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Abstract. We introduce the telescopic relative entropy (TRE), which
is a new regularisation of the relative entropy related to smoothing, to
overcome the problem that the relative entropy between pure states is
either zero or infinity and therefore useless as a distance measure in this
case. We study basic properties of this quantity, and find interesting
relationships between the TRE and the trace norm distance. We then
exploit the same techniques to obtain a new and shorter proof of a lower
bound on the relative Renyi entropies in terms of the trace norm distance,
Tr ρ1−pσp ≥ 1 − ||ρ− σ||1/2.

1 Introduction

The quantum relative entropy between two quantum states ρ and σ,
S(ρ||σ) = Tr ρ(log ρ − log σ), is a non-commutative generalisation of the
Kullback-Leibler distance between probability distributions. Because of
its strong mathematical connections with von Neumann entropy, and its
interpretation as an optimal asymptotic error rate in quantum hypothesis
testing (in the context of Stein’s lemma) relative entropy is widely used
as a (non-symmetric) distance measure between states [7].

One of its drawbacks, however, is that for non-faithful (rank-deficient)
states the relative entropy can be infinite. More precisely, the relative
entropy is infinite when there exists a pure state ψ such that 〈ψ|σ|ψ〉 is
zero while 〈ψ|ρ|ψ〉 is not. In particular, relative entropy is useless as a
distance measure between pure states, since it is infinite for pure ρ and
σ, unless ρ and σ are exactly equal (in which case it always gives 0).

There are various possibilities to overcome this deficiency. In [5],
Lendi, Farhadmotamed and van Wonderen proposed a regularised relative

entropy as

R(ρ||σ) = cd S

(

ρ+ 11d
1 + d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ + 11d
1 + d

)

,

where d is the dimension, and cd is a normalisation constant. This only
works for finite-dimensional states.
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Another possibility, also useful for infinite dimensional states, is to
apply a smoothing process. One can define the smooth relative entropy

between states ρ and τ as the infimum of the ordinary relative entropy
between ρ and another state τ , where τ is constrained to be ǫ-close to σ
in trace norm distance:

Sǫ(ρ||σ) = inf
τ
{S(ρ||τ) : τ ≥ 0,Tr τ ≤ 1, ||τ − σ||1 ≤ ǫ} .

This form of smoothing has already been applied to Renyi entropies and
max-relative entropy [3,9], giving rise to a quantity with an operational
interpretation, but it could equally well be applied to ordinary relative
entropy.

In the case of the ordinary relative entropy there is a simple canonical
choice for σ that achieves the same purpose of regularisation but without
having to find the exact minimiser. Namely, we can take that τ that is
collinear with ρ and σ; i.e. τ = aρ+ (1− a)σ (with a = ǫ/||ρ− σ||1).

By operator monotonicity of the logarithm, we have

log(τ) = log(aρ+ (1− a)σ) ≥ log(aρ),

and, therefore,

S(ρ||τ) = Tr ρ(log ρ− log τ)

≤ Tr ρ(log ρ− log(aρ))

= − log a.

Thus, S(ρ||τ) is bounded above by − log a, which is finite for 0 < a < 1.
It therefore makes perfect sense to normalise S(ρ||τ) by dividing it by
− log a, producing a quantity that is always between 0 and 1.

These observations led us to define what we call the telescopic relative

entropy (TRE), a particular regularisation of the ordinary relative entropy
that is also defined in Hilbert spaces of infinite dimension:

Definition 1. For fixed a ∈ (0, 1), the a-telescopic relative entropy be-

tween states ρ and σ is given by

Sa(ρ||σ) :=
1

− log(a)
S(ρ||aρ+ (1− a)σ). (1)

Furthermore, we define

S0(ρ||σ) := lim
a→0

Sa(ρ||σ) (2)

S1(ρ||σ) := lim
a→1

Sa(ρ||σ). (3)

We’ll show below that these limits exist.



The origin of the name is that the operation σ 7→ aρ+ (1− a)σ acts like
a ‘telescope’ with ‘magnification factor’ 1/(1 − a), bringing the state σ
closer to the ‘vantage point’ ρ and bringing observed pairs of states σi
closer to each other.

The purpose of this paper is to initiate the study of this quantity. The
telescoping operation σ 7→ aρ + (1 − a)σ and subsequent scaling of the
relative entropy by 1/(− log a) may seem like a fairly innocuous opera-
tion, but has a number of far-reaching and sometimes unexpected conse-
quences. Because of the linearity of the telescoping operation, the TRE
inherits most of the desirable properties of the ordinary relative entropy.
However, a host of additional relations in the form of sharp inequalities
may be derived that in the case of the ordinary relative entropy simply
make no sense, because the constants appearing in the inequality would
be infinite. At the end of this paper, we briefly consider the telescoping
operation in the context of the relative Renyi entropies. We exploit the
same techniques used for the TRE to obtain a new and shorter proof of
a lower bound on the relative Renyi entropies in terms of the trace norm
distance, Tr ρ1−pσp ≥ 1− ||ρ− σ||1/2 [1].

2 Preliminaries

For any self-adjoint operatorX on a Hilbert spaceH, we denote by suppX
the support of X, i.e. the subspace of H which is the orthogonal comple-
ment of kerX, the kernel of X. The projector on the support of X will
be denoted by {X}. We denote by PX the orthogonal projector from H
onto suppX, so that P ∗

X is the injection of suppX back into H. Thus
P ∗

XPX = {X}. The compression of A to the support of X, which we’ll
denote by A|X , is the operator with domain suppX given by

A|X = PXAP
∗

X .

By definition, for any positive operator X ≥ 0, we have X|X > 0, strictly.
Two quantum states are mutually orthogonal, denoted ρ ⊥ σ, iff

Tr ρσ = 0.
For any self-adjoint operator X, X+ will denote the positive part

X+ = (X+|X|)/2. It features in an expression for the trace norm distance
between states:

T (ρ, σ) :=
1

2
||ρ− σ||1 = Tr(ρ− σ)+. (4)

The trace of the positive part has the variational characterisation TrX+ =
maxP TrXP , where the maximisation is over all self-adjoint projectors.
Hence, for all such projectors P , TrXP ≤ TrX+.



The Pinsker bound is a lower bound on the ordinary relative entropy
in terms of trace norm distance, [7].

S(ρ||σ) ≥ 2T (ρ, σ)2. (5)

No upper bound in terms of the trace norm distance is possible, because
the relative entropy can be infinite.

We will also need the following integral representation of the loga-
rithm: for x > 0, we have

log x =

∫

∞

0
ds

(

1

1 + s
− 1

x+ s

)

. (6)

This immediately provides an integral representation for the telescopic
relative entropy:

Sa(ρ||σ)

=
1

log a

∫

∞

0
ds Tr ρ[(ρ+ s)−1 − (aρ+ (1− a)σ + s)−1] (7)

=
1

log a

∫

∞

0
ds Tr ρ(ρ+ s)−1 (1− a)(σ − ρ) (aρ+ (1− a)σ + s)−1.(8)

Another integral we will encounter is
∫

∞

0 ds x/(x + s)2. For x = 0,
the integral obviously gives 0. For x > 0 it gives 1. Hence

∫

∞

0
ds (ρ+ s)−1 ρ (ρ+ s)−1 = {ρ}. (9)

From integral representation (6) we get an expression for the Fréchet
derivative of the matrix logarithm:

d

dt

∣

∣

∣

∣

∣

t=0

log(A+ t∆) =

∫

∞

0
ds (A+ s)−1∆(A+ s)−1.

It will be useful to introduce the following linear map, for A ≥ 0:

TA(∆) =

∫

∞

0
ds (A+ s)−1∆(A+ s)−1. (10)

Thus
d

dt

∣

∣

∣

∣

∣

t=0

log(A+ t∆) = TA(∆). (11)

It’s easy to check that for A ≥ 0, TA(A) = {A}. Thus, for A > 0, we have
TA(A) = 11.



From this integral representation it also follows that, for any self-
adjoint A, TA preserves the positive semidefinite order: if X ≤ Y , then
TA(X) ≤ TA(Y ). By cyclicity of the trace, we see that the map TA is self-
adjoint: TrBTA(∆) = Tr∆TA(B). Moreover, the map is positive semi-
definite, in the sense that Tr∆TA(∆) is positive for any self-adjoint ∆.
This follows from the integral representation and the fact that for positive
X and self-adjoint Y , TrXYXY = Tr(X1/2Y X1/2)2 ≥ 0.

3 Basic properties of Telescopic Relative Entropy

From the discussion in the Introduction, we recall that the value of the
telescopic relative entropy is always between 0 and 1, even for non-faithful
states. Furthermore, it inherits many desirable properties from the ordi-
nary relative entropy: positivity, the fact that it is only zero when ρ and
τ are equal (provided a > 0), joint convexity in its arguments, and mono-
tonicity under CPT maps.

As we do not restrict the arguments of the telescopic relative entropy
to states, the definition is also applicable (in a useful way) to non-negative
scalars:

Sa(b||c) =
b(log b− log(ab+ (1− a)c))

− log a
. (12)

For illustrative purposes, we graph the telescopic relative entropy for
a variety of qubit state pairs, in figures 1 and 2.
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Fig. 1. (a) Telescopic relative entropy Sa(ρ||σ) between state ρ = |0〉〈0|
and state σ = x|0〉〈0|+ (1− x)|1〉〈1|, with x ranging from 0 to 1, and for
various values of a; (b) same but for ρ = (2/3)|0〉〈0| + (1/3)|1〉〈1|.
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Fig. 2. (a) Telescopic relative entropy Sa(ρ||σ) between state ρ = 112/2
and state σ = |1〉〈1|, with a ranging from 0 to 1; (b) same but for σ =
(|0〉〈0| + 4|1〉〈1|)/5.

3.1 S0 and S1

One might think that the 1-telescopic relative entropy would be quite
useless, because for a = 1, S(ρ||aρ + (1 − a)σ) = S(ρ||ρ) = 0. Neverthe-
less, it is a non-trivial quantity due to the normalisation by 1/(− log a).
Likewise, one might mistakenly think S0 is essentially the ordinary rel-
ative entropy; it is far from it, and for the same reason. Indeed, for any
pair of states with finite ordinary relative entropy, e.g. when both states
are faithful, S0 is 0, due to the normalisation. The 0-telescopic relative
entropy shows its true colours exactly in those cases when the ordinary
relative entropy yields +∞.

In fact, for S0 and S1 we have the following closed form expressions:

Theorem 1. For any pair of states ρ, σ,

S0(ρ||σ) = 1− Tr ρ{σ} (13)

S1(ρ||σ) = 1− Trσ{ρ}. (14)

In particular, when σ is pure, S0(ρ||σ) = 1 − Tr ρσ, and when ρ is pure,
S1(ρ||σ) = 1−Tr ρσ. When σ is faithful, S0(ρ||σ) = 0; when ρ is faithful,
S1(ρ||σ) = 0.

Proof. Consider first the limit a → 1. Using de l’Hôpital’s rule we
find

lim
a→1

1− a

− log a
= 1.



Hence, by representation (8),

lim
a→1

Sa(ρ||σ) = −
∫

∞

0
ds Tr ρ(ρ+ s)−1 (σ − ρ) (ρ+ s)−1.

Therefore, from (9) we get the required

lim
a→1

Sa(ρ||σ) = −Tr(σ − ρ){ρ} = 1− Trσ{ρ}.

For the limit a→ 0 some more work is needed. Let us w.l.o.g. assume
that (ρ + σ)/2 is faithful; otherwise we take the compression of ρ and
σ to the support of (ρ + σ)/2. Again we use an integral representation,
but in its more basic form (7). To calculate the limit a→ 0 we apply de
l’Hôpital’s rule to the whole expression and get

S0(ρ||σ)

= lim
a→0

a
d

da

∫

∞

0
ds Tr ρ[(ρ+ s)−1 − (aρ+ (1− a)σ + s)−1]

= lim
a→0

∫

∞

0
ds Tr aρ(aρ+ (1− a)σ + s)−1 (ρ− σ) (aρ+ (1− a)σ + s)−1

= lim
a→0

∫

∞

0
ds Tr(ρ− σ)(aρ+ (1− a)σ + s)−1 aρ (aρ+ (1− a)σ + s)−1.

Here, the first factor a comes from the derivative of log a.
Because of our assumption that (ρ+ σ)/2 is faithful, aρ+ (1− a)σ is

faithful for any a ∈ (0, 1). Therefore, the integral
∫

∞

0
ds (aρ+ (1− a)σ + s)−1 (aρ+ (1− a)σ) (aρ+ (1− a)σ + s)−1

yields the identity operator 11. Using this fact, we can rewrite our last
expression for S0 as

S0(ρ||σ)

= lim
a→0

Tr(ρ− σ)[11 −
∫

∞

0
ds

(aρ+ (1− a)σ + s)−1 (1− a)σ (aρ+ (1− a)σ + s)−1]

= Tr(ρ− σ)[11 −
∫

∞

0
ds (σ + s)−1 σ (σ + s)−1]

= Tr(ρ− σ)(11 − {σ})
= 1− Tr ρ{σ},

as required. ⊓⊔



3.2 Pure states

From Theorem 1 we can derive the equalities

S0(ρ||σ) = S1(ρ||σ) = T (ρ, σ)2, (15)

for pure ρ and σ.

In fact, when ρ and σ are pure, there is a one-to-one relation between
Sa(ρ||σ) and T (ρ, σ) for any value of a ∈ [0, 1]. Although the relation is
somewhat complicated, in practice it shows that Sa(ρ||σ) is only slightly
bigger than T (ρ, σ)2 for a ∈ (0, 1).

Theorem 2. Let ρ, σ be two pure states with trace norm distance t =
||ρ− σ||1/2. Then, for a ∈ (0, 1),

Sa(ρ||σ) =
1

−2 log a

(

− log
w

4
− 1− w/(2a)√

1− w
log

1 +
√
1− w

1−
√
1− w

)

, (16)

where

w := 4a(1− a)t2. (17)

Proof. By a suitable unitary transformation, the problem can be trans-
formed to a two-dimensional one, with in particular

ρ =

(

1 0
0 0

)

, σ =

(

1− t
√

t(1− t)
√

t(1− t) t

)

.

The telescopic relative entropy is then given by

Sa(ρ||σ) =
1

− log a
(− log (aρ+ (1− a)σ))1,1

and after some basic calculations this reduces to the given formula. ⊓⊔
For example, let ρ and σ be two pure two-level states, with the angle

between their respective Bloch vectors equal to θ. Since their trace norm
distance is equal to t = | sin(θ/2)|, we have w = 2a(1 − a)(1− cos θ).

4 Comparison to trace norm distance

In this section, we provide bounds on the telescopic relative entropy in
terms of the trace norm distance.

It’s very easy to derive a lower bound from the Pinsker lower bound
on the ordinary relative entropy (5).



Theorem 3. For two quantum states ρ, σ,

Sa(ρ||σ) ≥
(1− a)2

− log(a)
2T (ρ, σ)2. (18)

Proof. Noting that T (ρ, τ) = (1− a)T (ρ, σ), this is a trivial consequence
of the bound S(ρ||τ) ≥ 2T (ρ, τ)2. ⊓⊔

While there is no upper bound on the ordinary relative entropy in
terms of the trace norm distance, we can find an upper bound on the
telescopic relative entropy. This bound has a very simple form, but is
nevertheless the strongest one possible.

Theorem 4. With τ = aρ+ (1− a)σ,

S(ρ||τ) ≤ − log(a)T (ρ, σ). (19)

This theorem immediately gives our first important relation for the
TRE.

Corollary 1. For any a ∈ (0, 1),

Sa(ρ||σ) ≤ T (ρ, σ). (20)

Equality can be obtained for any value of t = T (ρ, σ) in dimension 3 and
higher by choosing ρ = Diag(t, 0, 1 − t) and σ = Diag(0, t, 1 − t).

A second and unsuspected corollary is a strengthening of a very well-
known inequality (see, e.g. [8], Th. 3.7) for the entropy of an ensemble of
two states: for any two states ρ, σ and (p, 1−p) a probability distribution,

S(pρ+ (1− p)σ) ≤ pS(ρ) + (1− p)S(σ) + h(p), (21)

where h(p) = −p log p− (1− p) log(1− p) is the binary Shannon entropy.
This inequality is equivalent to subadditivity of the von Neumann entropy

(w.r.t. ordinary addition) for positive (non-normalised) operators: for any
A,B ≥ 0

S(A+B) ≤ S(A) + S(B). (22)

Indeed, substituting A = pρ and B = (1− p)σ yields (21).

The quantity S(pρ + (1 − p)σ) − (pS(ρ) + (1 − p)S(σ)) is known as
the Holevo quantity χ(E) for the ensemble E = {(p, ρ), (1 − p, σ)} (of
cardinality 2). The bound says that χ(E) ≤ h(p). Using Theorem 4, we
get a sharper bound:



Corollary 2. For any ensemble E = {(p, ρ), (1 − p, σ)} of cardinality 2,

χ(E) ≤ h(p) T (ρ, σ). (23)

Proof. Let τ = pρ+(1− p)σ. Notice that S(τ)− (pS(ρ)+ (1− p)S(σ)) is
equal to pS(ρ||τ)+(1−p)S(σ||τ). Applying inequality (19) to both terms
gives −p log(p)T (ρ, σ)− (1− p) log(1− p)T (ρ, σ) as an upper bound. ⊓⊔

Question. As inequality (21) immediately generalises to ensembles of
any cardinality ([6], section 11.3.6), namely, χ(E) ≤ H(p) (where H(p) is
the Shannon entropy of the probability distribution of E), it is fair to ask
for a similar generalisation of the Corollary.

In [10], related upper bounds were studied. For cardinality 2, a bound
was found in terms of the probability p and the Uhlmann fidelity between
ρ and σ, F = ||√ρ√σ||1. For cardinality 3, a generalisation was conjec-
tured in [4]. For general cardinalities a bound was proven that is sharper
than H(p) and is expressed in terms of the so-called exchange entropy
[10].

We now present the proof of Theorem 4. It relies on the properties of
the Fréchet derivative of the matrix logarithm given in Section 2.
Proof of Theorem 4.

Let ρ and σ be two given states, and τ = aρ+(1−a)σ. Define s = (1−a)/a,
which is a non-negative number. Thus τ = a(ρ + sσ). W.l.o.g. we will
assume that ρ+ sσ is full rank.

Let ∆ := ρ−σ, t := T (ρ, σ) = ||∆||1/2 and ω := ∆/t. Obviously, ω has
trace 0 and trace norm 2. Let its Jordan decomposition be ω = ω+ −ω−.
Thus ω ≤ ω+ and Trω+ = Trω− = 1.

Now consider the expression sTrωTρ+sσ(σ). Since Tρ+sσ(σ) ≥ 0, and
ω ≤ ω+, we have

sTrωTρ+sσ(σ) = TrωTρ+sσ(sσ)

≤ Trω+Tρ+sσ(sσ)

≤ Trω+Tρ+sσ(ρ+ sσ)

= Trω+11

= 1.

Then, noting that ρ = σ − tω,

(1 + s)Tr ρTρ+sσ(σ) = Tr(ρ+ sρ)Tρ+sσ(σ)

= Tr(ρ+ sσ − stω)Tρ+sσ(σ)



= Tr(ρ+ sσ)Tρ+sσ(σ)− tsTrωTρ+sσ(σ)

= TrσTρ+sσ(ρ+ sσ)− tsTrωTρ+sσ(σ)

= Trσ − tsTrωTρ+sσ(σ)

≥ 1− t.

Therefore,

Tr ρTρ+sσ(σ) ≥
1− t

1 + s
.

Integrating over s from 0 to (1− a)/a then yields

Tr ρ log(ρ+ (1− a)σ/a) − Tr ρ log(ρ) ≥ (1− t) log(1/a),

which becomes, after adding log a to both sides,

Tr ρ log(aρ+ (1− a)σ)− Tr ρ log(ρ) ≥ t log(a),

which is equivalent to the statement of the Theorem. ⊓⊔

5 Cases of maximality

The following theorem characterises those cases when the telescopic rel-
ative entropy achieves its maximal value of 1.

Theorem 5. For any a ∈ (0, 1), Sa(ρ||σ) = 1 iff ρ ⊥ σ.

Proof. We have Sa(ρ||σ) = 1 iff Tr ρ log(aρ) = Tr ρ log(aρ+ (1− a)σ) or,
puttingX = aρ and Y = (1−a)σ, iff TrX logX = TrX log(X+Y ). Since
X,Y ≥ 0, operator monotonicity of the logarithm gives TrX log(X+Y ) ≥
TrX logX. We want to characterise the cases of equality. One direction
is obvious; if X and Y are orthogonal, clearly we have equality.

To prove that there are no other possibilities, assume TrX(log(X +
Y )− logX) = 0. Consider first the case X > 0. Define Z = log(X +Y )−
logX. Because of monotonicity of the logarithm we have Z ≥ 0, hence
the assumption, TrXZ = 0, implies Z = 0, i.e. log(X + Y ) = logX. As
the logarithm is invertible on the set of positive operators, this can only
be true iff Y = 0.

Now consider the general case X ≥ 0, and assume X has a non-trivial
kernel. Then we can decompose the Hilbert space H as the direct sum
H = suppX ⊕ kerX. We have X = X|X ⊕ 0, with X|X > 0. W.l.o.g. we
can assume that X + Y > 0, so that its logarithm is well-defined. By the
convention to take limx→0 x log x = 0, TrX logX is well-defined, too, and
equal to TrX|X logX|X . The assumption TrX(log(X + Y )− logX) = 0



can then be written as TrX|X (log(X + Y )|X − log(X|X)) = 0. Let us
therefore define Z = log(X + Y )|X − log(X|X ).

As can be expected, Z ≥ 0. To prove this, put X ′ = X|X ⊕ ǫ11.
By operator monotonicity of the logarithm, log(X ′ + Y ) − logX ′ ≥ 0,
for all ǫ > 0. In particular, the compression to suppX is positive too:
log(X ′ + Y )|X − log(X ′)|X ≥ 0. Since X ′ is defined as a direct sum of X
and ǫ11, log(X ′)|X = log(X ′|X) = log(X|X). Since limǫ→0X

′+Y = X+Y ,
we get, indeed, log(X + Y )|X − log(X|X) ≥ 0.

The assumption reduces to TrX|X Z = 0. Because X|X > 0 and
Z ≥ 0, this implies Z = 0.

This implies Y |X = 0, so that, indeed, Y must be orthogonal to X.
⊓⊔

6 Relative Renyi Entropies

The relative Renyi entropies are parameterised modifications of the rela-
tive entropy given by

Tr ρ1−pσp,

where p is a real number. Here we restrict ourselves to the case 0 ≤ p ≤ 1.
Just as we have done for the relative entropy, one can define the

telescopic relative Renyi entropy, even though the problem of infinite
values does not pose itself here; indeed, Tr ρ1−pσp is always between 0 and
1. Nevertheless, some interesting relationships occur when telescoping the
relative Renyi entropies. In particular, by exploiting the methods used in
Section 4 we obtain a shorter and much simpler proof of an inequality
already proven in [1].

Let us therefore consider the quantity Tr ρ1−p(aρ+(1−a)σ)p. Firstly,
let us determine its extremal values for fixed values of a. Clearly, the
maximum is still 1, achieved when ρ = σ. The minimal value, however, is
now ap. This follows easily from operator monotonicity of the fractional
power x 7→ xp when 0 ≤ p ≤ 1. Indeed,

Tr ρ1−p(aρ+ (1− a)σ)p ≥ Tr ρ1−p(aρ)p

= apTr ρ1−pρp = apTr ρ = ap.

Equality can be achieved for orthogonal ρ and σ.
Hence, we define the telescopic relative Renyi entropies (TRRE) as

follows:

Definition 2.

Qp,a(ρ, σ) =
1

1− ap
(1− Tr ρp(aρ+ (1− a)σ)1−p). (24)



By the above, the TRRE has values between 0 and 1.

We now show that a sharper upper bound is given by the trace norm
distance between ρ and σ.

Theorem 6.

Qp,a(ρ, σ) ≤ T (ρ, σ). (25)

As a special case, we recover the bound Qp,0(ρ, σ) = 1 − Tr ρpσ1−p ≤
T (ρ, σ), which was instrumental in proving optimality of the Chernoff
bound in symmetric hypothesis testing [1].

Just as we did for the operator logarithm, we can define a linear map
based on the Fréchet derivative of the fractional power function xp, via

d

dt

∣

∣

∣

∣

∣

t=0

(A+ t∆)p =: TA;p(∆).

Since x 7→ xp is a non-negative operator monotone function for 0 ≤ p ≤ 1,
the fractional power of a positive operator A can be written as the integral

Ap =

∫

∞

0
dµp(s) (A+ s)−1A,

where dµp(s) is a certain measure, parameterised by p, that is positive
for 0 ≤ p ≤ 1. Its Fréchet derivative is therefore given by

d

dt

∣

∣

∣

∣

∣

t=0

(A+ t∆)p =

∫

∞

0
dµp(s) ((A+ s)−1∆− (A+ s)−1∆(A+ s)−1A)

=

∫

∞

0
dµp(s) s(A+ s)−1∆(A+ s)−1.

Therefore, TA;p has the integral representation

TA;p(∆) =

∫

∞

0
dµp(s) s(A+ s)−1∆(A+ s)−1. (26)

From this representation we easily derive the following properties:

1. TrXTA;p(Y ) = TrY TA;p(X) for any X and Y ;

2. the map TA;p preserves the positive definite ordering;

3. in particular, TA;p(B) is positive for positive B;

4. for 0 < p < 1, TA;p(A
1−p) = p{A}.



The last property follows from

TA;p(A
1−p) =

d

dt

∣

∣

∣

∣

∣

t=0

(A+ tA1−p)p

= pAp−1A1−p = p{A}.

Using these properties, we can easily prove the theorem.

Proof of Theorem 6. Let ∆ = ρ − σ, and t = T (ρ, σ) then ∆ has
Jordan decomposition ∆ = tω+ − tω−, where ω+ and ω− are orthogonal
density operators. Then

Tr(aρ)1−pTaρ+(1−a)σ;p(∆) ≤ Tr(aρ)1−pTaρ+(1−a)σ;p(tω+)

≤ Tr(aρ+ (1− a)σ)1−pTaρ+(1−a)σ;p(tω+)

= Tr tω+Taρ+(1−a)σ;p((aρ+ (1− a)σ)1−p)

= Tr tω+p{aρ+ (1− a)σ}
≤ pt.

In the first line we used the fact that ∆ ≤ tω+ and property 2; in the
second line we used operator monotonicity of x1−p and property 3; in the
third line we used property 1, and in the fourth property 4. In the last
line we used the fact that TrXY ≤ 1 when X is a density operator and
Y is a projector.

Exploiting the inequality just obtained in the last of the following
integrals, we get

1− Tr ρp(aρ+ (1− a)σ)1−p = Tr ρ1−p(ρp − (aρ+ (1− a)σ)p)

=

∫ 1

a
da

d

da
Tr ρ1−p(aρ+ (1− a)σ)p

=

∫ 1

a
da Tr ρ1−p d

da
(aρ+ (1− a)σ)p

=

∫ 1

a
da Tr ρ1−pTaρ+(1−a)σ;p(ρ− σ)

≤
∫ 1

a
da ap−1pt

= (1− ap)t,

which is equivalent to the statement of the theorem. ⊓⊔



7 Future work

In forthcoming papers we will explore further properties of the telescopic
relative entropy. One other problem with the ordinary relative entropy
is the absence of a triangle inequality, in the sense that no useful upper
bound exists on the difference S(ρ||τ1)− S(ρ||τ2). Indeed, this difference
can be infinite. It turns out that such a bound does exist for the tele-
scopic relative entropy. Together with an upper bound on the difference
S(ρ1||τ)− S(ρ2||τ) it will be presented and proven in [2].

We will also study an interesting connection with Hamiltonian recon-
struction. There is some evidence that the difference Sa(ρ||τ1)−Sa(ρ||τ2)
might provide non-trivial lower bounds on the time needed for state τ1 to
evolve unitarily into state τ2 under the influence of a Hamiltonian with
bounded energy.
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