SIAM Journal on Computing, 27(3):804–
915, 1998.

4. Sharon Bruckner, Falk Hüffner, Christian Komusiewicz, and Rolf Niedermeier.
Evaluation of ILP-based approaches for partitioning into colorful components. In
SEA, pages 176–187, 2013.

5. Sharon Bruckner, Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier, Sven
Thiel, and Johannes Uhlmann. Partitioning into colorful components by minimum
edge deletions. In CPM, pages 56–69, 2012.

6. Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of
Computer and System Sciences, 57(2):187 – 199, 1998.

7. George He, Jiping Liu, and Cheng Zhao. Approximation algorithms for some graph
partitioning problems. Journal of Graph Algorithms and Applications, 4(2), 2000.

8. Arcady R. Mushegian. Foundations of Comparative Genomics. Elsevier Science,
2010.

9. Azaria Paz and Shlomo Moran. Non deterministic polynomial optimization prob-
lems and their approximations. Theoretical Computer Science, 15(3):251 – 277,
1981.

10. David Sankoff. OMG! Orthologs for multiple genomes - competing formulations -
(keynote talk). In ISBRA, pages 2–3, 2011.

11. Chunfang Zheng, Krister M. Swenson, Eric Lyons, and David Sankoff. OMG!
Orthologs in multiple genomes - competing graph-theoretical formulations. In
WABI, pages 364–375, 2011.

A Proofs from Section 2

Proof (of Lemma 2). If procedure Alternating Path returns no path found,
then it returns in line 19, i.e., checking the condition “|N ′| > 0” (line 4) failed.
We show that just before the procedure ends, the following inequality holds:

|V ′| − |NC\{c}(V ′)| ≥ |Sc| .

If the loop in line 4 has never been entered, we have V ′ = Sc, NC\{c}(V
′) =

N ′ = ∅, and therefore |V ′| −NC\{c}(V ′) = |Sc|.
Each vertex v ∈ NC\{c}(V ′) has been inserted into N ′ at some step of the

procedure, and subsequently processed either in line 5 or line 9. As that did not
cause the algorithm to return in line 7 or 11, we must have:

– v is not a leaf of a star in G′, and
– the connected component containing v contains a vertex colored with c.

As each connected component in G′ is a singleton, an edge or a star, and the
color of v is different from c (from the definition of NC\{c}(V

′)), we have the
following two possibilities:

– the connected component of G′ containing v is an edge, and the other end-
point of the edge has color c, or

– the connected component of G′ containing v is a star containing a vertex of
color c, and v is the center of the star.

We get that any two elements of NC\{c}(V
′) are in different connected compo-

nents of G′, and each vertex v ∈ NC\{c}(V ′) has some neighbor n(v) in G′. Each
vertex n(v) has been added to the set V ′ when the element v has been processed
by the procedure (line 13, 15). We get that any two elements v1, v2 ∈ NC\{c}(V ′)
are in different connected components of G′, any two vertices n(v1), n(v2) are
different. As the elements from Sc are singletons in G′, and therefore cannot be
equal n(v), and Sc ⊆ V ′, we get |V ′| ≥ |Sc| + |NC\{c}(V ′)|. We obtained the
desired inequality.

We have shown that for the set of vertices V ′ we have |V ′|−NC\{c}(V ′) ≥ |Sc|.
As V ′ ⊆ Vc, we get |Sc| ≤ maxV ′′∈Vc

(|V ′′| −NC\{c}(V ′′)) = sc. As sc is a lower
bound on |Sc| (see Lemma 1), we get |Sc| = sc. ut

Proof (of Lemma 3). a) First let us show that the procedure Path From(v)
always returns a finite path, and such that the first vertex of p in Sc. Any vertex
which is assigned to the set N ′ in line 2 is assigned a predecessor from the set
Sc (line 3). Any vertex v assigned to N ′ later, i.e., in some i-th iteration of the
loop (line 16), is assigned a predecessor pred(v) ∈ V ′, and such that pred(v)
entered V ′ in the same i-th iteration of the loop. Any vertex v ∈ V ′ \ Sc enters
the set V ′ in some i-th iteration of the loop (line 13, 15), and then is assigned
a predecessor pred(v) ∈ N ′, such that pred(v) has been assigned to N ′ in the
previous iteration of the loop (or in line 2, in case i = 1). This shows that the

procedure Path From(p) does not loop, and it will eventually (i.e., after at
most |V | steps) find a beginning of a path, which is a vertex from the set Sc.

We will now show that every odd vertex of the path p is in Vc (except possibly
of the last vertex of p, if it is the vertex v′ appended to the path directly by the
procedure in line 7), and every even vertex is in V \ Vc. We already know that
the first vertex of the path is in Sc ⊆ Vc. As all vertices from the set V ′ have
color c, and all vertices from the set N ′ have color different from c, a predecessor
of a vertex from V ′ is in N ′ (line 14) and a predecessor of a vertex from N ′ is in
V ′ (line 17), the claim follows. Notice that if the procedure reaches line 7, then
there are no color requirements for the last vertex v′ appended at the end of the
path directly, and not using the procedure path from (line 7).

We will now show that every even edge of the path p is in E′, and every
odd edge of p is in E \ E′, which will prove that p is an alternating path. Let
us consider even edges first. An even edge is an edge between some odd vertex
v and a preceding vertex w. There can be two cases, and for both of them we
obtain that the edge is in E′:

– v is a vertex appended to the path directly by the procedure in line 7. Then
the edge connecting v with the preceding vertex w is in E′ (see line 7).

– v has been appended to the path by the procedure path from). Then
w =pred(v) and, from the paragraph above, v ∈ Vc. A vertex from Vc is
connected with its predecessor via an edge in E′ (see line 14).

Now let us consider odd edges. As the path p starts in a singleton vertex of
G′, the first (odd) edge of the path is not in E′. Let (v′, v) be any other odd edge
of p. We have v′ = pred(v), v′ ∈ Vc. Let w = pred(v′). As w has been processed
by the procedure in an earlier loop than v (see the first paragraph of the proof),
and processing w did not cause the procedure to return in line 7 or 11, one of
the following holds (as each connected component of G′ is a singleton, an edge
or a star):

– the connected component of G′ containing w is an edge, and the other end-
point of the edge has color c, or

– the connected component of G′ containing w is a star containing a vertex of
color c, and v is the center of the star.

As (w, v′), as an even edge of the path, belongs to E′, that gives us that v′ has
degree one is G′ (either as an endpoint of an edge, or a leaf of a star), and so
(v′, v) /∈ E′.

b) From a) we know that the path p applied to G′ to construct G′′ is an
alternating path, i.e., after applying it the degree of each vertex other than the
endpoints of the path does not change. The path starts with a vertex v ∈ Sc
(see a)), which is a singleton in G′, and therefore the first edge of p is not in E′.
The first edge of p is added to the graph and v stops being a singleton vertex.
That decreases the number of singleton vertices of color c by one.

We now have to consider the last edge of the path. Again, if the edge is not
in E′ then the endpoint of the path gets one additional edge incident with it,

and so it cannot become a singleton. The only possibility when the last edge of
p is in E′ is when the path has an even number of edges (as it is an alternating
path starting with an edge in E \ E′), i.e., it ends with an odd vertex. The
procedure path from is always invoked for a vertex v ∈ N ′ (line 6,10) and the
path returned by it has an odd number of edges (see the a), where we show that
such path alternates between vertices from V ′ and N ′). The only possibility that
the path has an even number of edges is when it is generated in line 7, when an
additional edge (v, v′) is appended at the end of the path. Then the edge (v, v′)
is removed from G′′ and the degree of v′ drops by one. However, from line 5 we
get that then v is a leaf of a star, and as (v, v′) ∈ E′ we have that v′ is a center
of a star. The degree of v′ in G′ is at least 2, so G′ does not become a singleton
after applying the path p to G′.

c) As every connected component of G′ is colorful, it is enough to consider
components of G′′ which contain some newly added edge. Let (u, v) ∈ E be an
edge added to G′′, i.e., an edge from p which is in E \E′. From the discussion in
a) we know that (u, v) is then an odd edge of the path, and it connects an even
vertex v ∈ V \ Vc with its predecessor u =pred(v)∈ Vc.

We will now show that the degree of u in G′ is at most one. If u is the start
of the path, it has degree 0 in G′. Otherwise, considering the predecessor of u
and using the same arguments as in a) we show that u is either an endpoint of
a path or a leaf of a star in G′. In this case the degree of u in G′ is one. As the
edge connecting u with its predecessor in p is in E′, it will be removed from G′.
The vertex u is a leaf in the connected component of G′′.

If vertex v is not the last even vertex of the path, then, from the construction
of p and the discussion in a), the successor of p is some vertex w of color c, and
the edge (v, w) ∈ E′. Then the connected component of v (which in G′ was
either an edge or a star centered at v, again from the discussion in a)) obtains
a new vertex v of color c, but on the other hand loses some other vertex w of
color c. The component remains colorful.

If vertex v is the last even vertex of the path, and the procedure returned in
step 7 after processing v, v has been detached from its component in G′ (which
was a star), and the new component is an edge connecting u and v, and it is
colorful.

Finally, if vertex v is the last even vertex of the path, and the procedure
returned in step 11 after processing v, the connected component of v in G′ did
not contain vertex of color c, so a new vertex of color c can be attached to it
and the component remains colorful.

d) We show it similarly as c). As every connected component of G′ is either
a singleton, an edge, or a star, and removing the edges does not change this
property, it is enough to consider components of G′′ which contain some newly
added edge (u, v) ∈ E \ E′. As in case c), the degree of u in G′ is at most one,
and u becomes a leaf in the connected component of G′′.

Considering the same three cases as in c) we have that either:

– v is not the last even vertex of the path: then the connected component of v
(which in G′ was either an edge or a star centered at v) gets one leaf attached
at v, at the same time losing another leaf attached at v, or

– v is the last even vertex of the path, and the procedure returned in step 7
after processing v: new component is an edge connecting u and v, or

– v is the last even vertex of the path, and the procedure returned in step 11
after processing v: in this case, as v has not been a leaf of a star, it could
either be a singleton, an endpoint of an edge, or a center of a star; in any of
these cases attaching a leaf to v makes the connected component an edge or
a star.

The connected component containing the edge (u, v) is either an edge or a star.
ut

B Proofs from Section 3

Proof (of Lemma 5). To prove the lemma it is enough to show that if the tran-
sitive closure of G′ has more than 12m − εm edges, we can extract from G′ an
assignment f for φ which satisfies at least a 1 − O(ε) fraction of clauses. For
the rest of the proof we assume that the transitive closure of G′ has more than
12m− εm edges.

First, observe that each connected component of G′ has size at most 4, since
there are only 4 colors of the vertices in the graph. Also, notice that there are in
total m vertices of color c, 6m vertices of color v (as the total number of literals
in the formula φ equals 3m), 3m vertices of color a, and 3m vertices of color b.

We now show that G′ has at least (1− ε)m connected components consisting
of 4 vertices. Let α1, α2, α3 and α4 denote the number of connected components
of G′ of size 1, 2, 3 and 4, respectively. The number of edges in the transitive
closure of G′ equals OPT = 6α4 +3α3 +α2. As G′ has 7m vertices of color other
than v, exactly 3 such vertices are in each component of size 4, at least two such
vertices are in each component of size 3, and at least one such vertex is in each
component of size 2, we get: α3 ≤ (7m − 3α4)/2 and α2 ≤ (7m − 3α4 − 2α3).
We get

OPT = 6α4 + 3α3 + α2 ≤ 7m+ 3α4 + α3 ≤ 10.5m+ 1.5α4 .

As we assumed OPT > 12m− εm, we get that α4 ≥ (1− ε)m.

Let us now consider a subgraph G′x of G′ corresponding to the variable x.
G′x consists of vertices axi , b

x
i , v

x
i and wxi for 1 = 1, . . . , nx, and additionally of

the clause-vertices cj which are incident in G′ with any of the vertices vxi and
wxi . As each clause-vertex has degree at most 1 in G′ (as all the neighbors of
a clause-vertex have the same color v), it belongs to at most one subgraph G′x.
Notice that each edge of G′ is contained in some subgraph G′x, and therefore the
edges of the transitive closure of G′ are the union of the edges of the transitive
closures of G′x.

vx1 wx
1 vx2 wx

2 vx3 wx
3

ax1 bx1 ax2 bx2 ax3 bx3

c1 c2
a)

vx1 wx
1 vx2 wx

2 vx3 wx
3

ax1 bx1 ax2 bx2 ax3 bx3

c1 c2
b)

Fig. 3. a) Graph G′x maximizing the possible number of edges (3αx + 3nx) in the
transitive closure. b) An inconsistent graph G′x cannot achieve 3αx + 3nx edges in the
transitive closure.

We say that G′x is inconsistent if there are two vertices vxi and wxj in G′x
(where possibly i = j), such that both are incident with some clause-vertices
ci′ and cj′ in G′. We now show that G′ has at most εm inconsistent subgraphs
G′x. Let αx ≤ nx be the number of clause-vertices ci which belong to G′x. Apart
from these αx vertices of color c, G′x has also nx vertices of colors a and b, and
2nx vertices of color v. It is straightforward to verify that the transitive closure
of G′x has at most 3αx + 3nx edges (see Figure 3a for an example, where this
bound is obtained). Moreover, if G′x is inconsistent, its transitive closure has at
most 3αx + 3nx − 1 edges (see Figure 3b). If G′ has more than εm inconsistent
subgraphs G′x, we have OPT ≤

∑
x 3αx +

∑
x 3nx − εm = 12m − εm, which

contradicts our assumption.

We now extract from G′ an assignment f for φ which satisfies at least a
(1 − ε(β + 1)) fraction of clauses. We proceed as follows. From our previous
reasoning we know that G′ has at least (1−ε)m connected components consisting
of 4 vertices, and that at most εm subgraphs G′x are inconsistent. We fix the
assignment f as follows. For each variable x, if G′x is inconsistent or if G′x does
not contain any vertices ci, we set f(x) arbitrarily. Otherwise, either all vertices
ci from the component G′x are incident with vertices vxj (corresponding to the
literal x), or they are all incident with vertices wxj (corresponding to the literal
¬x). If the first case holds, we set f(x) to TRUE. Otherwise, we set f(x) to
FALSE.

We now show a lower bound on the number of clauses satisfied by f . At
least (1− ε)m clause-vertices ci are incident with some variable-vertex (as there
are at least (1 − ε)m connected components of size 4). Each variable occurs
at most β = O(1) times in φ, and at most εm subgraphs G′x are inconsistent,
and therefore at most εβm clause-vertices are incident with variables from an

inconsistent subgraph. Therefore at least m(1− ε(β+ 1)) clauses are satisfied by
the assignment f . ut

Proof (of Lemma 4). We construct a graph G′′ = (V,E′′) which is a subgraph
of G in the following way (see Figure 1). Fix a satisfying assignment f for φ.
For each clause, represented by a vertex ci, we choose arbitrarily a literal x (¬x)
which is satisfied by the assignment f . Let vxj (wxj , respectively) be the vertex
corresponding to the chosen literal which is incident with ci in G. We add the
edge (ci, v

x
j) ((ci, w

x
j), respectively) to G′′. Additionally, each vertex vxj and wxj

associated with a literal satisfied by f is connected in G′′ with the neighboring
vertices of color a and b.

It is straightforward to check that G′′ is a feasible solution for the MEC prob-
lem (i.e., each connected component of G′′ is colorful), and that G′′ has m con-
nected components containing 4 vertices, 2m connected components containing 3
vertices, and 3m singletons. The transitive closure of G′′ has 6 ·m+3 ·2m = 12m
edges. As G′ is an optimal solution for the MEC problem in G, the transitive
closure of G′ has at least as many edges as the transitive closure of G′′. ut

C Proofs from Section 4

Proof (of Lemma 6). Let G be a graph which can be partitioned into k cliques.
We have to show that there is a collection of edges E′′ ⊆ E′ in G′, such that
after removing E′′ from G′ we obtain a graph consisting of at most k colorful
components. The set of edges E′′ is exactly the set of base edges that have been
removed from G to obtain the collection of k cliques.

As we do not remove any additional edges of G′ (i.e., the edges from the set
V ′a), the resulting graph consists of k connected components. The only pairs of
vertices sharing the same color are pairs uv, vu such that u, v ∈ V and (u, v) /∈ E.
Then u and v must be in different connected components of the clique partition,
and so u and v (and therefore also uv and vu) are in different connected compo-
nents of the constructed graph. Each connected component of the constructed
graph is colorful. ut

Proof (of Lemma 7). Let G′ be a graph which can be transformed, by removing
a collection of edges E′′ ⊆ E′, into a graph consisting of k connected colorful
components. We show that we can modify E′′, without increasing the number
of connected components in the resulting graph and while ensuring that each
connected component stays colorful, so that E′′ does not contain any edge from
the set of additional edges E′a. Then, by removing E′′ from G, we obtain a valid
partition of G into at most k cliques: For any pair of vertices u, v ∈ V such
that (u, v) /∈ E, there are two vertices uv and vu in G′, sharing the same color
and connected with u and v, respectively, via additional edges. As no additional
edges are contained in E′′ and each connected component of (V ′, E′ \ E′′) is
colorful, u and v must be in different connected components of (V ′, E′ \ E′′).
In the partition of G the vertices u and v are then also in different connected
components, and so we obtain a partitioning of G into at most k cliques.

We now show how to modify E′′. For each additional edge e = (u, uv) ∈ E′a
which is in E′′ we perform the following operation. First, we remove e from E′′.
That decreases the number of connected components by one, but might result in
an infeasible solution. However, the only pair of vertices of the same color which
are in the same connected component of (V ′, E′ \ E′′) can now be uv and vu.
Denote by C the connected component of (V ′, E′ \ E′′) containing uv and vu,
and therefore also u and v. We now find a minimum cut separating u from v in
C, and add the edges of the cut to E′′. That results in splitting C into exactly
two connected components, and each of the two components is colorful.

We perform the above operation for each additional edge e = (u, uv) ∈ E′′,
and at the end we obtain a set E′′ satisfying the needed conditions. By removing
E′′ from G we get a partition of G into at most k cliques. ut

Proof (of Theorem 3). Let G = (V,E) be an instance of the Minimum Clique
Partition problem, and G′ = (V ′, E′) the corresponding instance of the MCC
problem, obtained by our reduction. From Lemmas 6 and 7 we obtain, that
the cost of an optimal solution for the MCC problem for G′ is the same as the
cost of an optimal solution for the Minimum Clique Partition problem for G.
We know that the Minimum Clique Partition problem is hard to approximate
within a factor of |V |1/7−ε, unless P = NP , or within a factor of |V |1/2−ε, unless
ZPP = NP , were |V | is the number of vertices in the graph G. Since G′ has
|V ′| ≤ |V |2 vertices, our theorem follows. ut

	Algorithmic and Hardness Results for the Colorful Components Problems

