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Abstract. We consider the Max-Buying Problem with Limited Supply,
in which there are n items, with Ci copies of each item i, and m bidders
such that every bidder b has valuation vib for item i. The goal is to find a
pricing p and an allocation of items to bidders that maximizes the profit,
where every item is allocated to at most Ci bidders, every bidder receives
at most one item and if a bidder b receives item i then pi ≤ vib. Briest
and Krysta presented a 2-approximation for this problem and Aggarwal
et al. presented a 4-approximation for the Price Ladder variant where
the pricing must be non-increasing (that is, p1 ≥ p2 ≥ · · · ≥ pn). We
present an e/(e − 1)-approximation for the Max-Buying Problem with
Limited Supply and, for every ε > 0, a (2 + ε)-approximation for the
Price Ladder variant.
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1 Introduction

One interesting economic problem faced by companies that sell products or pro-
vide services to consumers is to choose the price of products or services in order
to maximize profit. If prices are high then some consumers will not want to (or
will not be able to) buy the product and if the prices are low, the company could
obtain a low profit. This is a vastly studied problem, with different models for
different situations and a great diversity of approaches [14,15,17,18].

One way to address this problem is through the nonparametric approach [16],
where the company collects the preferences of consumers groups (for example,
using a website) and optimizes according to some assumptions on the consumer
behavior.

In this scenario, we have n products or services (that we will call items)
and there are m consumers (that we will call bidders) in the market. At first,
we consider that there is an unlimited supply of every item. The auctioneer
(the price setter) wants to assign a price pi for every item i with the objective
of maximizing her/his profit (the sum of the prices of sold items considering
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multiplicities). For this, the auctioneer gathers information about the valuations
of the bidders, that is, the largest amount that a bidder b is willing to pay for
item i (denoted by vib).

First of all, we assume that our market is unit-demand, that is, every bidder
desires to buy at most one item. We also assume that a bidder b will only buy an
item if it is not too expensive (that is, if pi ≤ vib). We call those items feasible
for b. If there is no feasible item for b then b does not buy any item.

Three models were introduced by Rusmevichientong et al. [16]. In the
Min-Buying Problem, we consider that every bidder will buy one of the
less expensive items that are feasible. In the Rank-Buying Problem, we
also know the preference order among the items for every bidder and we con-
sider that a bidder will buy the most preferred feasible item. Finally, in the
Max-Buying Problem, we consider that every bidder will buy one of the most
expensive items that are feasible.

There are also some restrictions that one can impose on the problems men-
tioned above. One of such restrictions is called limited supply, that is, every
item has some maximum number of copies that can be sold. Sometimes a com-
pany knows (or desires) an ordering in the prices of its products and we can im-
pose a price ladder, that is, consider only pricings that have p1 ≥ p2 ≥ · · · ≥ pn.
Finally, one can also focus on uniform budgets, where every bidder b has a
set of items Ib and a value Vb such that, for every item i, vib = Vb if i ∈ Ib and
vib = 0 otherwise.

Rusmevichientong et al. [16] showed that, if we impose a price ladder, then
one can solve the Min-Buying Problem with Uniform Budgets in polynomial
time. Later on, Aggarwal et al. [1] proved several results for these models con-
sidering non-uniform budgets. They presented a polynomial-time approxima-
tion scheme for the Max-Buying Problem with a Price Ladder and showed how
to reduce the Rank-Buying Problem with a Price Ladder to the Max-Buying
Problem with a Price Ladder. They also presented a 4-approximation algo-
rithm for the Max-Buying Problem with a Price Ladder and Limited Supply.
For the case where we do not have a price ladder, Aggarwal et al. presented an
e/(e− 1)-approximation algorithm for the Max-Buying Problem along with a
lower bound of 16/15, a log(m)-approximation that can be used for the three
models and a 1+ε lower bound for the Min-Buying Problem, for some constant ε.

Another variant considered by Aggarwal et al. [1] is the online version of
the Max-Buying Problem with Limited Supply where we know the valuation
matrix v in advance but we do not know the arrival order of the bidders and
we have to choose a pricing. When a bidder arrives, he buys the most expensive
feasible item that still has an unsold copy. They proved that, for any fixed
pricing, the revenue obtained by any ordering of the bidders is at least 1/2 of
the revenue obtained by an optimal ordering of the bidders. From this, it follows
that any α-approximation for the Max-Buying Problem with Limited Supply
(with or without a price ladder) is also 2α-competitive for the online version.

Briest and Krysta [3] showed that the Min-Buying Problem is not
approximable within O(logε m) for some positive constant ε, unless



NP ⊆ DTIME(nO(log logn)), within O(ℓε) where ℓ is an upper bound on the num-
ber of non-zero valuations per bidder, and within O(nε) under slightly stronger
assumptions. They also showed that the Max-Buying Problem with a Price Lad-
der is strong NP-hard and they presented a 2-approximation algorithm for the
Max-Buying Problem with Limited Supply (without a price ladder).

Guruswami et al. [10] studied the Envy-Free Pricing Problem, where a
bidder b must receive an item in the set Db = {i ∈ I : pi < vib} that maxi-
mizes vib − pi. If such set is empty, then b must either receive no item or receive
an item such that pi = vib. The problem was considered in a more general set-
ting where bidders have valuations for bundles of items (like in a combinatorial
auction [13, Chap. 11]), but their work focus on unit-demand auctions and also
on single-minded bidders. This problem is related with the one of finding a Wal-
rasian Equilibrium [21] and it is, actually, a relaxation of such equilibrium where
we allow unsold items to have non-zero pricing. If we exchange the objective to
maximizing the social welfare instead of maximizing the auctioneer’s profit, then
it is possible to use the well-known VCG mechanism [20,5,9] to solve the problem
in polynomial time, with the nice property that the mechanism is also truthful.

Guruswami et al. proved that the Envy-Free Pricing Problem for the
unit-demand case is APX-hard and provided an O(logn)-approximation for
it. Latter on, Briest [2] showed that this problem cannot be approximated
within O(logε |B|) for some ε > 0 if we assume some specific hardness of refuting
random 3SAT-instances or approximating the balanced bipartite independent set
problem in constant degree graphs.

1.1 Our Results

We present two new approximation algorithms for the Max-Buying Problem
with Limited Supply, one for the general case and another for the case where
a Price Ladder is given. Both algorithms improve the previously best know
approximation ratio for these problems.

For the Max-Buying Problem with Limited Supply (without a price ladder),
we present an e/(e− 1)-approximation improving the previous upper bound of 2
by Briest and Krysta [3]. (Recall that e/(e − 1) < 1.582.) Also, this algorithm
has the same approximation ratio as the algorithm for the Max-Buying Problem
(with unlimited supply) presented by Aggarwal et al. [1]. Note that unlimited
supply is a particular case of our problem where the number of copies of every
item is the number of bidders. We believe that the algorithm is interesting by
itself: it uses an integer programming formulation with an exponential number
of variables to do a probabilistic rounding and also it explores some structure of
the problem that could be useful when developing approximations for the other
problems previously described. We also show how to find a deterministic algo-
rithm though derandomization of our algorithm using the method of conditional
expectations [6,19].

For the Max-Buying Problem with Limited Supply and a Price Ladder, we
present a family of algorithms parametrized by a positive rational ε such that



the algorithm is polynomial for constant ε and provides an approximation ratio
of 2 + ε.

Notice that, using the result presented by Aggarwal et al. [1], our first algo-
rithm is 2e/(e− 1)-competitive for the online version of the Max-Buying Prob-
lem with Limited Supply and our second algorithm is (4 + ε)-competitive for
the online version of the Max-Buying Problem with Limited Supply and a Price
Ladder.

This paper is organized as follows. In the next section, we present some
notation and describe formally the problem that we address. In Sect. 3 we present
an e/(e − 1)-approximation for the Max-Buying Problem with Limited Supply
and in Sect. 4 we present, for a given positive rational ε, a (2+ε)-approximation
for the Max-Buying Problem with Limited Supply and a Price Ladder. Finally,
in Sect. 5 we present our final remarks. In Appendix A we present the omitted
proofs and in Appendix B we show how to derandomize the algorithm presented
in Sect. 3.

2 Model and Notation

We denote by B the set of bidders and by I the set of items.

Definition 1. A valuation matrix is a non-negative integer matrix v indexed

by I ×B.

The number vib represents the value of item i to bidder b.

Definition 2. A pricing is a non-negative rational vector indexed by I.

Definition 3. An allocation is a vector x indexed by B where xb is the item

allocated to bidder b. If a bidder b does not receive an item, then xb = ∅.

Note that an allocation is not necessarily a matching, as the same item can
be assigned to more than one bidder (each one receives a copy of the item).

Definition 4. Given a valuation v and a pricing p, we say that item i is feasible
for bidder b if vib ≥ pi.

Definition 5. The Max-Buying-Limited Problem consists of, given a valua-

tion v and a vector C indexed by I, finding a pricing p and an allocation x that

maximizes the auctioneer’s profit such that every item is allocated to at most Ci

bidders and every bidder either receives no item or receives a feasible item.

Notice that, in spite of the name of the problem, we do not demand that a
bidder b receives a feasible item i that maximizes pi. That is, we allow bidder b
to receive another item (or none at all) if the most expensive item that is feasible
to b is sold out (that is, all copies are allocated to other bidders).

Next we formalize the variant of the problem where we have a Price Ladder.

Definition 6. The Max-Buying-PL-Limited Problem is a variant of the

Max-Buying-Limited Problem where the prices are restricted to be non-

increasing, that is, p1 ≥ · · · ≥ pn, where n = |I|.



3 An Algorithm for Limited Supply

Next, we present a new approximation algorithm for the Max-Buying-Limited
Problem with a better ratio than the approximation presented by Briest and
Krysta [3]. This approximation can also be used for the Max-Buying Problem
(without limited supply) and has the same ratio than the approximation (for
the Max-Buying Problem) presented by Aggarwal et al. [1].

First, consider a solution (x, p) of the Max-Buying-Limited Problem, an
item i and the set S of bidders that bought item i. Note that, because i is
feasible for every bidder in S, we have that pi ≤ min{vib : b ∈ S}. If S 6= ∅
and pi < min{vib : b ∈ S}, then (x, p) cannot be an optimal solution because
one could increase the price of i to obtain a strictly better solution. We conclude
that we may assume, w.l.o.g., that pi = min{vib : b ∈ S} for every item i that is
bought by a set S of bidders.

We will present an IP formulation for the Max-Buying-Limited Problem that
is heavily based in the observation above and in the next definitions. From this
formulation, we will design a randomized rounding approximation algorithm.

Definition 7. For an item i, let S(i) = {(i, S) : S ⊆ B, |S| ≤ Ci}. We

call (i, S) ∈ S(i) a star of i and we denote by S the set of all stars, that

is, S =
⋃

i∈I S(i).

Note that, for S ⊆ B and an item i, S ∪ {i} induces a star in the complete
bipartite graph where the parts of the bipartition are I and B.

Definition 8. Let (i, S) be a star of item i. We denote min{vib : b ∈ S}
by P(i,S), that is, the price of item i when sold to the set S of bidders.

Notice that a feasible solution of the Max-Buying-Limited Problem can be
seen as a collection of stars, one for each item, with every bidder in at most one
star and the price of an item i being P(i,S), where (i, S) is the star selected for
item i.

Next, we present our formulation, called (SF), in which we have a binary
vector x of variables, with |S| positions, where x(i,S) is equal to 1 if and only if
the set of bidders that receive item i is precisely S. The goal is to determine x
that

(SF) maximizes
∑

(i,S)∈S

|S|P(i,S)x(i,S)

subject to
∑

(i,S)∈S(i)

x(i,S) = 1, ∀i ∈ I

∑

(i,S)∈S:b∈S

x(i,S) ≤ 1, ∀b ∈ B

x(i,S) ∈ {0, 1}, ∀(i, S) ∈ S.

The formulation (SF) can be seen as a reduction of our problem to the
Set Packing Problem [7]. A similar idea was used by Hochbaum [11] to obtain



an O(logn)-approximation for the Metric Uncapacitated Facility Location Prob-
lem by reducing it to the Set Cover Problem [7]. In our case, we can use the
weight structure of the sets to obtain a constant factor approximation for our
problem.

This formulation can have Ω(|I|2|B|) variables. But, fortunately, it is possi-
ble to solve its linear relaxation in polynomial time using a column generation
procedure.

Lemma 9. The linear relaxation of formulation (SF) can be solved in polyno-

mial time. ⊓⊔

We will use this IP formulation to develop an approximation algorithm for
the Max-Buying-Limited Problem using probabilistic rounding. Next we present
our algorithm.

StarRounding(I, B, v)

1 Let x be an optimal solution of the linear relaxation of (SF) for (I, B, v)
2 for every item i ∈ I
3 Choose a star Si ∈ S(i) with probability P(Si = (i, S)) = x(i,S)

4 Set the price of i as PSi

5 for every bidder b ∈ B
6 Let i be the item such that Si = (i, S) with b ∈ S and maximum PSi

7 Sell item i to bidder b
8 if there is no such item, bidder b does not receive an item

Theorem 10. StarRounding is an e
e−1 -approximation for the Max-Buying-

Limited Problem.

Proof. First, notice that the objective function of (SF) can be rewritten
as
∑

b∈B

∑

(i,S)∈S:b∈S P(i,S)x(i,S) and that this value is an upper bound on the
value of an optimal solution of our problem. We will prove that the expected
price paid by bidder b is at least e−1

e

∑

(i,S)∈S:b∈S P(i,S)x(i,S), from where the
result will follow.

Consider a bidder b and a non-increasing (in P(i,S)) ordering of the stars
(i, S) with b ∈ S and x(i,S) > 0. Let k be the number of such stars. If k = 0,
then the result trivially holds. From now on, we assume that k > 0.

We will denote the ℓ-th star on this ordering simply by ℓ, its price by Pℓ and
its primal variable by xℓ. If the star ℓ is (i, S), we define c(ℓ) = i, that is, c(ℓ) is
the item of star ℓ. Also, we define yℓ =

∑

{xℓ′ : ℓ
′ < ℓ and c(ℓ′) = c(ℓ)}. Finally,

we denote by Eℓ the event in which star ℓ was chosen by StarRounding.

Let f(x) = 1−e−x

x . For some 1 ≤ ℓ ≤ k, we denote f(
∑k

i=ℓ xi) simply by fℓ.
Notice that, using the fact that 1 − x ≤ e−x, we conclude that fℓ ≤ 1 for
every 1 ≤ ℓ ≤ k.

Let profit(b) be the profit that we obtain from bidder b. Notice that,
for 1 ≤ ℓ ≤ k, E[profit(b)|E1, . . . , Eℓ−1, Eℓ] = Pℓ because StarRounding will
allocate c(ℓ) (or another item with the same price) to bidder b because c(ℓ)



is one of the most expensive items that has b in the chosen star. Also, notice
that P(Eℓ|E1, E2, . . . , Eℓ−1) = xℓ

1−yℓ

, because we choose the star of an item
independently of the star chosen for other items.

Using the observations above, we will prove, by induction in k − ℓ, that
E[profit(b)|E1, E2, . . . , Eℓ−1] ≥ fℓ

∑k
i=ℓ Pixi for every 1 ≤ ℓ ≤ k. From this, we

will conclude that E[profit(b)] ≥ f1
∑k

i=1 Pixi and the result will follow.
If ℓ = k, then E[profit(b)|E1, . . . , Eℓ−1] = Pkxk/(1 − yk) ≥ Pkxk ≥ fkPkxk.

Now, for ℓ < k, assume the result is valid for ℓ+ 1. We have that

E[profit(b)|E1, . . . , Eℓ−1] = E[profit(b)|E1, . . . , Eℓ−1, Eℓ]
xℓ

1− yℓ

+ E[profit(b)|E1, . . . , Eℓ−1, Eℓ]

(

1−
xℓ

1− yℓ

)

= Pℓ
xℓ

1− yℓ
+

(

1−
xℓ

1− yℓ

)

E[profit(b)|E1, . . . , Eℓ].

Using the induction hypothesis, we have that

Pℓ
xℓ

1− yℓ
+

(

1−
xℓ

1− yℓ

)

E[profit(b)|E1, . . . , Eℓ]

≥ Pℓ
xℓ

1− yℓ
+

(

1−
xℓ

1− yℓ

)

fℓ+1

k
∑

i=ℓ+1

Pixi

=
xℓ

1− yℓ

(

Pℓ − fℓ+1

k
∑

i=ℓ+1

Pixi

)

+ fℓ+1

k
∑

i=ℓ+1

Pixi.

Now, notice that, because
∑k

i=ℓ xi ≤ 1 and Pℓ ≥ Pi for all i ≥ ℓ, we have

that Pℓ ≥ Pℓ

∑k
i=ℓ xi ≥

∑k
i=ℓ Pixi. Using the fact that xℓ

1−yℓ

≥ xℓ, that fℓ+1 ≤ 1,

and that 1− x ≤ e−x for x ∈ [0, 1], we have that

xℓ

1− yℓ

(

Pℓ − fℓ+1

k
∑

i=ℓ+1

Pixi

)

+ fℓ+1

k
∑

i=ℓ+1

Pixi

≥ xℓ

(

Pℓ − fℓ+1

k
∑

i=ℓ+1

Pixi

)

+ fℓ+1

k
∑

i=ℓ+1

Pixi

≥ (1− e−xℓ)

(

Pℓ − fℓ+1

k
∑

i=ℓ+1

Pixi

)

+ fℓ+1

k
∑

i=ℓ+1

Pixi

= Pℓ − e−xℓPℓ + e−xℓfℓ+1

k
∑

i=ℓ+1

Pixi

= Pℓ(1− e−xℓ − e−xℓxℓfℓ+1) + e−xℓfℓ+1

k
∑

i=ℓ

Pixi.



Before we proceed, we need to show that 1− e−xℓ − e−xℓxℓfℓ+1 ≥ 0.
Let h(x) = 1− e−x − e−xxt for some 0 < t ≤ 1. Notice that h(0) = 0 and
that h′(x) = e−x + e−xxt− e−xt ≥ e−xxt ≥ 0, that is, h(x) is non-decreasing for
non-negative x, from which we conclude that h(x) ≥ 0 for every non-negative x.

Combining this with the fact that Pℓ ≥
∑

k

i=ℓ
Pixi∑

k

i=ℓ
xi

we have that

Pℓ(1− e−xℓ − e−xℓxℓfℓ+1) + e−xℓfℓ+1

k
∑

i=ℓ

Pixi

≥

∑k
i=ℓ Pixi
∑k

i=ℓ xi

(

1− e−xℓ − e−xℓxℓfℓ+1

)

+ e−xℓfℓ+1

k
∑

i=ℓ

Pixi

=

(

1− e−xℓ − e−xℓxℓfℓ+1 + e−xℓfℓ+1

k
∑

i=ℓ

xi

)

∑k
i=ℓ Pixi
∑k

i=ℓ xi

=

(

1− e−xℓ

(

1− fℓ+1

k
∑

i=ℓ+1

xi

))

∑k
i=ℓ Pixi
∑k

i=ℓ xi

.

Now, recall that fℓ+1

∑k
i=ℓ+1 xi = 1− e−

∑
k

i=ℓ+1
xi , so we conclude that

(

1− e−xℓ

(

1− fℓ+1

k
∑

i=ℓ+1

xi

))

∑k
i=ℓ Pixi
∑k

i=ℓ xi

= fℓ

k
∑

i=ℓ

Pixi.

That is, we have that E[profit(b)|E1, E2, . . . , Eℓ−1] ≥ fℓ
∑k

i=ℓ Pixi. From this
and the fact that f(x) ≥ e−1

e for every 0 < x ≤ 1, we conclude that

E[profit(b)] ≥
1− e−

∑
k

i=1
xi

∑k
i=1 xi

k
∑

i=1

Pixi ≥
e− 1

e

k
∑

i=1

Pixi

and the result follows. ⊓⊔

Also, it is easy to prove that the analysis is tight, as we do in the next lemma.

Lemma 11. For every ε > 0, there is an instance where the expected profit of

a solution found by StarRounding is smaller than ((e− 1)/e+ ε)OPT, where
OPT is the value of an optimal solution for this instance.

Proof. Consider this simple instance: we have a set of items I and only one
bidder b such that vib = 1, for every i ∈ I. It is easy to see that an optimal
solution for this instance has value 1. It is also clear that an optimal solution of
the linear relaxation has value 1. One of such optimal solutions is x such that
x(i,{b}) = 1/|I| and x(i,∅) = 1 − 1/|I|, for every item i ∈ I. Notice that bidder b
pays 1 if any of the stars (i, {b}) is chosen and pays 0 (because is unallocated)
otherwise. Thus we have

E[profit(b)] = 1−

(

1−
1

|I|

)|I|
|I|→∞
−−−−→ 1−

1

e

and the result follows. ⊓⊔



4 An Algorithm for Limited Supply with a Price Ladder

In this section we present, for every ε > 0, a (2 + ε)-approximation for the
Max-Buying-PL-Limited Problem. We use some ideas from the 4-approximation
algorithm for Max-Buying-PL-Limited Problem developed by Aggarwal et al. [1],
but in a different way, in order to obtain a better approximation ratio.

Definition 12. For a valuation matrix v, a positive rational α > 1, a posite

integer t, and every non-negative integer k, let dk = max{vib : i ∈ I, b ∈ B}/αk.

The Max-Buying-PL-Limited-(α, t) Problem is a variant of the Max-Buying-

PL-Limited Problem where every price is chosen from the set {d0, d1, . . . } and

every bidder receives, for every non-negative r, at most one item with price

in {drt, drt+1, . . . , d(r+1)t−1}.

Notice that, in the Max-Buying-PL-Limited-(α, t) Problem, a bidder can
receive more than one item but, for every multiple s of t, it can receive at most
one item with price in {ds, ds+1, . . . , ds+t−1}.

We start proving that we need to consider only a finite number of possible
prices.

Lemma 13. Consider an instance of the Max-Buying-PL-Limited-(α, t) Prob-

lem. There is a non-negative integer ℓ, whose value is bounded by a function that

is linear on the length of the representation of the instance, such that there is an

optimal solution where the price of every item is at least dℓ. ⊓⊔

We will prove this problem can be solved in polynomial time.

Theorem 14. The Max-Buying-PL-Limited-(α, t) Problem can be solved in

polynomial time.

Proof. Consider items i and j such that i ≤ j and a non-negative integer r.
Let P (i, j, r) denote the maximum profit achievable for selling items i, i+ 1, . . . , j
with a pricing such that ps ∈ {drt, drt+1, . . . , d(r+1)t−1} for every item s
and pi ≥ pi+1 ≥ · · · ≥ pj . Also let F (j, r) be the maximum profit achievable con-
sidering only prices between d0 and d(r+1)t−1 and items between 1 and j. We
have the following recurrence:

F (j, r) =











0, if j = 0,
P (1, j, r), if j > 0 and r = 0,
max
0≤i≤j

{F (i, r − 1) + P (i + 1, j, r)}, otherwise.

Let ℓ be as in Lemma 13 and notice that F (|I|, ℓ) is the value of an optimal
solution for the Max-Buying-PL-Limited-(α, t) Problem. For fixed t and α, if we
can compute P (i, j, r) in polynomial time, then this recurrence can be solved in
polynomial time.

In order to compute P (i, j, r) in polynomial time, we can enumerate every
possible pricing (there are at most |I|t such pricings) and construct a bipar-
tite graph G with bipartition sides {i, . . . , j} and B, where, for every item



k in {i, . . . , j} and every bidder b ∈ B, we have an edge {i, b} ∈ E(G) of
weight pi if and only if vib ≥ pi. Then it remains to find a maximum weighted
b-matching [4,12] on such graph, where every bidder is matched to at most one
item and every item i is matched to at most Ci bidders. ⊓⊔

We will now establish some relations involving the value of an optimal solu-
tion of the Max-Buying-PL-Limited Problem and the value of an optimal solu-
tion of the Max-Buying-PL-Limited-(α, t) Problem.

Lemma 15. Let OPT be the value of an optimal solution for the Max-Buying-

PL-Limited Problem and OPT′ be the value of an optimal solution for the Max-

Buying-PL-Limited-(α, t) Problem. We have that OPT′ ≥ OPT/α. ⊓⊔

Lemma 16. Consider an optimal solution of the Max-Buying-PL-Limited-(α, t)
Problem and let OPT′ be the value of such solution. There is a solution of the

Max-Buying-PL-Limited Problem, that can be computed in polynomial time, of

value SOL such that SOL ≥ αt−1
αt−1+αt−1OPT′.

Proof. Consider an optimal solution of the Max-Buying-PL-Limited-(α, t) Prob-
lem. We will construct a solution for the Max-Buying-PL-Limited Problem by
assigning to every bidder b the most expensive item bought by b (which can be
done in polynomial time).

For a bidder b, let K be the set of integers such that k ∈ K if and only if b
bought an item of price dk and let di denote the most expensive item bought by b.
Remember that, for every r, a bidder can buy at most one item of price drt+k

for 0 ≤ k < t. From this we conclude that

∑

k∈K

dk ≤ di +
∑

k∈K\{i}

d⌊k/t⌋t ≤ di +
∑

r≥0

di+rt+1.

Now, notice that di+rt+1 = di/α
rt+1, from which we conclude that

∑

k∈K

dk ≤ di +
∑

r≥0

di+rt+1 = di



1 +
1

α

∑

r≥0

(

1

αt

)r


 ≤ di

(

1 +
1

α

(

1

1− 1
αt

))

.

Notice that the profit obtained from b in the solution of the Max-Buying-PL-
Limited-(α, t) is exactly

∑

k∈K dk and the profit obtained from b in the solution
found for the Max-Buying-PL-Limited Problem is exactly di. But we concluded
that di ≥

αt−1
αt−1+αt−1

∑

k∈K dk, so the result follows. ⊓⊔

Combining the results of Lemmas 15 and 16, we can derive an approximation
for the Max-Buying-PL-Limited Problem.

Corollary 17. For every positive integer t and rational α > 1, there is

an
α(αt−1+αt−1)

αt−1 -approximation for the Max-Buying-PL-Limited Problem.



Proof. The algorithm is very simple: find an optimal solution (x, p) of the
Max-Buying-PL-Limited-(α, t) Problem as described in Theorem 14 and re-
turn (x̃, p), where the item allocated to a bidder b in x̃ is the most expensive
item allocated to b in (x, p).

Let SOL denote the value of the solution found, OPT denote the value of an
optimal solution of the Max-Buying-PL-Limited Problem and OPT′ denote the
value of an optimal solution of the Max-Buying-PL-Limited-(α, t) Problem.

By Lemma 15 we have that OPT′ ≥ OPT/α and by Lemma 16 we have that

SOL ≥ αt−1
αt−1+αt−1OPT′, hence we conclude that SOL ≥ αt−1

α(αt−1+αt−1)OPT and

we obtain the desired approximation ratio. ⊓⊔

Corollary 18. For every 0 < ε < 1, there is a (2 + ε)-approximation of the

Max-Buying-PL-Limited Problem.

Proof. Let α = 1+ ε
2 and t = ⌈logα(

2
ε +1)⌉ (notice that, because ε < 1, we have

that t is a positive integer). We have that

α(αt − 1 + αt−1)

αt − 1
= 1 + α+

1

αt − 1
≤ 1 +

(

1 +
ε

2

)

+
ε

2
= 2 + ε.

That is, we only have to carefully choose α and t and use the algorithm from
Corollary 17. ⊓⊔

5 Final Remarks

In this paper we focused on the Max-Buying Problem when we have limited
supply, considering the case with the price ladder restriction and without this
restriction.

Our results improve the previously best known approximation ratios for both
problems (with and without the Price Ladder restriction). This technique of
enumerating all possible allocations of items to bidders might also help in other
pricing problems.

We believe that pricing problems with limited supply are very interesting
because this is a realistic restriction and also a hard one to be considered from the
approximation algorithm perspective. Even though in general the Max-Buying
Problem seems to be simpler than the Min-Buying Problem, the Rank-Buying
Problem, and the Envy-Free Pricing Problem, it is not trivial to develop good
approximations for it when we have limited supply.

There are also some open problems. It is interesting to notice that our algo-
rithm for the Max-Buying-Limited Problem has the same ratio as the algorithm
presented by Aggarwal et al. [1] for the Max-Buying Problem. It would be nice
to develop an approximation with ratio better than e/(e−1) for the Max-Buying
Problem (and if possible also for the Max-Buying-Limited Problem) or to prove
that this value is a lower bound on the approximation ratio of every algorithm
for this problem.

In the case of the Max-Buying-PL-Limited Problem, it would be interesting
to design a PTAS (since there is a PTAS for the unlimited case, developed by



Aggarwal et al. [1]) or to prove that the problem is APX-hard. Also, notice that
the Price Ladder is not helping to achieve a better approximation ratio as it
happens for the unlimited supply version. This is somehow against our intuition
that knowing the prices order would make it easier to find good pricings. We do
not know if this is something intrinsic to this problem or if there are other ways
to exploit the Price Ladder in order to obtain better approximations.
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A Omitted Proofs

In this appendix, we present the proofs that were omitted due to space con-
straints.

Lemma 9. The linear relaxation of formulation (SF) can be solved in polyno-

mial time.

Proof. First, notice that the dual of the linear relaxation of (SF) is

minimize
∑

i∈I

αi +
∑

b∈B

βb

subject to αi +
∑

b∈S

βb ≥ P(i,S)|S| ∀(i, S) ∈ S

αi ∈ Q ∀i ∈ I
βb ≥ 0 ∀b ∈ B.

We will prove that we can solve the separation problem for this dual linear
program in polynomial time. From this, and using the result of Grötschel et
al. [8], we will conclude that we can solve this linear program in polynomial time
(and also obtain an optimal solution of the primal).

Consider that one is given a vector (α, β) that is a candidate to be a solution
of the dual above. We want, in polynomial time, to decide if (α, β) is indeed a
solution and, if (α, β) is not a solution, to provide a violated inequality.

First of all, we will assume that, for every bidder b, we have that βb ≥ 0,
because if there is a bidder b such that βb < 0, then (α, β) is clearly not feasible
and we can return the inequality βb ≥ 0 to prove it. Also, we will assume, w.l.o.g.
that Ci ≤ |B| for every item i.

Now, for some i ∈ I, b ∈ B, and k ∈ {1, . . . , Ci}, let S(i, b, k) denote the set of
stars (i, S) such that P(i,S) = vib, b ∈ S, and |S| = k. Note that, if S(i, b, k) 6= ∅,
then there is a star (i, S) ∈ S(i, b, k) that minimizes

∑

b∈S βb. Also, notice that
there is a star (i, S′) ∈ S(i, b, k) such that αi+

∑

b∈S′ βb < P(i,S′)|S
′| if and only

if αi +
∑

b∈S βb < P(i,S)|S| because P(i,S) = P(i,S′) = vib and |S| = |S′| = k.
We state that such (i, S) ∈ S(i, b, k) that minimizes

∑

b∈S βb can be found (if
it exists) in polynomial time. One has only to consider the first k−1 bidders b′ 6=
b in non-increasing order of βb′ such that vib′ ≥ vib (it is clear that if there
is less than k − 1 such bidders, then S(i, b, k) is empty). Also, we can decide
if αi +

∑

b∈S βb ≥ P(i,S)|S| in polynomial time .
To conclude our proof, notice that

S =
⋃

i∈I,b∈B
k∈{1,...,Ci}

S(i, b, k).

That is, one can iterate over all i ∈ I, b ∈ B, and k ∈ {1, . . . , Ci} and decide
if there is a star in S(i, b, k) that violates an inequality, thus our proof follows.

⊓⊔



Lemma 13. Consider an instance of the Max-Buying-PL-Limited-(α, t) Prob-

lem. There is a non-negative integer ℓ, whose value is bounded by a function that

is linear on the length of the representation of the instance, such that there is an

optimal solution where the price of every item is at least dℓ.

Proof. Let k be the length of the binary representation of the instance and let
ℓ be such that dℓ < 1 ≤ dℓ−1. We will prove that ℓ is linear on k and that there
is an optimal solution whose price of every item is at least dℓ.

By the definition of dℓ−1, we have that αℓ−1 ≤ max{vib : i ∈ I, b ∈ B}. Also,
notice that max{vib : i ∈ I, b ∈ B} ≤ 2k, that is, αℓ−1 ≤ 2k, from where we
conclude that (ℓ − 1) log2 α ≤ k, and deduce that

ℓ ≤
k

log2 α
+ 1 = O(k).

Consider now an optimal solution (x, p) of the Max-Buying-PL-Limited-(α, t)
Problem and suppose that there is at least one item i of price pi < dℓ. Also,
suppose, w.l.o.g., that items with price zero are not allocated in (x, p), since
they do not contribute for the value of the solution. We can construct another
solution (x, p̃) by setting p̃i = dℓ for every item i of price pi < dℓ and p̃i = pi
for every item i with pi ≥ dℓ. Notice that (x, p̃) is a feasible solution with the
same profit as (x, p), because it respects the price ladder and x allocates feasible
items to bidders. We conclude that there is an optimal solution where the price
of every item is at least dℓ. ⊓⊔

Lemma 15. Let OPT be the value of an optimal solution for the Max-Buying-

PL-Limited Problem and let OPT′ be the value of an optimal solution for the

Max-Buying-PL-Limited-(α, t) Problem. We have that OPT′ ≥ OPT/α.

Proof. Consider an optimal solution of the Max-Buying-PL-Limited Prob-
lem. By rounding down the price of every item to the nearest dk, we ob-
tain a feasible solution for the Max-Buying-PL-Limited-(α, t) Problem. Notice
that dk−1 = αdk, that is, we lose at most a factor of α by rounding down. An
optimal solution for the Max-Buying-PL-Limited-(α, t) Problem has value not
smaller than the value of this solution, thus the result follows. ⊓⊔

B Derandomizing

In this appendix we show how to design a deterministic e/(e− 1)-approximation
for the Max-Buying-Limited Problem using a derandomization of the algorithm
StarRounding presented in Sect. 3. We start with some useful definitions.

Definition 19. We denote by profit the random variable that represents the

value of the solution found by StarRounding. Also, for a bidder b, we de-

note by profit(b) the random variable that represents the profit obtained by

StarRounding from bidder b.



Definition 20. Let S1, . . . , SN be a non-increasing ordering in Ps of the stars

with xS > 0. We denote by Ej the event in which StarRounding selects star Sj

and by Ej the event in which Sj is not selected by StarRounding.

Our algorithm uses conditional expectations [6,19] to decide if it should keep
a specific star in the solution. For this we will have to make a decision for a
star k, that will be denoted by dk, as shown below.

Definition 21. Let S1, . . . , SN be a non-increasing ordering in Ps of the stars

with xS > 0, let K ⊆ {1, . . . , N} and, for every k ∈ K, let dk ∈ {Ek, Ek}. We

say that {dk}k∈K is feasible if, for every item i ∈ I, there is at most one star ℓ
of i such that ℓ ∈ K and dℓ = Eℓ.

That is, we say that {dk}k∈K is feasible if there is at most one chosen star
for every item.

Lemma 22. Let S1, . . . , SN be a non-increasing ordering in Ps of the stars with

xS > 0. Let b be a bidder, let K ⊆ N be such that if ℓ ∈ K contains b then for

every star ℓ′ < ℓ that contains b we have that ℓ′ ∈ K. It is possible to calculate

E[profit(b)|{dk}k∈K ] in polynomial time.

Proof. First, notice that N is polynomial in |I| + |B|. If there is k ∈ K such
that dk = Ek and Sk contains bidder b, then because we are considering the
stars in a non-increasing order and StarRounding is such that a bidder gets
an item with maximum price among the ones that selected it, we have that
E[profit(b)|{dk}k∈K ] = PSk∗

where Sk∗ is the star with smallest index that
contains b and dk∗ = Ek∗ .

If this is not the case, then let T1, T2, . . . , Tt be the subsequence of S1, . . . , SN

of stars that contain b and let f be the mapping of indexes of T1, . . . , Tt to
S1, . . . , SN (that is, Tr = Sf(r)). If f(t) ∈ K, then every star that contains b
is in {Sk}k∈K and none of them is selected, from which we conclude that
E[profit(b)|{dk}k∈K ] = 0. If f(t) /∈ K, let Ts be the first star (in the order-
ing) that is not contained in {Sk}k∈K (notice that, by hypothesis, f(r) ∈ K and
df(r) = Ef(r) for every Tr with 1 ≤ r < s). We have that

E[profit(b)|{dk}k∈K ] = E[profit(b)|{dk}k∈K , Ef(k)]P(Ef(s)|{dk}k∈K)

+ E[profit(b)|{dk}k∈K , Ef(s)]P(Ef(s)|{dk}k∈K)

= Pf(s)P(Ef(s)|{dk}k∈K)

+ E[profit(b)|{dk}k∈K , Ef(s)]P(Ef(s)|{dk}k∈K).

Notice that P(Ef(s)|{dk}k∈K) = 0 if there is a star Su with u ∈ K such that
ds = Es and Su and Ts are stars of the same item (that is, this item already
has a selected star, so Tk does not have a chance of being selected). Otherwise,
P(Ef(s)|{dk}k∈K) = xf(s)/(1− y) where y =

∑

s∈K{xs|c(Ss) = c(Tk)}.

Finally, using the fact that E[profit(b)|{dk}k∈K , Ef(s), Ef(s+1), . . . , Ef(t)] = 0,

we can calculate E[profit(b)|{dk}k∈K , Ef(s)] in t− s+ 1 steps. ⊓⊔



Corollary 23. Let S1, . . . , SN be a non-increasing ordering in Ps of the stars

with xS > 0. For any 0 ≤ j ≤ N and every feasible {d1, d2, . . . , dj}, it is possible
to calculate E[profit|d1, . . . , dj ] in polynomial time.

Proof. Notice that E[profit|d1, . . . , dj ] =
∑

b∈B E[profit(b)|d1, . . . , dj ] and also
notice that {d1, . . . , dj} satisfies the property that if a star ℓ ∈ {1, . . . , j} con-
tains b then for every star ℓ′ < ℓ that contains b we have that ℓ′ ∈ {1, . . . , j}. We
can use Lemma 22 to calculate the expected value for every bidder and compute
the summation.

We are now ready to present the derandomized algorithm, called
DeterministicStarRounding.

DeterministicStarRounding(I, B, v)

1 Let x be an optimal solution of the linear relaxation for the input (I, B, v)
2 Let S1, . . . , SN be a non-increasing ordering in Ps of the stars with xS > 0
3 for j = 1 to N
4 Let i be the item of star Sj

5 if S∗
i is defined or E[profit|d1, . . . , dj−1, Ej ] < E[profit|d1, . . . , dj−1, Ej ]

6 dj = Ej

7 else S∗
i = Sj

8 dj = Ej

9 for every bidder b ∈ B
10 Let i be the item such that S∗

i = (i, S) with b ∈ S and maximum PSi

11 Sell item i to bidder b
12 if there is no such item, bidder b does not receive an item

Theorem 24. DeterministicStarRounding is an e/(e − 1)-approximation

for the Max-Buying-Limited Problem.

Proof. We only have to prove that this derandomization provides the same
approximation ratio as before and that DeterministicStarRounding is a
polynomial-time algorithm. Notice that, for every 1 ≤ j ≤ N , we have that

E[profit|d1, d2, . . . , dj−1] = E[profit|d1, d2, . . . , dj−1, Ei]P(Ei|d1, d2, . . . , dj−1)

+ E[profit|d1, d2, . . . , dj−1, Ei]P(Ei|d1, d2, . . . , dj−1)

≤ E[profit|d1, d2, . . . , dj−1, dj ]

where dj is the decision that we made on step j. From this, using induction and
by Theorem 10, we conclude that E[profit|d1, . . . , dN ] ≥ E[profit] ≥ e/(e− 1).

For the time consumption analysis, recall that N is polynomial in |I|+ |B|
and that, by Corollary 23, we can compute E[profit|d1, . . . , dj−1, Ej ] and
E[profit|d1, . . . , dj−1, Ej ] in polynomial time. ⊓⊔
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