
Agent-Oriented Software Engineering

Onn Shehory • Arnon Sturm
Editors

Agent-Oriented
Software
Engineering

Reflections on Architectures,
Methodologies, Languages, and
Frameworks

123

Editors
Onn Shehory
IBM Haifa Research Laboratory
Haifa
Israel

Arnon Sturm
Ben-Gurion University of the Negev
Beer-Sheva
Israel

ISBN 978-3-642-54431-6 ISBN 978-3-642-54432-3 (eBook)
DOI 10.1007/978-3-642-54432-3
Springer Berlin Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014940795

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Foreword

In the late 1960s, computing practitioners began to realize that the rapid devel-
opments in computer hardware—making computers cheaper, faster, smaller, and
more reliable—were not being matched by comparable developments in software.
On the contrary, it was realized that developing correct, efficient, reliable software
was much harder than had been generally anticipated. The situation was brought
into crisp focus by a stream of high-profile (and highly expensive) software project
failures. The term “software crisis” was coined to describe this dismal state of
affairs, and thus was born the discipline of software engineering. Describing the
software development process as “engineering” made plain the aspirations of
the new discipline. The idea was that, ultimately, software development should
be an engineering discipline as robust and well understood as other engineering
disciplines. Thus, building a large software system should be no more challenging
than a civil engineering project such as building a bridge: complex, certainly, but
manageable and predictable nonetheless. Of course, things haven’t quite turned out
that way, or at least not yet. In the 45 years since the software crisis, we have, for
sure, learned a huge amount about the nature of software and software development,
and the everyday software applications we take for granted would surely be regarded
as miraculous by the early software engineering pioneers. But this undoubted
success masks a disappointing truth: software remains hard to develop, and software
project failures are far from uncommon. Poorly designed, poorly implemented, and
error-prone software is all too common. The discipline of software engineering thus
remains as relevant and central to computer science as it was in 1970.

Contemporary software engineering encompasses a wide range of computa-
tional paradigms: procedural programming, object-oriented programming, service-
oriented programming, aspect-oriented programming, functional programming,
logic programming, and so on. Each different paradigm encourages us to think about
computation in a different way, and each comes with its own collection of models
and development techniques and its own design aesthetic. Logic programming,
for example, promotes the idea of computation as automated deduction, while
service-oriented computing adopts the idea of programs as service providers. The
multi-agent systems research domain, which emerged largely as a subfield of

v

vi Foreword

artificial intelligence in the 1990s, is concerned with building computer systems that
can effectively cooperate with each other, and in the 1990s, a number of researchers,
myself included, began to think about agents as a software engineering paradigm. If
the banner carried by the logic programming community carries the slogan “compu-
tation as deduction,” then the banner carried by the multi-agent systems community
might read “computation as cooperation,” or perhaps “computation as interaction.”
Adopting an agent-oriented view of software engineering implies conceptualizing
computer systems as consisting of collections of interacting (semi)autonomous
agents: the agents are seen as acting independently in pursuit of goals delegated to
them by users. The arguments in support of an agent-oriented software engineering
viewpoint are well known, and I won’t rehash them here: for me, the key point is that
the most natural way of conceptualizing certain systems is as societies of interacting,
semiautonomous agents. Indeed, in a system where control is inherently distributed
over multiple stakeholders with potentially competing interests, it is hard to imagine
any other reasonable conceptualization. If you accept this, then what follows is the
paradigm of agent-oriented software engineering.

If we hope to put agent-oriented software engineering on a par with other
software engineering paradigms, then there are a whole raft of issues we need to
address. First, and most fundamentally, we need to develop the right conceptual
toolkit: What are the key concepts in agent-oriented software engineering that we
use in the analysis and design of systems? These concepts will then underpin
methodologies for the analysis and design of multi-agent systems, programming
languages and development platforms for building and deploying systems, and so
on. There have been substantial developments in all of these areas since agent-
oriented software engineering was first mooted in the 1990s.

The present volume is a state-of-the-art collection of chapters on agent-oriented
software engineering. The chapters presented herein address all the issues that I
mentioned above, from methodologies to programming languages and development
platforms. While this volume does not mark the end of the story of agent-oriented
software development, it does, I think, represent an important milestone in the
history of the field and will surely prompt much future research and development.

Oxford, UK Michael Wooldridge
Spring 2014

Preface

Agent-based systems have evolved significantly during the last two decades.
The development of such systems involves, among others, artificial intelligence,
distributed systems, and software engineering. In this book, we focus on the soft-
ware engineering facet of agent-based systems, namely, Agent-Oriented Software
Engineering (AOSE). In particular, the book consists of a collection of state-of-the-
art studies in the AOSE domain. The chapters are organized in five parts: Part I
introduces the AOSE domain; Part II refers to the general aspects of AOSE; Part III
deals with AOSE methodologies; Part IV addresses agent-oriented programming
languages; and finally Part V presents studies related to the implementation of
agents and multi-agent systems.

Part I Introduction

This part includes Chaps. 1, 2, and 3 and introduces AOSE as detailed below.
Chapter 1 introduces the notion of software agents with an emphasis on core

design and engineering aspects. It elaborates on agent properties and dimensions,
emphasizing the novel concepts and abstractions introduced by agent-based systems
to software systems’ design and implementation.

In Chap. 2, we attempt at defining what AOSE is, make the case for its
emergence, and review its evolution throughout the years. We also provide insights
into the current status of the AOSE domain and point out future research directions.

Chapter 3, written by Jörg Müller and Klaus Fischer, examines the practical
application of multi-agent systems and technologies. The examination is based on
a comprehensive survey of MAS deployments and checks the maturity, ownership,
application domains, programming languages, and platforms of these deployments.
The chapter concludes that MAS applications have been successfully deployed in
a significant number of applications and were found to be useful in various market
sectors.

vii

viii Preface

Part II Aspects of Agent-Oriented Software Engineering

This part includes Chaps. 4, 5, and 6 and discusses the general aspects of AOSE.
In Chap. 4, we discuss the notion of multi-agent architectures and address the

merits of agents and multi-agent systems as a software architecture style.
Chapter 5, written by Joanna Juziuk, Danny Weyns, and Tom Holvoet, provides

a review of the usage of design patterns that are related to MAS. Overall, the authors
found that although many patterns exist, these are not well documented, organized,
and linked. Thus, the authors provide guidelines for the required efforts in order to
increase the usage of such patterns.

Chapter 6, written by Marc-Philippe Huget, overviews the landscape of MAS
communication as a major means for applying MAS. In particular, the chapter
discusses agent communication languages, ontologies, protocols, dialogue games,
argumentation systems, and multiparty communication.

Part III Agent-Oriented Software Engineering
Methodologies

This part includes Chaps. 7, 8, 9, and 10 and introduces AOSE methodologies.
In Chap. 7, we discuss agent-oriented methodologies, their desired characteris-

tics, and the extent to which they address these properties. In addition, we review
research efforts related to AOSE methodologies.

In Chap. 8, written by Lin Padgham, John Thangarajah, and Michael Winikoff,
the authors discuss Prometheus, a well-established and widely used methodology.
In particular, they stress the importance of testing within the development of MAS
and the challenges that exist in this respect.

In Chap. 9, written by Scott DeLoach, the need for practical, industrial strength of
agent-oriented methodologies is emphasized. In this respect, the chapter introduces
a customizable methodology that can be adapted and extended for a wide variety of
uses.

In Chap. 10, by Jorge Gomez-Sanz, the evolution of INGENIAS (a MAS
methodology) is described. In particular, the chapter emphasizes the engineering
aspect of designing the methodology and its supporting tools.

Part IV Agent-Oriented Programming Languages

This part includes Chaps. 11, 12, and 13 and presents agent-oriented programming
languages.

In Chap. 11, by Mehdi Dastani, a survey of the multi-agent programming
research field is presented. In particular, it defines the concepts and abstractions used

Preface ix

in multi-agent systems and the way these are integrated into the agent programming
languages and frameworks.

Chapter 12, by Koen Hindriks and Jürgen Dix, introduces a BDI-based MAS pro-
gramming language that incorporates SE principles. The chapter also demonstrates
the use of the language and its success within an exploration game.

Chapter 13, by Olivier Boissier, Rafael Bordini, Jomi Hübner, and Alessandro
Ricci, introduces JaCaMo, a platform for multi-agent-oriented programming that
incorporates abstractions related to agents, organizations, and environments, which
are essential parts of MASs.

Part V Multi-agent Systems Implementation

This part includes Chaps. 14, 15, and 16 and focuses on multi-agent implementation.
In Chap. 14, we survey MAS platforms and frameworks that facilitate MAS

implementation. We introduce the reader to a variety of tools and analyze their
suitability for MAS implementation needs. The analysis reveals that although many
tools were developed over the years, only a few of those are continually being used;
it has also become apparent that the evaluations of these tools are rather limited.

Chapter 15, by Renato Levy and Goutam Satapathy, discusses design consider-
ations of very large agent-based systems as applied to an energy distribution use
case. They further explore the nuances of the implementation of this use case in
CybelePro—an agent infrastructure—and stress the importance of verifying the
properties of such systems.

Chapter 16, by Benny Lutati, Inna Gontmakher, Michael Lando, Arnon Netzer,
Amnon Meisels, and Alon Grubshtein, introduces a framework for agent-oriented
programming for distributed constraint reasoning. The framework facilitates the
programming of such agents, the simulation of such systems, and the evaluation
of the system’s performance.

In this book, we aim to expose the reader to various facets of AOSE. We therefore
provide a collection of state-of-the-art studies in this field. We believe that the
studies in this book are of interest to researchers, practitioners, and students who
are interested in exploring the agent paradigm for developing software systems. We
note that although many research efforts have been made in this area, there are many
open issues and challenges that need to be addressed and explored.

Beer-Sheva, Israel Arnon Sturm
Haifa, Israel Onn Shehory

Contents

Part I Introduction

1 A Brief Introduction to Agents . 3
Onn Shehory and Arnon Sturm

2 Agent-Oriented Software Engineering: Revisiting
the State of the Art . 13
Arnon Sturm and Onn Shehory

3 Application Impact of Multi-agent Systems
and Technologies: A Survey . 27
Jörg P. Müller and Klaus Fischer

Part II Aspects of Agent-Oriented Software Engineering

4 Multi-agent Systems: A Software Architecture Viewpoint 57
Onn Shehory and Arnon Sturm

5 Design Patterns for Multi-agent Systems: A Systematic
Literature Review . 79
Joanna Juziuk, Danny Weyns, and Tom Holvoet

6 Agent Communication . 101
Marc-Philippe Huget

Part III Agent-Oriented Software Engineering
Methodologies

7 The Landscape of Agent-Oriented Methodologies . 137
Arnon Sturm and Onn Shehory

8 Prometheus Research Directions. 155
Lin Padgham, John Thangarajah, and Michael Winikoff

xi

xii Contents

9 O-MaSE: An Extensible Methodology for Multi-agent Systems 173
Scott A. DeLoach

10 Ten Years of the INGENIAS Methodology . 193
Jorge J. Gomez-Sanz

Part IV Agent-Oriented Programming Languages

11 A Survey of Multi-agent Programming
Languages and Frameworks . 213
Mehdi Dastani

12 GOAL: A Multi-agent Programming Language Applied to
an Exploration Game . 235
Koen V. Hindriks and Jügen Dix

13 Unravelling Multi-agent-Oriented Programming . 259
Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, and
Alessandro Ricci

Part V Multi-Agent Systems Implementation

14 The Evolution of MAS Tools . 275
Arnon Sturm and Onn Shehory

15 Design and Implementation of Very Large Agent-Based Systems 289
Renato Levy and Goutam Satapathy

16 AgentZero: A Framework for Simulating and Evaluating
Multi-agent Algorithms . 309
Benny Lutati, Inna Gontmakher, Michael Lando,
Arnon Netzer, Amnon Meisels, and Alon Grubshtein

Index . 329

Contributors

Olivier Boissier EMSE, St. Etienne, France

Rafael H. Bordini FACIN-PUCRS, Porto Alegre – RS, Brazil

Mehdi Dastani Institute of Information and Computing Sciences, Utrecht Univer-
sity, Utrecht, The Netherlands

Scott A. DeLoach Kansas State University, Manhattan, KS, USA

Jürgen Dix Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Klaus Fischer DFKI GmbH, Saarbrücken, Germany

Jorge J. Gomez-Sanz Facultad de Informática, Universidad Complutense de
Madrid, Madrid, Spain

Inna Gontmakher Department of Computer Science, Ben-Gurion University of
the Negev, Beer-Sheva, Israel

Alon Grubshtein Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Koen V. Hindriks Delft University of Technology, Delft, The Netherlands

Tom Holvoet Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, Belgium

Jomi F. Hübner DAS-UFSC, Florianópolis – SC, Brazil

Marc-Philippe Huget LISTIC/Polytech Annecy-Chambéry, Université de Savoie,
Chambéry, France

Joanna Juziuk Department of Computer Science, Linnaeus University, Växjö,
Sweden

Michael Lando Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

xiii

xiv Contributors

Renato Levy Intelligent Automation, Inc., Rockville, MD, USA

Benny Lutati Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Amnon Meisels Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Jörg P. Müller Department of Informatics, TU Clausthal, Clausthal-Zellerfeld,
Germany

Arnon Netzer Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Lin Padgham RMIT University, Melbourne, VIC, Australia

Alessandro Ricci University of Bologna, Cesena, Italy

Goutam Satapathy Intelligent Automation, Inc., Rockville, MD, USA

Onn Shehory IBM Haifa Research Lab, Haifa, Israel

Arnon Sturm Department of Information Systems Engineering, Ben-Gurion Uni-
versity of the Negev, Beer-Sheva, Israel

John Thangarajah RMIT University, Melbourne, VIC, Australia

Danny Weyns Department of Computer Science, Linnaeus University, Växjö,
Sweden

Michael Winikoff University of Otago, Dunedin, New Zealand

	Foreword
	Preface
	Part I Introduction
	Part II Aspects of Agent-Oriented Software Engineering
	Part III Agent-Oriented Software Engineering Methodologies
	Part IV Agent-Oriented Programming Languages
	Part V Multi-agent Systems Implementation

	Contents
	Contributors

