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Abstract

Min-entropy sampling gives a bound on the min-entropy of a randomly chosen
subset of a string, given a bound on the min-entropy of the whole string. König
and Renner showed a min-entropy sampling theorem that holds relative to quantum
knowledge. Their result achieves the optimal rate, but it can only be applied if the
bits are sampled in block, and only gives weak bounds for non-smooth min-entropy.

We give two new quantum min-entropy sampling theorems that do not have the
above weaknesses. The first theorem shows that the result by König and Renner also
applies to bitwise sampling, and the second theorem gives a strong bound for the
non-smooth min-entropy.

Our results imply strong lower bounds for k-out-of-n random access codes. While
previous results by Ben-Aroya, Regev, and de Wolf showed that the decoding probabil-
ity is exponentially small in k if the storage rate is smaller than 0.7, our results imply
that this holds for any storage rate strictly smaller than 1, which is optimal.

1 Introduction

Let us assume that two players share a long string x ∈ {0, 1}n, over which an adversary
has only partial knowledge. They would like to get a key, over which the adversary has
almost no knowledge. Since the string is long, using a 2-universal hash function or, more
generally, a normal strong extractor would be inefficient and hence impractical. Vadhan
showed in [Vad04] that the two players can instead first randomly sample a relatively small
substring x′ ∈ {0, 1}k of x, and then apply an extractor to x′. This works because with high
probability, the string x′ will have almost k

n
· t bits of min-entropy, if the min-entropy of x

is at least t. König and Renner showed in [KR07] that this holds works in the more general
case where the adversary has quantum information about x. Again, with high probability
the string x′ will have almost k

n
· t bits of quantum min-entropy.
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Related to these results are lower bounds for random access codes. This is an encoding
of n classical bits into m < n qubits, such that from the encoding, a randomly chosen subset
of size k can be guessed with probability at least p. The first lower bound was given for
the case where k = 1 by Ambainis, Nayak, Ta-Shma and Vazirani in [ANTSV99]. It was
later improved by Nayak in [Nay99] to m ≥ (1 −H(p))n, where H(·) is the binary entropy
function. For the general case where k ≥ 1, a lower bound was presented by Ben-Aroya,
Regev, and de Wolf in [BARdW08]. They showed that for any η > 2 ln 2 there exists a
constant Cη such that

p ≤ Cη

(

1

2
+

1

2

√

ηm

n

)k

.

It implies that if m < n/(2 ln 2) ≈ 0.7n, then p ≤ 2−Ω(k). In the same work they also showed
lower bounds for a variant of random access codes called XOR-random access codes, where
the player is asked to guess the XOR of a random subset of size k. De and Vidick presented
in [DV10] lower bounds for functional access codes, which is a generalization of XOR-random
access codes where the player is asked to guess the output of a function with binary output
chosen from a bigger set.

The result in [Vad04] implies a classical lower bound for k-out-of-n random access codes.
In principle, this would also be possible in the quantum setting, as the min-entropy is defined
as minus the logarithm of the guess probability. Unfortunately, the results by König and
Renner are not general enough to do that, because they require the sampling to be done in
blocks.

[BARdW08] showed that lower bounds for k-out-of-n random access codes imply lower
bounds for the one-way communication complexity of k instances of the disjointness problem.

1.1 Contribution

In this work we give two new results for quantum min-entropy sampling.
First, we show in Theorem 3 in Section 3 that the bounds given in Corollary 6.19 and

Lemma 7.2 in [KR07] also apply to the case where the sample is chosen bitwise, instead of
(recursively) in blocks. This result simplifies some protocols1 as it eliminates an artificial
extra step where the bits have to be grouped in blocks.

Second, building on previous results given in [BARdW08] and [DV10], in Section 4 we will
give a new quantum sampling theorem (Theorem 5). The proof of Theorem 5 is much simpler
than the min-entropy sampling results in [KR07], and give stronger bounds for non-smooth
min-entropy. It implies the following corollary.

Corollary 1. Let a cq-state ρXQ be given, where X ∈ {0, 1}n. Let T be a random subset of
[n] of size k. If for a constant c ∈ [0, 1] we have Hmin(X | Q)ρ ≥ cn, then

Hmin(XT | TQ)ρ ≥
H−1(c/2)

6
k − 5 .

1For example, it allows that the simpler and more intuitive Protocol 2’ in [KWW09] can be proved secure,
instead of the more complicated Protocol 2.
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Corollary 1 immediately implies the following bound for random access codes.

Corollary 2. Let ε > 0 be a constant. For any k-out-of-n random access code where the
storage is bounded by m ≤ (1− ε)n, the success probability is at most 2−Ω(k).

As the results in [BARdW08], Corollary 2 generalizes the bound given by Nayak to the
case where k ≥ 1. But while the results in [BARdW08] require that m < 0.7n, our results
imply that the success probability decreases exponentially in k even if m is close to n.

Together with Lemma 8 in [BARdW08], Corollary 2 implies a strong lower bound for the
one-way communication complexity of k independent instances of the disjointness problem.

2 Preliminaries

The binary entropy function is defined as H(x) := −x log x− (1−x) log(1−x) for x ∈ [0, 1],
where we use the convention 0 log 0 = 0. For y ∈ [0, 1], let H−1(y) be the value x ∈ [0, 1

2
] such

that H(x) = y. The Hamming distance dH between two strings is defined as the number of
bits where the two strings disagree. We use the notion [n] := {1, . . . , n}. The substring of
x ∈ {0, 1}n defined by the set s ⊂ [n] is denoted by xs.

Let ρXQ be a cq-state of the form ρXQ =
∑

x px|x〉〈x| ⊗ ρxQ. The conditional min-entropy
is defined as

Hmin(X | Q)ρ := − logPguess(X | Q)ρ ,

where
Pguess(X | Q)ρ := max

E

∑

x∈X
PX(x) tr(Exρx) .

The maximum is taken over all POVMs E = {Ex}x∈X on Q. Pguess(X | Q)ρ is therefore the
probability to correctly guess X by measuring system Q. The equivalence of this definition
of Hmin with the definition used in [KR07] has been shown in [KRS09] in Theorem 1. The
statistical distance D(ρ, φ) between two states ρ and φ is defined as

D(ρ, φ) = max
E

| tr(E1ρ)− tr(E1φ)| ,

where we maximize over all POVMs E = {Ex}x∈{0,1}. D(ρ, φ) is therefore the maximal
probability to distinguish ρ and φ by a measurement. It can be shown that D(ρ, φ) =
1
2
‖ρ− φ‖1.

Lemma 1. Let ρXQ be a cq-state where X is binary and let τX be the fully mixed state.
Then D(ρXQ, τX ⊗ ρQ) ≤ ε implies that Pguess(X | Q)ρ ≤ 1

2
+ ε.

Proof. Let us assume that there exists a POVM E on Q that can guess X with a probability
bigger than 1

2
+ ε. We define a POVM E ′ on X ⊗ Q in the following way: We measure Q

using E and XOR the output with X . We have tr(E ′
1ρXE) <

1
2
− ε and tr(E ′

1(τX ⊗ ρQ)) =
1
2
.

Hence D(ρXQ, τX ⊗ ρQ) > ε, which contradicts the assumption.

Lemma 2 (Chernoff/Hoeffding). Let PX0...Xn
= P n

X be a product distribution with Xi ∈ [0, 1].
Let X := 1

n

∑n−1
i=0 Xi, and µ = E[X ]. Then, for any ε > 0, Pr [X ≤ µ− ε] ≤ e−2nε2.
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3 Bitwise Sampling from Blockwise Sampling

In this section we show that the min-entropy sampling results from [KR07], which require
blockwise sampling, also imply the same bounds for uniform bitwise sampling.

The following theorem is the statement of Corollary 6.19 in [KR07] for uniform sampling.
Here Hε

min is the smooth min-entropy, and H0 the Rényi 0-entropy. The definitions of these
entropies and their properties can be found in Section 5 in [KR07] or Chapter 3 in [Ren05].

Theorem 1 ([KR07]). Let ρXQ be a cq-state where X = (X1, . . . , Xn) ∈ X n. Let S ⊂ [n]
be chosen uniformly at random among all subsets of size r. Assume that κ = n

r log |X | ≤ 0.15.
Then

Hε
min(XS | S,Q)

H0(XS)
≥ Hmin(X | Q)

H0(X)
− 3ξ − 2κ log 1/κ ,

where ε = 2 · 2−ξn log |X | + 3e−rξ2/8

The statement says that with high probability, the min-entropy rate of a random subset is
almost as big as the min-entropy rate of the whole string. To achieve the required condition
n ≤ 0.15 · r log |X | (for example if X is a bit string), X might have to be grouped into blocks
first. But as pointed out in [BARdW08], even then the statement cannot be applied if we
want to sample a subset that is smaller than the square-root of the total length of the bit
string.

To overcome this problem, [KR07] proposed a recursive application of Theorem 1. The
following theorem is Lemma 7.2 in [KR07]. See Section 7 in [KR07] for the exact definition
of the sampling algorithm ReSamp(X, f, r, S).

Theorem 2 ([KR07]). Let ρXQ be a cq-state where X is a n-bit string. Let n, f and r be such

that n(3/4)f ≥ r4. Let S be a string of uniform random bits, and let Z = ReSamp(X, f, r, S).
Then Z is a n(3/4)f -bit substring of X, with

Hε
min(Z | S,Q)

H0(Z)
≥ Hmin(X | Q)

H0(X)
− 5f

log r

r1/4
,

where ε = 5f · 2−
√
r/8.

Since bitwise sampling is generally better than blockwise sampling, it seems that the
results of both Theorem 1 and 2 should also hold if the subset is sampled bitwise uniformly.
The following theorem shows that this is indeed the case.

Theorem 3. The bound of Theorem 1 and 2 also apply if the sample is chosen bitwise
uniformly.

Proof. Let k, n ∈ N, were k < n. Let ρXQ be a cq-state where X ∈ {0, 1}n. Let S ⊂ [n]
be chosen uniformly at random from all subset of size k and let T ⊂ [n] be a random
subset of size k chosen according to a given distribution PT . Let Π a permutation chosen
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uniformly at random, but such that it maps all elements in S into T . Strong subadditivity
(Theorem 3.2.12 in [Ren05]) implies

Hε
min(XS | S,Q) ≥ Hε

min(XS | S,Π, Q)

= Hε
min(Π(X)T | T,Π, Q) .

Note that from (S,Π) it is possible to calculate (T,Π), and vice-versa. Furthermore, since
Π is chosen independent of ρXQ, we have

Hε
min(Π(X) | Π, Q) = Hε

min(X | Π, Q) = Hε
min(X | Q) .

Since S was chosen uniformly and independent of T and ρXQ, Π is independent of T and ρXQ.
Setting Q′ := (Q,Π), we can apply Theorem 1 or 2 to the state ρΠ(X)Q′ , and get a bound on
Hε

min(Π(X)T | T,Π, Q), which then directly implies the same bound for Hε
min(XS | S,Q).

4 A Sampling Theorem from Quantum Bit Extractors

In this section we give a new min-entropy sampling theorem using a completely different
approach than [KR07]. Our proof has two steps. First, we show a bound on the guessing
probability of the XOR of a randomly chosen substring of X using results from [DV10],
which are based on strong quantum extractors. Second, we will show that this implies a
bound on the guessing probability of a randomly chosen substring of X . To show this we
use a similar approach as the proof of Theorem 2 in [BARdW08].

A function ext : {0, 1}n × {0, 1}d → {0, 1}m is a (ℓ, ε)-strong extractor against quantum
adversaries, if for all states ρXQ that are classical on X with Hmin(X | Q)ρ ≥ ℓ and for a
uniform seed R, we have D(ρext(X,R)RQ, τU ⊗ ρR ⊗ ρQ) ≤ ε, where τU is the fully mixed state.
A strong classical extractor is the same, but with a trivial system Q. If m = 1, we call it a
bit-extractor. König and Terhal showed in [KT08] that any classical bit-extractor is also a
quantum bit-extractor.

Theorem 4 (Theorem III.1 in [KT08]). Any (ℓ, ε)-strong bit-extractor is a (ℓ+log 1/ε, 3
√
ε)-

strong bit-extractor against quantum adversaries.

One way to construct a strong bit-extractor is to use a (ε, δ, L)-approximately list-decodable
code, which is a code C : {0, 1}n → {0, 1}m where for every c′ ∈ {0, 1}m there exist L strings
c1, . . . , cL ∈ {0, 1}n, such that for any string x ∈ {0, 1}n satisfying dH(c

′, C(x)) < (1
2
− ε)m,

there exists an i ∈ {1, . . . , L} such that dH(c
′, ci) ≤ δm. From a code C : {0, 1}n → {0, 1}2t,

we can build a bit-extractor ext : {0, 1}n × {0, 1}t → {0, 1} as ext(x, y) := C(x)y, where
C(x)y is the yth position of the codeword C(x).

Lemma 3 (Claim 3.7 in [DV10]). Let δ ∈ [0, 1
2
]. An extractor build from a (ε, δ, L)-

approximately list-decodable code C : {0, 1}n → {0, 1}2t is a (ℓ, ε)-strong classical bit-
extractor for ℓ > H(δ)n+ logL+ log 2/ε.
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The (n, k)-XOR-code over strings of length n is the code where the string x gets encoded
into a string of size

(

n
k

)

where each bit is the XOR of a subset of x of size k.

Lemma 4 (Lemma 42 in [IJK06], adapted in [DV10], Lemma 3.11). For ε > 2k2/2n, the
(n, k)-XOR-code is a (ε, 1

k
ln 2

ε
, 4/ε2)-approximately list-decodable code.

Combining Lemmas 3 and 4 with Theorem 4, we get the following lemma.

Lemma 5. Let ε > 2k2/2n and k ≥ 2 ln 2
ε
. The extractor build from the (n, k)-XOR-code

implies a (ℓ, 3
√
ε)-strong bit-extractor against quantum adversaries for

ℓ > H
(1

k
ln

2

ε

)

n+ 4 log
1

ε
+ 3 .

Proof. Using Lemma 3 and 4, the (n, k)-XOR-code implies a (ℓ, ε)-strong classical bit-
extractor for

ℓ > H
(1

k
ln

2

ε

)

n + log
4

ε2
+ log

2

ε
= H

(1

k
ln

2

ε

)

n+ 3 log
1

ε
+ 3 .

The statement follows from Theorem 4.

From Lemma 5 follows that that if a string X can only be guessed from Q with probability
at most 2−ℓ, i.e., Hmin(X | Q) ≥ ℓ, then the XOR of a random subset of size k can be guessed
with probability at most 1/2 + 3

√
ε.

The following lemma gives a bound on the probability to guess a whole substring, given
bounds on the probability to guess the XOR of substrings. It has been proven as a part of
Theorem 2 in [BARdW08]. For clarity, we include the proof here.

Lemma 6 (part of Theorem 2 in [BARdW08]). Let ρXQ be a cq-state where X ∈ {0, 1}n and
let p0, . . . , pk > 0 be upper bounds on the probability to guess the XOR of a random subset of
X of size j given Q and the subset. Then the probability to guess a random subset of X of
size k from Q and the subset is at most

1

2k

k
∑

j=0

(

k

j

)

(2pj − 1) .

Proof. Let PT be the uniform distribution among all subsets of [n] of size k, and let t be
distributed according to PT . Let PS|T=t be the distribution that chooses a random subset of
t. This defines the joint distribution PST , as well as the distributions PS and PT |S=s. Let

PJ(j) :=
1

2k

(

k

j

)

,

for j ∈ {0, . . . , k}. PJ(j) is the probability that the subset s has size j. We have PS(s) =
∑

j PJ(j)PS|J=j(s), where PS|J=j(s) is the uniform distribution over the subsets of [n] of size
j.
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For any t, let Et be a POVM on Q that guesses X for the subset t, for t chosen according
to PT . For any t, this defines a distribution PW |T=t over error-strings w ∈ {0, 1}k, where
w = 0k means that the guess was correct. For s ⊂ [k], let

QS|T=t(s) :=
1

2k

∑

w∈{0,1}k
PW |T=t(w)χs(w) ,

where χs(x) := (−1)x·s, i.e., it is the parity of the bits of w indexed by s. QS|T=t is the
Fourier-transform of PW |T=t, so we also have

PW |T=t(w) =
∑

s⊆[k]

QS|T=t(s)χs(w) .

Using all subsets of t as the domain of s, and since χs(0) = 1 for all s we can write

PW |T=t(0) =
∑

s⊆t

QS|T=t(s)χs(0) =
∑

s⊆t

1

2k

∑

w∈{0,1}k
PW |T=t(w)χs(w) .

Let p be the maximal probability to guess a subset t distributed according to PT . Note
that for s ⊆ t, we have PS|T=t(s) = 2−k. We get

p =
∑

t

PT (t)PW |T=t(0)

=
∑

t

PT (t)
∑

s⊆t

1

2k

∑

w

PW |T=t(w)χs(w)

=
∑

t

PT (t)
∑

s⊆t

PS|T=t(s)
∑

w

PW |T=t(w)χs(w)

=
∑

t,s

PTS(t, s)
∑

w

PW |T=t(w)χs(w)

=
∑

j

PJ(j)
∑

s

PS|J=j(s)
∑

t

PT |S=s(t)
∑

w

PW |T=t(w)χs(w) .

Given a set s of size j, let us apply the following algorithm to guess the XOR of the subset
s of X . We first sample t according to PT |S=s(t), then apply the POVM Et to Q, and then
output the XOR of the bits in s of the outcome. The probability that this algorithm guesses
correctly the XOR of a randomly chosen subset of size j is

∑

s

PS|J=j

∑

t

PT |S=s(t)
∑

w

PW |T=t(w)
1 + χs(w)

2
.

Since this must be upper bounded by pj , it follows that

∑

s

PS|J=j

∑

t

PT |S=s(t)
∑

w

PW |T=t(w)χs(w) ≤ 2pj − 1 .
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So we get

p ≤
∑

j

PJ(j)(2pj − 1) =
k

∑

j=0

1

2k

(

k

j

)

(2pj − 1) .

We can now use Lemmas 5 and 6 to proof our main result.

Theorem 5. Let a cq-state ρXQ be given, where X ∈ {0, 1}n. Let T be a random subset of
[n] of size k. If log 1

p
≤ k/12− 5 and

Hmin(X | Q)ρ ≥ H

(

6

k
log

17

p

)

n+ 8 log
12

p
+ 3 ,

then Hmin(XT | TQ)ρ ≥ log 1
p
.

Proof. From log 1
p
≤ k/12− 5 follows that 12 log(17/p) ≤ k and hence also 17 ln(17/p) ≤ k.

Since k ≤ n and 5k/12 ≥ log(17k)− 5, it follows also that

log
1

p
≤ k

12
− 5 ≤ k

2
− log(17k) ≤ n

2
− log(17k)

and hence p2 ≥ 288 · k2/2n. For j ∈ {0, . . . , n}, let pj be the guess probability of the XOR
for random subsets of size j. From Lemma 6 follows that

Pguess(XT | TQ)ρ ≤
1

2k

k
∑

j=0

(

k

j

)

(2pj − 1)

≤ 1

2k

k/4
∑

j=0

(

k

j

)

+ max
j′∈[k/4+1,k]

(2pj′ − 1) · 1

2k

k
∑

j=k/4+1

(

k

j

)

≤ 1

2k

k/4
∑

j=0

(

k

j

)

+ max
j′∈[k/4+1,k]

(2pj′ − 1) .

We have
k/4
∑

j=0

1

2k

(

k

j

)

= Pr
[

J ≤ k/4
]

,

where J =
∑

i∈[k] Ji and Ji are independent and uniform on {0, 1}. From Lemma 2 follows
that

Pr[J ≤ k/4] ≤ exp(−k/8) ≤ p/2 ,

since k ≥ 17 ln 17
p
> 8 ln 2

p
. Let ε := p2/144. Since k ≥ 17 ln 17

p
, we have

1

2
>

8

k
ln

17

p
>

4

k
ln

288

p2
=

4

k
ln

2

ε
,
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and hence

Hmin(X | Q)ρ ≥ H
(4

k
ln

2

ε

)

n + 4 log
1

ε
+ 3 .

From p2 ≥ 288 · k2/2n follows that ε ≥ 2k2/2n ≥ 2(k/4)2/2n. Lemma 5 implies that

max
j′∈[k/4+1,k]

(2pj′ − 1) ≤ 6
√
ε = p/2 .

The statement follows from the definition of Hmin.

Proof of Corollary 1. Let p := 2−H−1(c/2)k/6−5, which implies

H

(

6

k
log

17

p

)

≤ c

2
.

From H−1(c/2) ≤ 1
2
follows that

log
1

p
=

H−1(c/2)

6
k − 5 ≤ k

12
− 4 .

Since n ≥ k and 1
2
≥ x ≥ H−1(x), we have

log
1

p
=

H−1(c/2)

6
k − 5 ≤ H−1(c/2) · n

6
− 5 ≤ c/2

2
· n
6
− 5 ≤ cn

24
− 5 ,

which implies

8 log
12

p
+ 3 = 8 log

1

p
+ 8 log(12) + 3 ≤ cn

3
− 40 + 32 + 3 ≤ cn

2

Hence,

cn ≥ H

(

6

k
log

17

p

)

n + 8 log
12

p
+ 3 .

The statement follows from Theorem 5.

5 Lower Bounds for Random Access Codes

Corollary 1 directly implies a lower bound for random access codes: if we choose the string
X ∈ {0, 1}n uniformly and the quantum system Q has at most m ≤ (1 − ε)n qubits, then
by Proposition 2’ in [KT08], we have Hmin(X | Q) ≥ εn. Corollary 2 follows.

Theorem 1 or 2 in combination with Theorem 3 can be used to give a bound for random
acces codes, since Hε

min(X | Q) ≥ ℓ implies Pguess(X | Q) ≥ 2−ℓ + ε. But even though
the bounds given in Theorem 1 and 2 are almost tight for the smooth min-entropy, they
only give weak bounds on the min-entropy, since the smoothness error ε is relatively big: in
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Theorem 1 (using X = {0, 1}b), we sample from n′ := n/b block a subset of r := k/b blocks.
Since ξ ≤ 1 and κ = n′

rb
= n

kb
≤ 0.15, we have b ≥ n

0.15k
. Therefore

ε ≥ 3e−rξ2/8 = 3e−kξ2/(8b) ≥ 3e−0.15k2ξ2/(8n) ≥ 2−O(k2/n) .

In Theorems 2, it is required that k ≥ r4, which implies that

ε = 5f · 2−
√
r/8 ≥ 5f · 2− 8

√
k/8 = 2−O( 8

√
k) .

Therefore, Theorem 1 and 2 in combination with Theorem 3 can only provide us with weak
bounds for random access codes.

6 Open Problems

Both our sampling results only apply to the case where the sample is chosen uniformly. It
would be interesting to know if they can be generalized to other sampling strategies.
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