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CONSTRUCTIONS OF FREE COMMUTATIVE INTEGRO-DIFFERENTIAL
ALGEBRAS

XING GAO AND LI GUO

Abstract. In this survey, we outline two recent constructions of freecommutative integro-differential
algebras. They are based on the construction of free commutative Rota-Baxter algebras by mixable
shuffles. The first is by evaluations. The second is by the method of Gröbner-Shirshov bases.
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1. Introduction

In this survey article, we give an outline of the recent constructions of free commutative integro-
differential algebras.

The main axiom of integro-differential algebra can be regarded as an algebraic abstraction of
the integral by parts formula which involves both derivation and integration. Thus to understand
this abstraction better, we first review the abstraction forderivation and for integration.

In this paper, by an algebra we mean acommutativeassociative algebra over some commutative
ring, unless otherwise specified. A differential algebra is an algebraR together with a linear
operatord : R→ Rthat satisfies the following axiom distilled from the Leibniz rule for derivations

d(xy) = d(x)y+ xd(y), for all x, y ∈ R.
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The study of differential algebra began with Ritt’s classic work [35, 36]. After the fundamen-
tal work of Kolchin [33], differential algebra has evolved into a vast area of mathematicsthat is
important in both theory [15, 44] and applications: for instance, in mechanic theorem proving
by W.-T. Wu [45, 46]. Free (commutative) differential algebras, in the form of differential poly-
nomial algebras (Theorem2.3), are essential for studying differential equations, as polynomial
algebras are for commutative algebras.

The algebraic study of integrals came much later. In fact thedevelopment did not start from
an algebraic abstraction of integrals, but from the effort of G. Baxter [5] in 1960 to understand
a formula in probability theory. As a result, the concept is not called an integral algebra, but
called a (Rota-)Baxter algebra (Eq. (3)) which is the integral counterpart of the derivation, the
difference operator, and divided differences (see Eq. (1)). Soon afterwards Rota noticed its
importance in combinatorics and promoted its study throughresearch and survey articles (see
e.g. [40, 41]). Independently, Rota-Baxter operators on Lie algebras were found to be closely
related to the classical Yang-Baxter equation [42]. Since the turn of this century, the theory of
Rota-Baxter algebra has experienced rapid development with broad applications in mathematics
and physics [4, 21, 29, 40, 41, 42], especially noteworthy in the Hopf algebra approach of Connes-
Kreimer to renormalization of quantum field theory [16, 19, 29]. Here again a fundamental role
is played by free (commutative) Rota-Baxter algebras that were first constructed by Rota [40] and
Cartier [14], and then by Guo-Keigher [24] in terms of mixable shuffles (Theorem2.4).

The fusion of differential and Rota-Baxter algebras, motivated by algebraicstudy of calculus
as a whole, appeared about five years ago. It is amazing that two structures for this purpose were
introduced at about the same time. One is a relatively simplecoupling of differential algebra and
Rota-Baxter algebra through section axiom (Eq. (4)) that reflects the First Fundamental Theorem
of Calculus. It is called differential Rota-Baxter algebra [26]. The other one is a more faithful
abstraction of the integration-by-parts formula (see Eq. (7)), giving rise to the concept of an
integro-differential algebra [37] which has generated much interest [1, 2, 38, 39]. As suggested in
previous cases, free objects for these algebraic structures are important in their studies. Because of
the relative independence of the differential and integral (Rota-Baxter) structures in a differential
Rota-Baxter algebra, the free object was constructed by a clear combination of the free objects
on the differential and Rota-Baxter sides and were obtained at the sametime when the concept
was introduced. In contrast, the construction of free integro-differential algebras took longer to
achieve. Nevertheless, there are two recent constructions[23, 27] and it is the purpose of this
paper to give the preliminary background and a summary of these constructions.

Both are based on the construction of free Rota-Baxter algebras by mixable shuffles. Straight
from the definition, a free commutative integro-differential algebra can be obtained as the quotient
of a free Rota-Baxter algebra modulo the integral-by-partsaxiom. By an explicit construction of a
free integro-differential algebra, we mean identifying a specific vector space basis of this quotient.
Thus we give two such bases in this paper.

After a preliminary Section 2 on the concepts of differential, Rota-Baxter and differential Rota-
Baxter algebras as well as operated algebras, and the constructions of their respective free objects,
we give the first construction [27] of free integro-differential algebras in Section 3. This con-
struction applies to regular differential algebras, a concept which we also review in Section3.
Common examples of regular differential algebras include differential polynomial algebras and
rational functions. The second construction [23] is given in Section 4. The construction applies
the general method of Gröbner-Shirshov bases, of which Gr¨obner bases in commutative algebra
are special cases, but which apply to many other algebraic structures. We give some details of the
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method in the case of integro-differential algebras, where we use the ambient algebraic structure
of a free Rota-Baxter algebra to establish the Composition-Diamond Lemma.

2. Definitions and preliminary constructions

We recall the definitions of algebras with various differential and integral operators and the
constructions of the free objects in the corresponding categories. Free commutative integro-
differential algebras, which are the focus of this survey, will be discussed in later sections.

2.1. The definitions. We recall the algebraic structures considered in this paper. We also intro-
duce variations with nilpotent derivation that will be needed later. Algebras considered in this
paper are assumed to be unitary (and commutative), unless explicitly designated as non-unitary.

Definition 2.1. Let k be a unitary commutative ring. Letλ ∈ k be fixed.
(a) A differential k-algebra of weight λ (also called aλ-differential k-algebra) is an asso-

ciativek-algebraR together with a linear operatord : R→ R such that

(1) d(xy) = d(x)y+ xd(y) + λd(x)d(y) for all x, y ∈ R,

and

(2) d(1) = 0.

Such an operator is called aderivation of weight λ or aλ-derivation.
(b) A Rota-Baxter k-algebra of weightλ is an associativek-algebraR together with a linear

operatorP: R→ R such that

(3) P(u)P(v) = P(uP(v)) + P(P(u)v) + λP(uv) for all u, v ∈ R.

(c) A differential Rota-Baxter k-algebra of weight λ (also called aλ-differential Rota-
Baxter k-algebra) is a differentialk-algebra (R, d) of weightλ with a Rota-Baxter opera-
tor P of weightλ such that

(4) d ◦ P = id.

(d) An integro-differential k-algebra of weight λ (also called aλ-integro-differential k-
algebra) is a differentialk-algebra (R,D) of weightλ with a linear operatorΠ : R → R
such that

(5) D ◦ Π = idR

and

(6) Π(D(x))Π(D(y)) = Π(D(x))y+ xΠ(D(y)) − Π(D(xy)) for all x, y ∈ R.

Eqs. (3), (5) and (6) are called theRota-Baxter axiom, section axiomand hybrid Rota-
Baxter axiom, respectively. It is proved in [27] that a differentialk-algebra (R,D) with a linear
operatorΠ : R → R is an integro-differential algebra if and only if Eq. (5) and the following
integration by parts axiomshold:

(7) xΠ(y) = Π(D(x)Π(y)) + Π(xy) + λΠ(D(x)y)

and

(8) Π(x)y = Π(Π(x)D(y)) + Π(xy) + λΠ(xD(y)) for all x, y ∈ R.

These two equations can be regarded as the weighed and noncommutative versions of the classical
integration by parts formula in analysis.
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Example 2.2.Let R= C∞(R)

(a) Fix aλ ∈ R. Define

Dλ : R−→ R, f (x) 7→
f (x+ λ) − f (x)

λ
.

ThenDλ is a differential operator of weightλ.
(b) For fixeda ∈ R, the integral operator

Π : R−→ R, f (x) 7→
∫ x

a
f (t)dt

is a Rota-Baxter operator of weight zero.
(c) D be the usual derivation onR andΠ be the above integral operator. Then (R,D,Π) is a

differential Rota-Baxter algebra and an integro-differential algebra of weight 0.

See [21, 26, 27, 41] for more examples.

2.2. Free differential Rota-Baxter algebras. We first recall the construction of free commuta-
tive differential algebras and introduce their ordern variations. For a setY, let C(Y) denote the
free commutative monoid onY. Thus elements inC(Y) are commutative words from the alphabet
setY, plus the identity 1. Letk[Y] be the commutative polynomial algebra generated byY.

Theorem 2.3. ([23, 26])

(a) Let Y be a set with a map d0 : Y → k[Y]. Extend d0 to d: k[Y] → k[Y] as follows. Let
w = u1 · · ·uk, where ui ∈ Y for 1 ≤ i ≤ k, be a commutative word from the alphabet set Y.
Recursively define

(9) d(w) = d0(u1)u2 · · ·uk + u1d(u2 · · ·uk) + λd0(u1)d(u2 · · ·uk).

Explicitly,

d(w) =
∑

∅,I⊆{1,··· ,k}

λ|I |−1ďI (u1) · · · ďI (uk), whereďI (ui) =

{

d0(ui), i ∈ I ,
ui, i < I .

Further define d(1) = 0 and then extend d tok[Y] by linearity. Then(k[Y], d) is a differ-
ential algebra of weightλ.

(b) Let X be a set. Let Y:= ∆X := {x(n) | x ∈ X, n ≥ 0} with the map d0 : ∆X → ∆X, x(n) 7→

x(n+1). Then with the extension dX := d of d0 as in Eq. (9), (k{X}, dX) := (k[∆X], dX) is the
free commutative differential algebra of weightλ on the set X.

(c) For a given n≥ 1, let∆X(n+1) :=
{

x(k)
∣

∣

∣ x ∈ X, k ≥ n+ 1
}

. Thenk{X}∆X(n+1) is the differen-
tial ideal In of k{X} generated by the set{x(n+1) | x ∈ X}. The quotient differential algebra
k{X}/In has a canonical basis given by∆nX := {x(k) | k ≤ n}, thus giving a differential al-
gebra isomorphismk{X}/In � k[∆nX] where the differential structure on the later algebra
is given by d in Eq. (9), where

(10) d0(x
(i)) =

{

x(i+1), 1 ≤ i ≤ n− 1,
0, i = n.

We note that ink[∆nX], dn+1
0 (u) = 0 only holds for the variablesx ∈ X. For example, when

n = 1, we haved2
0(x2) = 2x(1)

, 0.
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We next recall the construction of free commutative Rota-Baxter algebras in terms of mixable
shuffles [24, 25]. The mixable shuffle product is shown to be the same as the quasi-shuffle product
of Hoffman [18, 29, 32]. Let A be a commutativek-algebra. Define

(11) X(A) =
⊕

k≥0

A⊗(k+1)
= A⊕ A⊗2 ⊕ · · · .

Let a = a0 ⊗ · · · ⊗ am ∈ A⊗(m+1) andb = b0 ⊗ · · · ⊗ bn ∈ A⊗(n+1). If m= 0 orn = 0, define

(12) a ⋄ b =



















(a0b0) ⊗ b1 ⊗ · · · ⊗ bn, m= 0, n > 0,
(a0b0) ⊗ a1 ⊗ · · · ⊗ am, m> 0, n = 0,
a0b0, m= n = 0.

If m> 0 andn > 0, inductively (onm+ n) define

a ⋄ b = (a0b0) ⊗
(

(a1 ⊗ a2 ⊗ · · · ⊗ am) ⋄ (1⊗ b1 ⊗ · · · ⊗ bn)

+ (1⊗ a1 ⊗ · · · ⊗ am) ⋄ (b1 ⊗ · · · ⊗ bn)(13)

+λ (a1 ⊗ · · · ⊗ am) ⋄ (b1 ⊗ · · · ⊗ bn)
)

.

Extending by additivity, we obtain ak-bilinear map

⋄ : X(A) ×X(A)→X(A).

Alternatively,
a ⋄ b = (a0b0) ⊗ (aXλb),

whereā = a1 ⊗ · · · ⊗ am, b̄ = b1 ⊗ · · · ⊗ bn andXλ is the mixable shuffle (quasi-shuffle) product of
weightλ [21, 24, 32], which specializes to the shuffle productX whenλ = 0.

Define ak-linear endomorphismPA onX(A) by assigning

PA(x0 ⊗ x1 ⊗ · · · ⊗ xn) = 1A ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xn,

for all x0⊗ x1⊗ · · ·⊗ xn ∈ A⊗(n+1) and extending by additivity. LetjA : A→X(A) be the canonical
inclusion map.

Theorem 2.4. ([24, 25]) Let A be a commutativek-algebra.

(a) The pair (X(A),PA), together with the natural embedding jA : A ֒→ X(A), is the free
commutative Rota-Baxterk-algebra on A of weightλ. In other words, for any commutative
Rota-Baxterk-algebra (R,P) and anyk-algebra mapϕ : A → R, there exists a unique
Rota-Baxterk-algebra homomorphism̃ϕ : (X(A),PA) → (R,P) such thatϕ = ϕ̃ ◦ jA as
k-algebra homomorphisms.

(b) Let Y be a set and letk[Y] be the free commutative algebra on Y. The pair(X(Y),PY) :=
(X(k[Y]),Pk[Y]), together with the natural embedding jY : Y ֒→ k[Y] → X(k[Y]), is the
free commutative Rota-Baxterk-algebra of weightλ on Y.

Since⋄ is compatible with the multiplication inA, we will often suppress the symbol⋄ and
simply writexy for x ⋄ y in X(A), unless there is a danger of confusion.

A linear basis ofX(k[Y]) is given by

(14) B(Y) :=
{

x0 ⊗ · · · ⊗ xk

∣

∣

∣ xi ∈ C(Y), 0 ≤ i ≤ k, k ≥ 0
}

,

called the set ofRota-Baxter monomialsin Y. The integer dep(x0 ⊗ · · · ⊗ xk) := k + 1 is called
thedepth of x0⊗ · · · ⊗ xk. As a convenience, we also writeP for Pk[Y] . Then 1⊗ u andP(u) stand
for the same element, and we will use both notations synonymously in this paper.
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We now put the differential and Rota-Baxter algebra structures together. Let(A, d) be a com-
mutative differentialk-algebra of weightλ. Extendd to X(A) by

dA(u0 ⊗ u1 ⊗ · · · ⊗ uk)

= d(u0) ⊗ u1 ⊗ · · · ⊗ uk + u0u1 ⊗ u2 ⊗ · · · ⊗ uk + λd(u0)u1 ⊗ u2 ⊗ · · · ⊗ uk, k ≥ 0.

Note thatdA does not satisfy the Leibniz rule with respect to the tensor product since here a tensor
factor means an application of the Rota-Baxter operatorPA: u0 ⊗ u1 = u0PA(u1). Thus

dA(u0 ⊗ u1) = dA(u0)PA(u1) + u0 dA(PA(u1)) + λdA(u0)dA(PA(u1)) = d(u0) ⊗ u1 + u0u1 + λd(u0)u1.

Theorem 2.5. ([23, 26]) Let Y be a set with a set map d0 : Y → k[Y] and let(k[Y], d) be the
commutative differential algebra of weightλ in Theorem2.3.(a). The triple(X(k[Y]), dk[Y] ,Pk[Y]),
together with jk[Y] : k[Y] →X(k[Y]), is the free commutative differential Rota-Baxterk-algebra
of weightλ on the differential algebra(k[Y], d).

Apply Theorem2.5to Y := ∆X andd0 as in Theorem2.3.(b). From Eq.14, the set

(15) B(∆X) :=
{

u0 ⊗ · · · ⊗ uk

∣

∣

∣ ui ∈ C(∆X), 0 ≤ i ≤ k, k ≥ 0
}

is ak-basis of the free commutative differential Rota-Baxter algebraX(∆X) on the free differen-
tial algebra (k{X}, dX). We call this basis the set ofdifferential Rota-Baxter (DRB) monomials
on X. Similarly, for n ≥ 1, apply Theorem2.5 to Y := ∆nX andd0 as in Eq. (10) of Theo-
rem2.3.(c). ThenB(∆nX) is a basis ofX(∆nX) and is called the set ofDRB monomials of order
n on X.

2.3. Free commutative operated algebras.The construction of the free commutative operated
algebra on a setX that has the free commutative (differential) Rota-Baxter algebra as a quotient
is given in [23]. The explicit constructionX(X) of the free commutative Rota-Baxter algebra in
Theorem2.4 can be realized on a submodule of the free commutative operated algebra spanned
by reduced words under a rewriting rule defined by the Rota-Baxter axiom.

This construction is parallel to that of the free (noncommutative) operated algebra on a set
in [11, 20, 21, 28]. See [34] for the non-unitary case.

Definition 2.6. Let Ω be a set. AcommutativeΩ-operated monoidis a commutative monoid
G together with mapsαω : G→ G, ω ∈ Ω. A homomorphism between commutativeΩ-operated
monoids (G, {αω}ω) and (H, {βω}ω) is a monoid homomorphismf : G→ H such thatf ◦αω = βω◦ f
for ω ∈ Ω.

We similarly define the concept of a commutativeΩ-operatedk-algebra. The suffix Ω will be
suppressed when the meaning ofΩ is clear from the context. We recall the construction of the
free objects in the category of commutative operated monoids [23].

Fix a setY. Define monoidsCn := Cn(Y) for n ≥ 0 by a recursion. First denoteC0 := C(Y). For
eachω ∈ Ω, let ⌊C(Y)⌋ω := {⌊u⌋ω | u ∈ C(Y)} be a set in bijection withC(Y). We require that all
the setsC(Y) and⌊C(Y)⌋ω, ω ∈ Ω are disjoint from one another. We write the notation⊔ for the
disjoint union. Then define

C1 := C(Y ⊔ (⊔ω∈Ω⌊C(Y)⌋ω)) = C(Y ⊔ (⊔ω∈Ω⌊C0⌋ω)).

Note that elements in⌊C(Y)⌋ω are only symbols indexed by elements inC(Y). For example,⌊1⌋ω is
not the identity, but a new symbol. The inclusionY ֒→ Y⊔(⊔ω∈Ω⌊C0⌋ω) induces a monomorphism
i0 : C0 = C(Y) ֒→ C1 = C(Y ⊔ (⊔ω∈Ω ⌊C0⌋ω)) of free commutative monoids through which we
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identify C0 with its image inC1. Inductively assume thatCn−1 have been defined forn ≥ 2 and
that the injection

in−2 : Cn−2 ֒→ Cn−1

has been obtained. Then define

(16) Cn := C(Y ⊔ (⊔ω∈Ω⌊Cn−1⌋ω)).

Also the injectionin−2 gives an injection

⌊Cn−2⌋ω ֒→ ⌊Cn−1⌋ω, ω ∈ Ω.

Thus by the freeness ofCn−1 = C(Y ⊔ (⊔ω∈Ω⌊Cn−2⌋ω)) as a free commutative monoid, we obtain

in−1 : Cn−1 = C(Y ⊔ (⊔ω∈Ω⌊Cn−2⌋ω)) ֒→ C(Y ⊔ (⊔ω∈Ω⌊Cn−1⌋ω)) = Cn.

Finally, define the commutative monoid

C(Y) :=
⋃

n≥0

Cn = lim
−→
Cn.

Elements inC(Y) are called(commutative)Ω-bracketed monomialsin Y. Defining

(17) ⌊ ⌋ω : C(Y)→ C(Y), u 7→ ⌊u⌋ω, ω ∈ Ω,

then (C(Y), {⌊ ⌋ω}ω∈Ω) is a commutative operated monoid and its linear span (kC(Y), {⌊ ⌋ω}ω∈Ω)
is a commutative (unitary)Ω-operatedk-algebra with its multiplication extended fromC(Y) by
linearity.

Proposition 2.7. ([23]) LetΩ be a set.

(a) Let jY : Y ֒→ C(Y) be the natural embedding. Then the triple(C(Y), {⌊ ⌋ω}ω∈Ω, jY) is the
free commutative operated monoid on Y. More precisely, for any commutative operated
monoid G and set map f: Y → G, there is a unique extension of f to a homomorphism
f̄ : C(Y)→ G of operated monoids.

(b) Let jY : Y ֒→ kC(Y) be the natural embedding. Then the triple(kC(Y), {⌊ ⌋ω}ω∈Ω, jY) is the
free commutative operated unitaryk-algebra on Y. More precisely, for any commutative
k-algebra R and set map f: Y→ R, there is a unique extension of f to a homomorphism
f̄ : kC(Y) → R of operatedk-algebras.

By the universal property ofkC(Y), the following conclusion from general principles of uni-
versal algebra is obtained [3, 17].

Proposition 2.8. ([23]) Let Y be a set with d0 : Y → k[Y]. LetΩ = {d,P} and write d(u) :=
⌊u⌋d,P(u) := ⌊u⌋P . Let IDRB = IDRB,Y be the operated ideal ofkC(Y) generated by the set



























d(r) − d0(r),
d(uv) − d(u)v− ud(v) − λd(u)d(v),
P(u)P(v) − P(uP(v)) − P(P(u)v) − λP(uv),
(d ◦ P)(u) − u

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r ∈ Y, u, v ∈ C(Y)



























.

Then the quotient operated algebrakC(Y)/IDRB, with operations induced by d and P (which we
again denote by d and P, respectively), is the free commutative differential Rota-Baxter algebra
on the differential algebra(k[Y], d) in Theorem2.3.(a).

Combining Proposition2.8with Theorem2.5, we have



8 XING GAO AND LI GUO

Proposition 2.9. ([23]) Let Y be a set with d0 : Y→ k[Y]. The natural embedding

η : X(k[Y]) ֒→ k C(Y), u0⊗u1⊗· · ·⊗uk 7→ u0P(u1P(· · ·P(uk) · · · )), ui ∈ C(Y), 0 ≤ i ≤ k, k ≥ 0,

composed with the quotient mapρ := ρY : k C(Y)→ k C(Y)/IDRB gives a linear bijection (in fact,
an isomorphism of differential Rota-Baxter algebras)

θ := θY : X(k[Y]) → k C(Y)/IDRB.

Because of the bijectivity ofθ, we can identify the basisB(Y) of X(k[Y]) in Eq. (14) with its
imageη(B(Y)) in kC(Y):

(18) x0 ⊗ x1 ⊗ · · · ⊗ xk ↔ x0P(x1P(· · ·P(xk) · · · )), xi ∈ C(Y), 0 ≤ i ≤ k, k ≥ 0.

Define thereduction map

(19) Red := RedY := θ−1 ◦ ρ : k C(Y)→ kC(Y)/IDRB,Y →X(k[Y]) � η(X(k[Y])).

It reduces any (d,P)-bracketed monomial onY to a linear combination of DRB monomials onY.
For example, ifu, v ∈ C(Y), then

Red(⌊u⌋P⌊v⌋P) = Red(P(u)P(v)) = 1⊗ u⊗ v+ 1⊗ v⊗ u+ λ⊗ uv↔ P(uP(v))+P(vP(u))+ λP(uv).

3. Free commutative integro-differential algebras by initialization

In this section, we summarize the construction of free commutative integro-differential algebras
by initialization [27].

3.1. Regular differential algebras. The construction applies to a large class of differential al-
gebras called regular differential algebras. So we begin with the concept and examplesof regular
differential algebras.

3.1.1. Quasi-antiderivatives and regularity.

Definition 3.1. Let (A, d) be a differential algebra of weightλ with derivationd. A linear map
Q: A→ A is called aquasi-antiderivative if d◦Q◦d = d andQ◦d◦Q = Q, with the additional
condition that kerQ is a nonunitaryk-subalgebra ofA whenλ , 0. A differential algebra whose
derivation has a quasi-antiderivative is calledregular.

Given a regular differentialk-algebra (A, d) and a fixed quasi-antiderivativeQ for d, we define
the following operators. Let

E = idA − Q ◦ d,S = d ◦ Q, J = idA − E = Q ◦ d,T = idA − S.

We also defineAJ to be thek-submoduleAJ = imQ, andAT to be thek-subalgebra kerQ.
Regularity is equivalent to the existence of certain projectors, namely idempotent linear maps

to a subspace.

Proposition 3.2. ([27]) Let (A, d) be a regular differential algebra. If A is regular and Q a
quasi-antiderivation for d, then the corresponding S:= d ◦ Q: A → A is a projector ontoim d
and E := idA − Q ◦ d : A → A is a projector ontokerd. Conversely, if there are projectors
S : A→ A ontoim d and E: A→ A ontokerd, then there is a unique quasi-antiderivative Q of
d such thatim Q = ker E andkerQ = kerS and(A, d) is regular.
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To prove the converse, from the given projectorsS and E, we haveA = kerS ⊕ im d and
A = ker d⊕ker E. Thus the restriction ofd to ker E is a bijection onto imd. Then there is unique
mapQ: A→ A whose restriction to imd is the inverse of the above bijection and whose kernel
is kerS.

3.1.2. Differential polynomial algebras.Let Y be a set with a well-ordering≤Y. Define the
length-lexicographic order≤∗Y,lex on the free monoidM(Y) by

(20) u <∗Y,lex v⇔

{

ℓ < m,
or ℓ = mand∃1 ≤ i0 ≤ ℓ such thatui = vi for 1 ≤ i < i0 andui0 < vi0,

whereu = u1 · · ·uℓ andv = v1 · · · vm with ui, vj ∈ Y, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ m.. It is well-known [3]
that≤∗Y,lex is again a well-ordering. An element 1, u of the free commutative monoidC(Y) can
be uniquely expressed as

(21) u = u j0
0 · · ·u

jk
k , whereu0, · · · , uk ∈ Y, j0, · · · , jk ∈ Z≥1 andu0 > · · · > uk.

This expression is called thestandard form of u. If k = −1, we takeu = 1 by convention.
Let X be a well-ordered set and letY = ∆X (resp.∆nX). Let n ≥ 0 be given. Forx(i0)

0 , x
(i1)
1 ∈ Y

with x0, x1 ∈ X, define

(22) x(i0)
0 ≤ x(i1)

1

(

resp.x(i0)
0 ≤n x(i1)

1

)

⇔ (x0,−i0) ≤ (x1,−i1) lexicographically.

For examplex(2) < x(1) < x. Also, x1 < x2 impliesx(i1)
1 < x(i2)

2 for all i1, i2 ≥ 0.

Definition 3.3. Let u ∈ C(∆X) with standard form in Eq. (21):

u = u j0
0 · · ·u

jk
k , whereu0, · · · , uk ∈ ∆X, u0 > · · · > uk and j0, · · · , jk ∈ Z≥1.

Call u functional if eitheru = 1 oruk ∈ X or jk > 1.

Proposition 3.4. ([23, 27]) Let λ ∈ k and let X be a set. Let A= (k{X}, dλ) be the free commu-
tative differential algebra of weightλ on X as defined in Theorem2.3.(b). Then there are direct
sums A= AT ⊕ im d and A= AJ ⊕ kerd, where

(23) AT = AT,n = {u ∈ C(∆nX) | u is functional}, AT := kAT ,

and AJ is the submodule generated by all monomials1 , u ∈ C(∆X). Thus d admits a quasi-
antiderivative Q. Therefore,(k{X}, dλ) is regular.

Since the product of two functional monomials is again functional,AT is in fact ak-subalgebra
of A.

As noted in the remark after Proposition3.2, the quasi-antiderivativeQ is defined as follows.
From the direct sums, the derivationD restricts to a bijectionD : AJ → im d. DefineQ: im d→
AJ to be the inverse map and then extendQ to A by takingAT to be the kernel ofQ.

3.1.3. Rational functions.We show that the algebra of rational functions with derivation of any
weight is regular.

Let A = C(x). For givenλ ∈ C, let

dλ : A→ A, f (x) 7→

{

f (x+λ)− f (x)
λ

, λ , 0,
f ′(x), λ = 0,

be theλ-derivation. Denote
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R : =











































{

k
∑

i=1

ni
∑

j=1

γi j

(x−αi ) j

∣

∣

∣

∣

αi ∈ C distinct , γi j ∈ C

}

, λ = 0,

{

k
∑

i=1

ni
∑

j=1

γi j

(x−αi j )i

∣

∣

∣

∣

αi j ∈ C distinct for any giveni, γi j ∈ C nonzero

}

, λ , 0.

Then denote
C(x)J : = xC[x] + R

and

C(x)T : =







































{

k
∑

i=1

γi

x−αi

∣

∣

∣

∣

αi ∈ C distinct , γi ∈ C

}

, λ = 0,

{

k
∑

i=1

ni
∑

j=1

γi j

(x−αi j )i ∈ R

∣

∣

∣

∣

re(αi j ) ∈ [0, |re(λ)|)

}

, λ , 0,

where re(z) is the real part ofz ∈ C. It is proved in [27] that

(24) C(x) = im dλ ⊕ C(x)T .

Further,C(x)T is a nonunitary subalgebra ofC(x). We also have

C(x) = kerdλ ⊕ C(x)J.

Then by Proposition3.2, dλ is regular.

3.2. Construction of ID(A)∗. We now give the construction of the free commutative integro-
differential algebra ID(A)∗ on a regular differential algebra (A, d) with a fixed quasi-antiderivative
Q.

With the notations set up after Definition3.1, we give now an explicit construction of ID(A)∗

via free commutative Rota-Baxter algebras and tensor products. First let

XT(A) :=
⊕

k≥0

A⊗ A⊗k
T = A⊕ (A⊗ AT) ⊕ (A⊗ A⊗2

T ) + · · ·

be thek-submodule ofX(A) in Eq. (11). ThenXT(A) is the tensor productA ⊗X
+(AT) where

X
+(AT) :=

⊕

n≥0
A⊗n

T is the mixable shuffle algebra [21, 24, 32] on the non-unitaryk-algebraAT .

Next, letK := ker d ⊃ k and let

Aε := {ε(a) | a ∈ A}

denote a replica of theK-algebraA, endowed with the zero derivation and theK-algebra structure
map

K → Aε, c 7→ ε(c), c ∈ K.

We will use theK-algebra isomorphism

ε : A→ Aε, a 7→ ε(a), a ∈ A.

Let

(25) ID(A)∗ := Aε ⊗K XT(A) = Aε ⊗K A⊗X
+(AT)

denote the tensor product differential algebra ofAε andXT(A), namely the tensor product algebra
where the derivationdA is defined by the Leibniz rule. To define the linear operatorΠA on ID(A)∗,
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we first require thatΠA be Aε-linear. Then we just need to defineΠA(a) for a pure tensora in
A⊗X

+(AT). For this purpose we apply induction on the lengthn of a.
When n = 1, we havea = a ∈ A. By definition of T we havea = d(Q(a)) + T(a) with

T(a) ∈ AT . Then we define

(26) ΠA(a) := Q(a) − ε(Q(a)) + 1⊗ T(a).

Assume thatΠA(a) has been defined fora of lengthn ≥ 1 and consider the case whena has length
n+ 1. Thena = a⊗ a wherea ∈ A, a ∈ A⊗n

T and we define

(27) ΠA(a⊗ a) := Q(a) ⊗ a − ΠA(Q(a)a) − λΠA(d(Q(a)) a) + 1⊗ T(a) ⊗ a,

where the first and last terms are already inA⊗X
+(AT) while the middle terms are in ID(A)∗ by

the induction hypothesis.

Theorem 3.5. ([27]) Let (A, d) be a regular differential algebra of weightλ with a fixed quasi-
antiderivative Q. Then the triple(ID(A)∗, dA,ΠA), with the natural embedding

iA : A ֒→ ID(A)∗ = Aε ⊗K A⊗X
+(AT)

onto the second tensor factor, is the free commutative integro-differential algebra of weightλ
generated by A.

4. Free commutative integro-differential algebras by Gröbner-Shirshov bases

In this section, we give a construction of free commutative integro-differential algebras by the
method of Gröbner-Shirshov bases. The main result Theorem4.14can be read independently of
the rest of the section, which is meant to give some details ofthe method.

The method of Gröbner bases or Gröbner-Shirshov bases originated from the work of Buch-
berger [13] (for commutative polynomial algebras, 1965), Hironaka [31] (for infinite series alge-
bras, 1964), Shirshov [43] (for Lie algebras, 1962) and Zhukov [47] (reduction in nonassociative
algebra, 1950). It has since become a fundamental method in commutative algebra, algebraic
geometry and computational algebra, and has been extended to many other algebraic structures,
notably associative algebras [6, 7]. In recent years, the method of Gröbner-Shirshov bases has
been applied to a large number of algebraic structures to study problems on normal forms, word
problems, rewriting systems, embedding theorems, extensions, growth functions and Hilbert se-
ries. See [8, 10, 12] for further details.

The method of Gröbner bases or Gröbner-Shirshov bases is very useful in constructing free
objects in various categories, including the alternative constructions of free Rota-Baxter algebras
and free differential Rota-Baxter algebras [9, 11]. The basic idea is to prove a composition-
diamond lemma that achieves a rewriting procedure for reducing any element to a certain “stan-
dard form”. Then the set of elements in standard form is a basis of the free object.

In the recent paper[23], this method is applied to construct the free commutative integro-
differential algebra as the quotient of a free commutative differential Rota-Baxter algebra mod-
ulo the integration by parts formula in Eq. (7). In order to do so, the authors first establish a
Composition-Diamond Lemma for the free commutative differential Rota-Baxter algebra con-
structed in [26]. Then they prove that the ideal generated by the defining relation of integro-
differential algebras in Eq. (7) has a Gröbner-Shirshov basis, thereby identifying a basis of the
free commutative integro-differential algebra as a canonical subset of a known basis of a free
commutative differential Rota-Baxter algebra.
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4.1. Weakly monomial order. In this subsection, we will define a weak form of the monomial
order on pieces of the set of differential Rota-Baxter monomials filtered by the order of differen-
tiation. It will be sufficient to establish the composition-diamond lemma for integro-differential
algebras.

For a setX, recall that∆X : = {x(k) | x ∈ X, k ≥ 0} and∆nX : = {x(k) | x ∈ X, 0 ≤ k ≤ n}
for n ≥ 0. Then the family{C(∆nX)}n≥0 defines an increasing filtration onC(∆X) and hence by
Eq. (14), induces a filtration{B(∆nX)}n≥0 of the setB(∆X) of DRB monomials by DRb monomials
of ordern. Elements ofB(∆nX) are calledDRB monomials of order n.

In Definition 4.1 below and what follows, the DRB (⋆-DRB) monomials are elements in the
basisB(∆X) (resp.B(∆X⋆)) of X(k{X}) (resp.X(k{X⋆})), which are identified via Eq. (18) as
(d,P)-bracketed monomialsη(B(∆X)) ⊆ kC(∆X) (resp.η(B(∆X⋆)) ⊆ kC(∆X⋆)).

Definition 4.1. Let X be a set,⋆ a symbol not inX and∆nX⋆ := ∆n(X ∪ {⋆}).
(a) By a⋆-DRB monomial on ∆nX, we mean any expression inB(∆nX⋆) with exactly one

occurrence of⋆. The set of all⋆-DRB monomials on∆nX is denoted byB⋆(∆nX).
(b) Forq ∈ B⋆(∆nX) andu ∈ B(∆nX), we define

q|u := q|⋆ 7→u

to be the bracketed monomial inC(∆nX) obtained by replacing the letter⋆ in q by u, and
call q|u au-monomial on∆nX.

(c) Further, fors =
∑

i ciui ∈ kB(∆nX), whereci ∈ k, ui ∈ B(∆nX) andq ∈ B⋆(∆nX), we
define

q|s :=
∑

i

ciq|ui ,

which is ink C(∆nX).

We note that a⋆-DRB monomialq is a DRB monomial in∆nX⋆ while its substitutionq|u might
not be a DRB monomials. For example, forq = P(x1)⋆ ∈ η(B(∆nX⋆)) andu = P(x2) ∈ B(∆nX)
wherex1, x2 ∈ X, theu-monomialq|u = P(x1)P(x2) is no longer inη(B(∆nX)).

Definition 4.2. If q = p|dℓ(⋆) for somep ∈ B⋆(∆nX) andℓ ∈ Z≥1, then we callq a type I ⋆-DRB
monomial. LetB⋆I (∆nX) denote the set of type I⋆-DRB monomials on∆nX and call

B
⋆
II (∆nX) := B

⋆(∆nX) \ B⋆I (∆nX)

the set oftype II ⋆-DRB monomials.

For example,d(⋆)P(x) ∈ B⋆I (∆nX) and⋆P(x) ∈ B⋆II (∆nX).

Definition 4.3. Let X be a set,⋆1, ⋆2 two distinct symbols not inX and∆nX⋆1,⋆2 := ∆n(X ∪
{⋆1, ⋆2}). We define a (⋆1, ⋆2)-DRB monomial on∆nX to be an expression inB(∆nX⋆1,⋆2) with
exactly one occurrence of⋆1 and exactly one occurrence of⋆2. The set of all (⋆1, ⋆2)-DRB
monomials on∆nX is denoted byB⋆1,⋆2(∆nX). For q ∈ B

⋆1,⋆2(∆nX) andu1, u2 ∈ kB(∆nX), we
define

q|u1,u2 := q|⋆1 7→u1,⋆2 7→u2

to be the bracketed monomial obtained by replacing the letter ⋆1 (resp.⋆2) in q by u1 (resp.u2)
and call it a (u1, u2)-bracketed monomial on∆nX .

A (u1, u2)-DRB monomial on∆nX can also be recursively defined by

q|u1,u2 := (q⋆1|u1)|u2,
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whereq⋆1 is q whenq is regarded as a⋆1-DRB monomial on the set∆nX⋆2. Thenq⋆1|u1 is in
B⋆2(∆nX). Similarly, we have

q|u1,u2 := (q⋆2|u2)|u1.

Let X be a well-ordered set. Letn ≥ 0 be given. We extend the well-ordering≤n on C(∆nX)
defined in Eq. (22) toB(∆nX). Note that

B(∆nX) = {u0 ⊗ u1 ⊗ · · · ⊗ uk | ui ∈ C(∆nX), 1 ≤ i ≤ k, k ≥ 0} = ⊔k≥1C(∆nX)⊗k

can be identified with the free semigroup on the setC(∆nX). Thus the well-ordering≤n onC(∆nX)
extends to a well-ordering≤∗n,lex [3] on B(∆nX) which we will still denote by≤n for simplicity.
More precisely, for anyu = u0 ⊗ · · · ⊗ uk ∈ C(∆nX)⊗(k+1) andv = v0 ⊗ · · · ⊗ vℓ ∈ C(∆nX)⊗(ℓ+1),
define

(28) u ≤n v if (k, u0, · · · , uk) ≤ (ℓ, v0, · · · , vℓ) lexicographically.

Definition 4.4. Let≤n be the well-ordering onB(∆nX) defined in Eq. (28). Let q ∈ B⋆(∆nX) and
s ∈ kB(∆nX).

(a) For any 0, f ∈ kB(∆nX), let f denote theleading term of f : f = cf +
∑

i ciui, where
0 , c, ci ∈ k, ui ∈ B(∆nX), ui < f . We call f monic if c = 1.

(b) Let
q|s := Red(q|s),

where Red:kC(∆nX) →X(∆nX) = η(kB(∆nX)) is the reduction map in Eq. (19).
(c) The elementq|s ∈ k C(∆nX) is callednormal if q|s is in B(∆nX). In other words, if

Red(q|s) = q|s.

Remark 4.5. By definition,q|s is normal if and only ifq|s is normal if and only if thes-DRB
monomialq|s is already a DRB monomial, that is, no further reduction inX(∆nX) is possible.

Here are some examples of abnormals-DRB monomials.

Example 4.6. (a) q = ⋆P(y) and s̄ = P(x), giving q|s̄ = P(x)P(y) which is reduced to
P(xP(y)) + P(P(x)y) + λP(xy) in η(X(∆nX));

(b) q = d(⋆) and s̄= P(x), giving q|s̄ = d(P(x)) which is reduced tox in η(X(∆nX));
(c) q = d(⋆) ands̄= x2, givingq|s̄ = d(x2) which is reduced to 2xx(1)

+λ(x(1))2 in η(X(∆nX));
(d) q = dn(⋆) ands̄= d(x), giving q|s̄ = dn+1(s) which is reduced to 0 inη(X(∆nX)).

Definition 4.7. A weakly monomial order on B(∆nX) is a well-ordering≤ satisfying the fol-
lowing condition:

For u, v ∈ B(∆nX), if u ≤ v, thenq|u ≤ q|v if q ∈ B⋆II (∆nX), or if q ∈ B⋆I (∆nX) and
q|v is normal.

Proposition 4.8. ([23]) The order≤n defined in Eq. (28) is a weakly monomial order onB(∆nX).

4.2. Composition-Diamond lemma. In this section, we shall establish the composition-diamond
lemma for the free commutative differential Rota-Baxter algebraX(k[∆nX]) of ordern.

Definition 4.9. (a) Let u,w ∈ B(∆nX). We call u a subword of w if w is in the operated
ideal ofC(∆nX) generated byu. In terms of⋆-words,u is a subword ofw if there is a
q ∈ B⋆(∆nX) such thatw = q|u.
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(b) Let u1 andu2 be two subwords ofw. Thenu1 andu2 are calledseparatedif u1 ∈ C(∆nX),
u2 ∈ B(∆nX) and there is aq ∈ B⋆1,⋆2(∆nX) such thatw = q|u1,u2.

(c) For anyu ∈ B(∆nX), u can be expressed asu = u1 · · ·uk, whereu1, · · · , uk−1 ∈ ∆nX and
uk ∈ ∆nX ∪ P(B(∆nX)). The expression is unique up to permutations of those factors in
∆nX. The integerk is called thebreadth of u and is denoted by bre(u).

(d) Let f , g ∈ B(∆nX). A pair (u, v) with u ∈ B(∆nX) andv ∈ C(∆nX) is called anintersection
pair for ( f , g) if the differential Rota-Baxter monomialw := f u equalsvg and satisfies
bre(w) < bre(f ) + bre(g). Then we callf andg to beoverlapping. Note that if f andg
are overlapping, thenf ∈ C(∆nX).

For example, letw = xyxywith x, y ∈ X andu1 = xy be the subword ofw on the left and
u1 = xy be the subword ofw on the right. Thenu1 andu2 are separated. Letg be the subword
yxof w. Thenu1 andg are overlapping. A systematic discussion on relative locations (separated,
overlapping and inclusion) of two subwords can be found in [22, 30].

There are three kinds of compositions.

Definition 4.10. Let ≤n be the weakly monomial order onB(∆nX) defined in Eq. (28), and let
f , g ∈ kB(∆nX) be monic with respect to≤n such thatf , g.

(a) If f ∈ C(∆nX)P(B(∆nX)), then define acomposition of multiplication to be f u where
u ∈ C(∆nX)P(B(∆nX)).

(b) If there is an intersection pair (u, v) for ( f , g), then we define

( f , g)w := ( f , g)u,v
w := f u− vg

and call it anintersection compositionof f andg.
(c) If there exists aq ∈ B⋆(∆nX) such thatw := f = q|g, then we define (f , g)w := ( f , g)q

w :=
f − q|g and call it aninclusion compositionof f andg with respect toq. Note that if this
is the case, thenq|g is normal.

In the last two cases, (f , g)w is called theambiguity of the composition. For example, let

f = P(d(u)P(d(v)P(r))) − uP(d(v)P(r)) + P(ud(v)P(r)) + λP(d(u)d(v)P(r))

and
g = P(d(v)P(r)) − vP(r) + P(vr) + λP(d(v)r)

with the first terms being the leading terms. Then we havef̄ = q|ḡ whereq: = P(d(u)⋆). Hence
we get an inclusion composition off andg with the ambiguity

( f , g)q
w = −uP(d(v)P(r)) + P(ud(v)P(r)) + λP(d(u)d(v)P(r))

− (−P(d(u)vP(r)) + P(d(u)P(vr)) + λP(d(u)P(d(v)r))) .

Definition 4.11. Let ≤n be the weakly monomial order onB(∆nX) defined in Eq. (28), S ⊆
kB(∆nX) be a set of monic differential Rota-Baxter polynomials andw ∈ B(∆nX).

(a) A composition of multiplicationf u is calledtrivial mod [S] if

f u =
∑

i

ciqi |si ,

whereci ∈ k, qi ∈ B
⋆(∆nX), si ∈ S, qi |si is normal andqi |si ≤n f u. If this is the case, we

write
f u ≡ 0 mod [S].
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(b) Foru, v ∈ kB(∆nX) andw ∈ B(∆nX), we sayu andv arecongruent modulo (S,w) and
denote this by

u ≡ v mod (S,w)

if u− v =
∑

i ciqi |si , whereci ∈ k, qi ∈ B
⋆(∆nX), si ∈ S, qi |si is normal andqi |si <n w.

(c) For f , g ∈ kB(∆nX) and suitableu, v or q that give an intersection composition (f , g)u,v
w or

an inclusion composition (f , g)q
w, the composition is calledtrivial modulo (S,w) if

( f , g)u,v
w or ( f , g)q

w ≡ 0 mod (S,w).

(d) The setS ⊆ kB(∆nX) is a Gröbner-Shirshov basisif all compositions of multiplica-
tion are trivial mod [S], and, for f , g ∈ S, all intersection compositions (f , g)u,v

w and all
inclusion compositions (f , g)q

w are trivial modulo (S,w).

Theorem 4.12. ([23] Composition-Diamond Lemma) Let≤n be the weakly monomial order on
B(∆nX) defined in Eq. (28), Sn a set of monic DRB polynomials inkB(∆nX) with d(Sn) ⊆ Sn, and
Id(Sn) the Rota-Baxter ideal ofkB(∆nX) generated by Sn. Then with respect to≤n, the following
conditions are equivalent:

(a) Sn is a Gröbner-Shirshov basis inkB(∆nX).
(b) If 0 , f ∈ Id(Sn), then f = q|s for some q∈ B⋆(∆nX), s∈ Sn and q|s is normal.
(c) The setIrr(Sn) := B(∆nX) \ {q|s | q ∈ B⋆(∆nX), s ∈ Sn, q|s is normal} is a k-basis of

kB(∆nX)/Id(Sn). In other words,kIrr(Sn) ⊕ Id(Sn) = kB(∆nX).

4.3. Free commutative integro-differential algebras by Gröbner-Shirshov bases.In this sub-
section we begin with a finite setX and prove that the relation ideal of the free commutative
differential Rota-Baxter algebra onX of ordern ≥ 1, defining the corresponding commutative
integro-differential algebra of ordern possesses a Gröbner-Shirshov basis. Then we apply the
Composition-Diamond Lemma in Theorem4.12to construct a canonical basis for the free com-
mutative integro-differential algebra of ordern. As n approaches infinity, we obtain a canonical
basis of the free commutative integro-differential algebra on the finite setX. Finally for any well-
ordered setX, by showing that the canonical basis of the free commutativeintegro-differential
algebra on each finite subset ofX is compatible with the inclusion of the subset inX, we obtain a
canonical basis of the free commutative integro-differential algebra onX.

Theorem 4.13.([23]) Let

(29) Sn :=
{

P(d(u)P(v)) − uP(v) + P(uv) + λP(d(u)v)
∣

∣

∣ u, v ∈X(k[∆nX])
}

be the set of generators corresponding to the integration byparts axiom Eq. (7). Let≤n be the
monomial order defined in Eq. (28).

(a) With respect to≤n, Sn is a Gröbner-Shirshov basis inX(k[∆nX]). HenceIrr(Sn) in Theo-
rem4.12is a linear basis ofX(k[∆nX])/Id(Sn).

(b) Let AT = k{X}T be as defined in Eq. (23), An = k[∆nX], An,T = An ∩ AT . Let IID,n be the
differential Rota-Baxter ideal ofX(An) generated by Sn. Then we have the isomorphism
of modules

X(An)/I ID,n � An ⊕















⊕

k≥0

An ⊗ A⊗k
n−1,T ⊗ An















.
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Let

(30) S := {P(d(u)P(v)) − uP(v) + P(uv) + λP(d(u)v) | u, v ∈X(∆X)} .

be the set of generators corresponding to the integration byparts axiom Eq. (7).

Theorem 4.14.([23]) Let X be a nonempty well-ordered set, AT = k{X}T , X(k{X}) =X(∆X) the
free commutative differential Rota-Baxter algebra on X and IID the ideal ofX(k{X}) generated
by S defined in Eq. (30). Then the composition

X(A)T := A⊕















⊕

k≥0

A⊗ A⊗k
T ⊗ A















֒→X(A)→X(A)/I ID

of the inclusion and the quotient map is an isomorphism ofk-modules.

It would be interesting to compare the two constructions of free commutative integro-differential
algebras in Theorem3.5and Theorem4.14. The advantages of the first construction is that it ap-
plies to a large class of differential algebras and that the product in the free algebra isclearly
defined. The advantage of the second construction is that theconstruction comes from a subset
of the free commutative differential Rota-Baxter algebra from which the free integro-differential
algebra is obtained modulo an ideal. It is useful to have bothof the two constructions available in
order to study different aspects of free commutative integro-differential algebras. Further study
in this direction is being pursued in another work. The construction of free noncommutative
integro-differential algebras is also under investigation.
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