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CONSTRUCTIONS OF FREE COMMUTATIVE INTEGRO-DIFFERENTIAL
ALGEBRAS

XING GAO AND LI GUO

AsstrAcT. Inthis survey, we outline two recent constructions of fresmxmutative integro-dierential
algebras. They are based on the construction of free contireuRota-Baxter algebras by mixable
shufles. The first is by evaluations. The second is by the methodda@fiazr-Shirshov bases.
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1. INTRODUCTION

In this survey article, we give an outline of the recent cautdtons of free commutative integro-
differential algebras.

The main axiom of integro-gtierential algebra can be regarded as an algebraic abstradtio
the integral by parts formula which involves both derivatamd integration. Thus to understand
this abstraction better, we first review the abstractiordfmvation and for integration.

In this paper, by an algebra we meactoanmutativeasssociative algebra over some commutative
ring, unless otherwise specified. Afi@dirential algebra is an algebRatogether with a linear
operatod: R — Rthat satisfies the following axiom distilled from the Leibmule for derivations

d(xy) = d(X)y + xd(y), for all x,y e R.
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The study of diferential algebra began with Ritt's classic wog[Bf]. After the fundamen-
tal work of Kolchin B3], differential algebra has evolved into a vast area of mathenthgatss
important in both theoryf[§, 4] and applications: for instance, in mechanic theorem mi@vi
by W.-T. Wu E5, A4]. Free (commutative) dlierential algebras, in the form offerential poly-
nomial algebras (Theorefhd), are essential for studyingftirential equations, as polynomial
algebras are for commutative algebras.

The algebraic study of integrals came much later. In factdineelopment did not start from
an algebraic abstraction of integrals, but from tffert of G. Baxter [f] in 1960 to understand
a formula in probability theory. As a result, the concept @& called an integral algebra, but
called a (Rota-)Baxter algebra (Eq§))X which is the integral counterpart of the derivation, the
difference operator, and dividedfiégrences (see Eq[)). Soon afterwards Rota noticed its
importance in combinatorics and promoted its study throwggearch and survey articles (see
e.g. E0, E7]). Independently, Rota-Baxter operators on Lie algebraseviound to be closely
related to the classical Yang-Baxter equatigfl]]{ Since the turn of this century, the theory of
Rota-Baxter algebra has experienced rapid developmehthratad applications in mathematics
and physicsl, P1, 29, BQ, 1,42, especially noteworthy in the Hopf algebra approach of i@
Kreimer to renormalization of quantum field theofyd[[L9, E9]. Here again a fundamental role
is played by free (commutative) Rota-Baxter algebras tleaeirst constructed by Rot{] and
Cartier [L4], and then by Guo-KeighepH] in terms of mixable shfiies (Theoren.4).

The fusion of dfferential and Rota-Baxter algebras, motivated by algelstaidy of calculus
as a whole, appeared about five years ago. It is amazing thattuctures for this purpose were
introduced at about the same time. One is a relatively sitmipling of diferential algebra and
Rota-Baxter algebra through section axiom (H)) that reflects the First Fundamental Theorem
of Calculus. It is called dferential Rota-Baxter algebrgf]. The other one is a more faithful
abstraction of the integration-by-parts formula (see ), (@iving rise to the concept of an
integro-diferential algebrgd1] which has generated much interdgtfj, B3, B9]. As suggested in
previous cases, free objects for these algebraic striscineamportant in their studies. Because of
the relative independence of thefdrential and integral (Rota-Baxter) structures inféedential
Rota-Baxter algebra, the free object was constructed bgar combination of the free objects
on the diferential and Rota-Baxter sides and were obtained at the samaavhen the concept
was introduced. In contrast, the construction of free irdetjfferential algebras took longer to
achieve. Nevertheless, there are two recent construdf@hf{] and it is the purpose of this
paper to give the preliminary background and a summary aftleenstructions.

Both are based on the construction of free Rota-Baxter edgdhy mixable shities. Straight
from the definition, a free commutative integrd¥drential algebra can be obtained as the quotient
of a free Rota-Baxter algebra modulo the integral-by-paxtsm. By an explicit construction of a
free integro-diferential algebra, we mean identifying a specific vector sjpasis of this quotient.
Thus we give two such bases in this paper.

After a preliminary Section 2 on the concepts dfeliential, Rota-Baxter andftierential Rota-
Baxter algebras as well as operated algebras, and the wctistis of their respective free objects,
we give the first constructior2]] of free integro-diferential algebras in Section 3. This con-
struction applies to regular fierential algebras, a concept which we also review in Se@ion
Common examples of regularftérential algebras includeftigrential polynomial algebras and
rational functions. The second constructi@][is given in Section 4. The construction applies
the general method of Grobner-Shirshov bases, of whidb@i bases in commutative algebra
are special cases, but which apply to many other algebraictates. We give some details of the
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method in the case of integroftiérential algebras, where we use the ambient algebraidsieuc
of a free Rota-Baxter algebra to establish the Composimmond Lemma.

2. DEFINITIONS AND PRELIMINARY CONSTRUCTIONS

We recall the definitions of algebras with variousteliential and integral operators and the
constructions of the free objects in the correspondinggaaies. Free commutative integro-
differential algebras, which are the focus of this survey, valtiscussed in later sections.

2.1. The definitions. We recall the algebraic structures considered in this papferalso intro-
duce variations with nilpotent derivation that will be neddater. Algebras considered in this
paper are assumed to be unitary (and commutative), unledisidy designated as non-unitary.
Definition 2.1. Letk be a unitary commutative ring. Ldte k be fixed.

(a) A differential k-algebra of weight A (also called al-differential k-algebra) is an asso-
ciativek-algebraR together with a linear operatdr. R — R such that

(2) d(xy) = d(X)y + xd(y) + 2d(x)d(y) forall x,y € R,
and
(2) d(1) = 0.
Such an operator is calleddarivation of weight A or aA-derivation.
(b) A Rota-Baxter k-algebra of weight is an associativk-algebraR together with a linear
operatorP: R — Rsuch that
3) P(u)P(v) = P(UP(v)) + P(P(u)v) + AP(uv) forallu,ve R

(c) A differential Rota-Baxter k-algebra of weight A (also called ai-differential Rota-
Baxter k-algebra) is a diferentialk-algebra R, d) of weightA with a Rota-Baxter opera-
tor P of weight A such that

(4) doP =id.
(d) An integro-differential k-algebra of weight A (also called at-integro-differential k-

algebra) is a diferentialk-algebra R, D) of weight A with a linear operatofl: R —» R
such that

(5) DoIl =idg
and
(6) I(DOO)II(D(Y)) = II(D(X)y + xII(D(y)) - TI(D(xy)) forallx,yeR
Egs. B), @ and @) are called theRota-Baxter axiom, section axiomand hybrid Rota-
Baxter axiom, respectively. It is proved irf]{] that a diferentialk-algebra R, D) with a linear

operatorIl : R — Ris an integro-dierential algebra if and only if EqBf and the following
integration by parts axioms hold:

(7) XU(y) = I(D()II(Y)) + II(xy) + AII(D(X)y)
and
(8) IT(X)y = IIITI(X)D(y)) + I1(xy) + ATI(xD(y)) forall x,y € R

These two equations can be regarded as the weighed and nondative versions of the classical
integration by parts formula in analysis.
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Example 2.2.Let R = C*(R)
(a) Fix ad € R. Define

D,:R—R (X f(x”ﬂ)‘ ')
ThenD, is a diferential operator of weight.
(b) For fixeda € R, the integral operator

N:R—R f(X)i—)fo(t)dt

is a Rota-Baxter operator of weight zero.
(c) D be the usual derivation dR andII be the above integral operator. Théy D, I1) is a
differential Rota-Baxter algebra and an integrfiedtiential algebra of weight 0.

See P1, £9, E1, EJ] for more examples.

2.2. Free differential Rota-Baxter algebras. We first recall the construction of free commuta-
tive differential algebras and introduce their orderariations. For a se€Y, let C(Y) denote the
free commutative monoid ovi. Thus elements i€(Y) are commutative words from the alphabet
setY, plus the identity 1. Lek[Y] be the commutative polynomial algebra generated by

Theorem 2.3. ([E3, B4])
(@) Let Y be a set with a mapdY — k[Y]. Extend ¢ to d: k[Y] — K[Y] as follows. Let
W= U;--- U, Whereye Y forl <i <k, be a commutative word from the alphabet set Y.
Recursively define

9) d(W) = do(U)Uz - - - Uk + Upd(Uz - - - Ug) + Ado(Ug)d(Uz - - - Uy).
Explicitly,
= > ) (), whered w) = { U <

011, k}

Further define @) = 0 and then extend d th[Y] by linearity. Thenk[Y], d) is a difer-
ential algebra of weigha.

(b) Let X be a set. Let Y= AX := (X7 | x € X,n > 0} with the map g: AX — AX, x™ -
x™1. Then with the extensiond= d of &) as in Eq. ), (k{X}, dx) := (K[AX], dx) is the
free commutative gferential algebra of weight on the set X.

(c) For a given nx 1, let AX™D := {x®| x e X k = n+ 1}. Thenk{X}AX™D is the djferen-
tial ideal I, of k{X} generated by the s¢x™) | x € X}. The quotient gferential algebra
k{X}/1, has a canonical basis given X := {x®¥ |k < n}, thus giving a dferential al-
gebra isomorphismk{X}/I, = k[A,X] where the dferential structure on the later algebra
is given by d in Eq.[), where

- xX+D . 1<i<n-1
@i _ ) =1 = )
(10) %u)—{o, =l

We note that irk[A,X], di**(u) = O only holds for the variables € X. For example, when
n =1, we havedl2(x?) = 2x # 0.
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We next recall the construction of free commutative RotatBaalgebras in terms of mixable
shutles P4, P3]. The mixable shffle product is shown to be the same as the quadiishproduct
of Hoffman [, £9, B7]. Let A be a commutativ&-algebra. Define

(11) m(A) = @ A = Ao A2 - .
k>0
Leta=a,® - -®ane A2M™Dandb =by®---®b, € A2 If m=0orn =0, define
(aghg) ®b; ®---®b,, m=0,n>0,
(12) aob=1 (ah)®a;® --®a, mMm>0n=0,
aObO, m:n:O.

If m> 0 andn > 0, inductively (onm + n) define

aob = (phy)®((M®ae--®aye(lebe--ob)
(13) +(l®a;® --®ay) o (b®---®by)
+A(@® - ®ap) o (0, ®---®by)).
Extending by additivity, we obtain le-bilinear map
o1 II(A) x II(A) — MI(A).
Alternatively, ~
B aob = (abo) ® (amyb),
wherea=a;® ---® @y, b = by ® - -- ® b, andu, is the mixable shfile (quasi-shtile) product of

weighta [27, £4, B4, which specializes to the skie product: whena = 0.
Define ak-linear endomorphisr®, on111(A) by assigning

Pao®X1® - ®@X%) =1a®@X®X Q- ® Xp,

forall x,® X, ®- - - ® X, € A*™1 and extending by additivity. Lety: A — 11I(A) be the canonical
inclusion map.

Theorem 2.4.([£4, B3]) Let A be a commutativie-algebra.

(&) The pair(111(A), Pa), together with the natural embedding:jA — I111(A), is the free
commutative Rota-Baxt&ralgebra on A of weight. In other words, for any commutative
Rota-Baxterk-algebra (R, P) and anyk-algebra mapy: A — R, there exists a unique
Rota-Baxterk-algebra homomorphisia: (111(A), Pa) — (R P) such thaty = @ o ja as
k-algebra homomorphisms.

(b) Let Y be a set and l&q Y] be the free commutative algebra on Y. The gai(Y), Py) :=
(uI(k[Y]), Pxpvy), together with the natural embedding:jY — k[Y] — mI(k[Y]), is the
free commutative Rota-Baxtkralgebra of weightt on Y.

Since¢ is compatible with the multiplication i\, we will often suppress the symbeoland
simply write xy for x ¢ y in 111(A), unless there is a danger of confusion.
A linear basis ofiti(k[Y]) is given by

(14) B(Y) :={%® - ®X|% € C(Y).0<i<kk=>0],

called the set oRota-Baxter monomialsin Y. The integer depg ® --- ® %) := k+ 1 is called
thedepth of X, ® - - - ® X«. As a convenience, we also wrigfor Pyy;. Then 1® u andP(u) stand
for the same element, and we will use both notations synongigan this paper.
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We now put the dterential and Rota-Baxter algebra structures together(A,et) be a com-
mutative diferentialk-algebra of weighifi. Extendd to 111(A) by

dA(U0®U1®"'®Uk)
= dU)@U® - U+ U ®Ur ® - QU+ Ad(U)U1 @ Up ® - - - ® U, k> 0.

Note thatd, does not satisfy the Leibniz rule with respect to the tensodyct since here a tensor
factor means an application of the Rota-Baxter oper@foiy ® u; = UgPa(uy). Thus

da(Uo ® Uz) = da(Uo)Pa(Uz) + Uo da(Pa(u1)) + Ada(Uo)da(Pa(u1)) = d(Uo) ® Uy + UgUz + Ad(Ug)Us.

Theorem 2.5.([F3, £4q]) Let Y be a set with a set map:dY — Kk[Y] and let(k[Y],d) be the
commutative gerential algebra of weight in Theoren.3[a]. The triple(ttr(k[Y]), dpyv;, Pxpv),
together with |y, : K[Y] — HI(k[Y]), is the free commutativefitrential Rota-Baxtek-algebra
of weighta on the diferential algebra(k[Y], d).

Apply Theoren.3to Y := AX andd, as in Theorenf.3[b]. From Eq[L4, the set
(15) B(AX) = {uo®- - ® U | € C(AX),0 < i <k k> 0]

is ak-basis of the free commutativeftérential Rota-Baxter algebra(AX) on the free dieren-
tial algebra k{X}, dyx). We call this basis the set dffferential Rota-Baxter (DRB) monomials
on X. Similarly, forn > 1, apply Theorenf.Bto Y := A,X andd, as in Eq. [[Q) of Theo-
remP-3[c). ThenB(A,X) is a basis of11(A,X) and is called the set @RB monomials of order
non X.

2.3. Free commutative operated algebras.The construction of the free commutative operated
algebra on a seX that has the free commutative fl@rential) Rota-Baxter algebra as a quotient
is given in B3]. The explicit constructionti(X) of the free commutative Rota-Baxter algebra in
TheoremPZ.4 can be realized on a submodule of the free commutative aubedgebra spanned
by reduced words under a rewriting rule defined by the Rotetdaxiom.

This construction is parallel to that of the free (noncomattiue) operated algebra on a set

in L3, 29, 1, £8]. See B4 for the non-unitary case.

Definition 2.6. Let Q be a set. Acommutative Q-operated monoidis a commutative monoid
G together with mapg,,: G - G,w € Q. A homomorphism between commutatfeoperated
monoids G, {a.}.) and H, {8,,}.,) is amonoid homomorphish: G — H such thatfoa,, = 8,0f
for w € Q.

We similarly define the concept of a commutati¥eoperatedck-algebra. The stix Q will be
suppressed when the meaning(bfs clear from the context. We recall the construction of the
free objects in the category of commutative operated magi.

Fix a setY. Define monoid€,, := €,(Y) for n > 0 by a recursion. First denotg := C(Y). For
eachw € Q, let [C(Y)], := {Lul, | u € C(Y)} be a set in bijection witlC(Y). We require that all
the setC(Y) and|C(Y)]., w € Q are disjoint from one another. We write the notatioffor the
disjoint union. Then define

€1 1= C(Y U (Hweal C(Y)]w)) = C(Y U (Uueal €olw))-

Note that elements irC(Y)],, are only symbols indexed by element€i¢Y). For example|1],, is
not the identity, but a new symbol. The inclusiér— Y LU (Uycal €ol,,) induces a monomorphism
io: € = C(Y) — €; = C(Y U (Uyea L€o]y)) of free commutative monoids through which we
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identify €, with its image in€,. Inductively assume thdt, ; have been defined for > 2 and
that the injection

ino: Chro— Cq

has been obtained. Then define
(16) €y 1= C(Y U (Uueal €n1n))-
Also the injection,,_, gives an injection

L€ o)o = Chi1]w, w € Q.
Thus by the freeness 6f,_; = C(Y U (Unecal€,-2].)) as a free commutative monoid, we obtain

i1 Chg = C(Y U (UuealChzlw)) = C(Y U (Upeal €r-1l0)) = €.
Finally, define the commutative monoid
S(Y) := U € = lim G,
n>0

Elements ing(Y) are calledcommutative) Q-bracketed monomialsin Y. Defining
17) [ ot €&Y) = €(Y), ue [ul, weQ,

then E(Y),{l lo}wea) IS @ commutative operated monoid and its linear spa(X), {L lo}wen)
is a commutative (unitary2-operateck-algebra with its multiplication extended frot(Y) by
linearity.

Proposition 2.7. ([E3]) LetQ be a set.

(@) Let jy: Y — C€(Y) be the natural embedding. Then the trif&Y), {| lo}wea, Jy) IS the
free commutative operated monoid on Y. More precisely, igr@mmutative operated
monoid G and set map:fY — G, there is a unique extension of f to a homomorphism
f: €(Y) — G of operated monoids.

(b) Let jy: Y — kE(Y) be the natural embedding. Then the trik&(Y), {| 1. }wea, Jy) IS the
free commutative operated unitakyalgebra on Y. More precisely, for any commutative
k-algebra R and set map:fY — R, there is a unique extension of f to a homomorphism
f: kKE(Y) — R of operatedk-algebras.

By the universal property d€€(Y), the following conclusion from general principles of uni-
versal algebra is obtainefd,[[L 7.

Proposition 2.8. ([E3]) Let Y be a set withfd Y — Kk[Y]. LetQ = {d, P} and write du) :=
Lulg, P(u) := |ulp. Let Iprs = Iprey be the operated ideal &fC(Y) generated by the set

d(r) — do(r),

d(uv) — d(u)v — ud(v) — ad(u)d(v),
P(u)P(v) — P(uP(v)) — P(P(u)v) — AP(uv),
(doP)(u)—u

Then the quotient operated algebk&(Y)/Ipre, With operations induced by d and P (which we
again denote by d and P, respectively), is the free comnvetdifferential Rota-Baxter algebra

on the dfferential algebra(k[Y], d) in Theorenf-3[a).
Combining PropositioR.§ with Theorenf.3, we have

revY,uveCY);.
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Proposition 2.9. ([B3)) Let Y be a set with@d Y — k[Y]. The natural embedding
n: TI(K[Y]) = KE(Y), u®u®---QUyx > UgP(UiP(--- P(u)---)), U € C(Y),0<i <kk=>0,

composed with the quotient map= py: k €(Y) — k €(Y)/lprg gives a linear bijection (in fact,
an isomorphism of gierential Rota-Baxter algebras)

6 = 6Oy T(K[Y]) — k €(Y)/Ipre.

Because of the bijectivity of, we can identify the basiB(Y) of 111(k[Y]) in Eq. ({[4) with its
imagen(B(Y)) in kE(Y):

(18) Xo® X ® -+ QX¢ & XoP(XP(---P(X)--+)), X € C(Y),0<i<kk>D0.
Define thereduction map
(19) Red = Red, := 6% 0 p: k €(Y) — KE(Y)/Ipray — TI(K[Y]) = n(1i(k[Y])).

It reduces anyd, P)-bracketed monomial o¥ to a linear combination of DRB monomials dmn
For example, ilu, v € C(Y), then

Red(ulplv]p) = RedP(Uu)P(V)) = 1@u®V+1VeUu+ A®uv < PUP(V)) + P(VP(u)) + AP(uv).

3. FREE COMMUTATIVE INTEGRO-DIFFERENTIAL ALGEBRAS BY INITIALIZATION

In this section, we summarize the construction of free cotatiue integro-diferential algebras
by initialization 7).

3.1. Regular differential algebras. The construction applies to a large class dfatential al-
gebras called regularftierential algebras. So we begin with the concept and exaroptegular
differential algebras.

3.1.1. Quasi-antiderivatives and regularity.

Definition 3.1. Let (A, d) be a diterential algebra of weight with derivationd. A linear map
Q: A — Ais called aguasi-antiderivative if do Qod = dandQodo Q = Q, with the additional
condition that keQ is a nonunitank-subalgebra oA whena # 0. A differential algebra whose
derivation has a quasi-antiderivative is caltedular.

Given a regular dierentialk-algebra A, d) and a fixed quasi-antiderivativ@for d, we define
the following operators. Let

E=ida-Q0d,S=doQ,J=ida—E=Qod, T=ids-S.

We also definé\; to be thek-submoduleA; = imQ, andAy to be thek-subalgebra ked.
Regularity is equivalent to the existence of certain primes; namely idempotent linear maps
to a subspace.

Proposition 3.2. ([Z1]) Let (A, d) be a regular diferential algebra. If A is regular and Q a
quasi-antiderivation for d, then the correspondingSd o Q: A — A is a projector ontamd
and E ;= idy — Qo d: A — A s a projector ontckerd. Conversely, if there are projectors
S: A— Aontoimd and E A — A ontokerd, then there is a unique quasi-antiderivative Q of
d such thaim Q = ker E andkerQ = kerS and(A, d) is regular.
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To prove the converse, from the given project8raind E, we haveA = kerS & imd and
A = ker deker E. Thus the restriction af to ker E is a bijection onto ind. Then there is unique
mapQ: A — A whose restriction to ind is the inverse of the above bijection and whose kernel
is kerS.

3.1.2. Differential polynomial algebrasLet Y be a set with a well-orderingy. Define the
length-lexicographic order <}, . on the free monoid/(Y) by

—=Y,lex

£ <m,

(20) U<y Ve { or{ =mand3il < i < £suchthay; = v; for 1 <i <ipandu, < vi,

whereu = U ---upandv = vy ---vpwith u,v; € ,1 <i < £,1 < j <m. Itis well-known J]
that<{,, is again a well-ordering. An elementA u of the free commutative monoid(Y) can
be uniquely expressed as

(21) u=u?---u¥, whereug, - ,Uc€ Y, jo, -, jk € Zo1 andug > - -+ > Uy

This expression is called titandard form of u. If k = -1, we takeu = 1 by convention.
Let X be a well-ordered set and lgt= AX (resp.A,X). Letn > 0 be given. Fosd?, x{V e y
with Xg, X, € X, define

(22) X0 < x{? (resp.x$? <n XiV) & (%0, —io) < (x1.—i1)  lexicographically
For exampled® < xU < x. Also, x; < x; impliesx\¥ < x{?) for all iy, i, > 0.
Definition 3.3. Let u € C(AX) with standard form in EqHI):
u= uéo---ulj(k, whereug, - -+ ,Uc € AX, Uy > -+ > W andjo, -, jk € Zs1.
Call u functional if eitheru= 1 oru, € X or j, > 1.
Proposition 3.4. ([£3, E1)) LetA € k and let X be a set. Let A (k{X},d,) be the free commu-

tative djferential algebra of weight on X as defined in Theorefn3[b]. Then there are direct
sums A= At @imd and A= A; @ kerd, where

(23) At = Arpn = {ue C(AnX) |uis functiona), At := kArg,

and A is the submodule generated by all monomihlg u € C(AX). Thus d admits a quasi-
antiderivative Q. Thereforgk{X}, d,) is regular.

Since the product of two functional monomials is again fioral, At is in fact ak-subalgebra
of A.

As noted in the remark after Propositifi}, the quasi-antiderivativ® is defined as follows.
From the direct sums, the derivati@nrestricts to a bijectio: A; — imd. DefineQ: imd —
A, to be the inverse map and then exté&ntb A by takingAr to be the kernel 0.

3.1.3. Rational functions.We show that the algebra of rational functions with deratf any
weight is regular.
Let A = C(x). For givena € C, let

(-0 4

9

d,l:A—>A,f(X)r—>{ f’(le, -0

be thel-derivation. Denote
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(x—aj)!

k
{_Z 4! 'a, € C distinct, yjj € C} 1=0,
i=

k
{Z i )au e C distinct for any given, y;j € C nonzert} 170

Then denote
C(X);: =xXC[X] +R

and
{il ﬁ a; € Cdistinct,vy; € C}, A=0,
CXr: = ) |
{ﬁl é i € Rreey) € [0, |re(/l)|)} A0,
where ref) is the real part of € C. It is proved in P71 that
(24) C(x) =imd; & C(X)r.

Further,C(X)t is a nonunitary subalgebra &{x). We also have
C(x) = kerd, & C(X);.
Then by Propositio.2, d, is regular.

3.2. Construction of ID(A)*. We now give the construction of the free commutative integro
differential algebra IDX)* on a regular dierential algebraA, d) with a fixed quasi-antiderivative

Q.
With the notations set up after Definiti§hl, we give now an explicit construction of IBf*
via free commutative Rota-Baxter algebras and tensor pted&irst let

Iir(A) 1= @A®A$k =A®(ARA)® (ARA®?) + ...
k>0

be thek-submodule of1i(A) in Eq. [{1). Theniiit(A) is the tensor produd ® 111*(Ar) where
II*(Ar) 1= @ A" is the mixable shiile algebraff], P4, B3] on the non-unitark-algebraAs.
>0
Next, Ietln< = kerd > k and let
A ={e(@]aec A

denote a replica of thi€-algebraA, endowed with the zero derivation and thealgebra structure
map
K—A, cegc),cek

We will use theK-algebra isomorphism
e A-> A, ap g@,acA
Let
(25) ID(A)" := A, ® TTIT(A) = A, @« AR TIT (Ar)

denote the tensor productidirential algebra of\, andiiir(A), namely the tensor product algebra
where the derivatiod, is defined by the Leibniz rule. To define the linear operatoon ID(A)*,
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we first require thafl, be A.-linear. Then we just need to defilig(a) for a pure tensot in
A® 111 (At). For this purpose we apply induction on the lengtbr a.

Whenn = 1, we havea = a € A. By definition of T we havea = d(Q(a)) + T(a) with
T(a) € Ar. Then we define

(26) Ia(a) := Q(a) - £(Q(@)) + 1 T(a).

Assume thafla(a) has been defined farof lengthn > 1 and consider the case whehas length
n+ 1. Thena = a®@ awherea e A a € A?" and we define

(27) lx(a®a) := Q(a) ® a - HA(Q(a)a) — ATIA(d(Q()) a) + 1© T(a) @ a,

where the first and last terms are alreadyAi® 111" (A1) while the middle terms are in IB)* by
the induction hypothesis.

Theorem 3.5. ([E1]) Let (A, d) be a regular diferential algebra of weight with a fixed quasi-
antiderivative Q. Then the tripl@D(A)*, da, I14), with the natural embedding

iA: A— |D(/A\)>k =A ® A® Hl+(AT)

onto the second tensor factor, is the free commutative riotdgfferential algebra of weighft
generated by A.

4. FREE COMMUTATIVE INTEGRO-DIFFERENTIAL ALGEBRAS BY (GROBNER-SHIRSHOV BASES

In this section, we give a construction of free commutatitegro-diterential algebras by the
method of Grobner-Shirshov bases. The main result Thegrégrcan be read independently of
the rest of the section, which is meant to give some detatliseoiethod.

The method of Grobner bases or Grobner-Shirshov basgmated from the work of Buch-
berger [[3] (for commutative polynomial algebras, 1965), Hironagd] [(for infinite series alge-
bras, 1964), Shirshoff] (for Lie algebras, 1962) and Zhukoff ]| (reduction in nonassociative
algebra, 1950). It has since become a fundamental methodnimeitative algebra, algebraic
geometry and computational algebra, and has been exteodedrty other algebraic structures,
notably associative algebrds, [1]. In recent years, the method of Grobner-Shirshov basss ha
been applied to a large number of algebraic structures tty gitoblems on normal forms, word
problems, rewriting systems, embedding theorems, exdeasgrowth functions and Hilbert se-
ries. Seeff, [LQ, [L3] for further details.

The method of Grobner bases or Grobner-Shirshov basesrysugeful in constructing free
objects in various categories, including the alternatimestructions of free Rota-Baxter algebras
and free diferential Rota-Baxter algebraf, [L]]. The basic idea is to prove a composition-
diamond lemma that achieves a rewriting procedure for riegueny element to a certain “stan-
dard form”. Then the set of elements in standard form is ashafghe free object.

In the recent papdfj], this method is applied to construct the free commutativegro-
differential algebra as the quotient of a free commutatitiedintial Rota-Baxter algebra mod-
ulo the integration by parts formula in EqJ)( In order to do so, the authors first establish a
Composition-Diamond Lemma for the free commutativiedential Rota-Baxter algebra con-
structed in Pd]. Then they prove that the ideal generated by the definirgficel of integro-
differential algebras in Eq[{( has a Grobner-Shirshov basis, thereby identifying asbafsthe
free commutative integro-fierential algebra as a canonical subset of a known basis @fea fr
commutative dierential Rota-Baxter algebra.
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4.1. Weakly monomial order. In this subsection, we will define a weak form of the monomial
order on pieces of the set offtérential Rota-Baxter monomials filtered by the order dfeden-
tiation. It will be suficient to establish the composition-diamond lemma for irdedifferential
algebras.

For a setX, recall thatAX: = {x¥ | x € X,k > 0} andA,X: = {x¥ | x € X,0 < k < n}
for n > 0. Then the family{C(A,X)}-0 defines an increasing filtration &(AX) and hence by
Eq. (I3, induces a filtratioB (A, X) }nso Of the setB(AX) of DRB monomials by DRb monomials
of ordern. Elements ofB(A,X) are calledRB monomials of ordern.

In Definition f-] below and what follows, the DRBx-DRB) monomials are elements in the
basisB(AX) (resp. B(AX*)) of 111(k{X}) (resp.111(k{X*})), which are identified via EqQ[LF) as
(d, P)-bracketed monomiatg B(AX)) € kE(AX) (resp.n(B(AX*)) € kE(AX™)).

Definition 4.1. Let X be a setx a symbol not inX andA,X* := Ap(X U {%}).
(a) By ax-DRB monomial on A, X, we mean any expression B(A,X*) with exactly one
occurrence ok. The set of alk-DRB monomials om\X is denoted byB*(A,X).
(b) Forg e B*(AnX) andu € B(A,X), we define
qlu = q|*»—>u

to be the bracketed monomial &A,X) obtained by replacing the letterin q by u, and
call gl, au-monomial on A, X.
(c) Further, fors = Y, cu € kB(AX), wherec;, € k, U € B(AX) andq € B*(AnX), we

define
dis = ) &y,
i
which is ink €(AnX).

We note that a-DRB monomialq is a DRB monomial im\,X* while its substitutiorg|, might
not be a DRB monomials. For example, fpe P(x)x € n(B(AX*)) andu = P(xp) € B(AnX)
wherexy, X, € X, theu-monomialg|, = P(x1)P(X.) is no longer ing(B(A,X)).

Definition 4.2. If g = ply () for somep € B*(A,X) and? € Z.4, then we calg atype | x-DRB
monomial. Let B["(A,X) denote the set of typeX-DRB monomials om\,X and call
B (AnX) 1= B*(AnX) \ B (AnX)
the set oftype Il x-DRB monomials.
For exampled(x)P(x) € B(AnX) andxP(x) € B} (AnX).

Definition 4.3. Let X be a setx;, x, two distinct symbols not irX and A, X**2 1= Ay (X U
{*x1, *x2}). We define a%, x»)-DRB monomial onA,X to be an expression B(A,X**2) with
exactly one occurrence of; and exactly one occurrence @b. The set of all &1, x,)-DRB
monomials oM, X is denoted byB*+*?(A,X). Forq € B*1*2(A,X) anduy, U, € KB(ApX), we
define
qlul,Uz = ql*lHul,*ZHuz

to be the bracketed monomial obtained by replacing therlettéresp. ;) in g by u; (resp.u,)
and call it a (1, Up)-bracketed monomial onA,X .

A (uy, up)-DRB monomial oA, X can also be recursively defined by
q|U1,U2 = (q*l|u1)|u2,
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whereq** is g whenq is regarded as &;-DRB monomial on the ses,X*2. Theng*!|,, is in
B*2(A,X). Similarly, we have
qluLUz = (q*2|U2)|U1'
Let X be a well-ordered set. L&t > O be given. We extend the well-orderigg on C(A,X)
defined in Eq.[f2) to B(A,X). Note that

B(AX) = {Ug® U1 ® - ® U | Ui € C(AnX), 1 < i < k k> 0} = L1 C(ARX)
can be identified with the free semigroup on the&gt, X). Thus the well-ordering,, onC(A,X)
extends to a well-ordering;, ., [B] on B(AnX) which we will still denote by<, for simplicity.
More precisely, for anyl = Uy ® - -- ® U, € C(AX)®® D andv = vy ® - ® v, € C(AX)®D),
define
(28) u<, vif(kug,---,u) < (€, vo,- -, V) lexicographically

Definition 4.4. Let <, be the well-ordering oB(A,X) defined in Eq.f8). Letq € B*(A,X) and
s€ kB(AnX).
(a) For any 0+ f € kB(AnX), IetT_denote thdeading term of f: f = cf + 3, cu;, where
0#c,c ek, u e B(AX), u < f. We callf monicif c = 1.
(b) Let
qls = Redqs),
where Red kE€(A,X) — HI(AnX) = n(kB(AnX)) is the reduction map in ECfI).
(c) The elementls € k €(A,X) is callednormal if gfs is in B(A,X). In other words, if
Red(ls) = dls.

Remark 4.5. By definition, g|s is normal if and only ifgls is normal if and only if thessDRB
monomialgls is already a DRB monomial, that is, no further reductiomrifA,X) is possible.

Here are some examples of abnors&RB monomials.

Example 4.6. (a) q = %xP(y) ands = P(X), giving gs = P(X)P(y) which is reduced to
P(XP(y)) + P(P(X)y) + AP(xy) in n(1I(AnX));
(b) g =d(x) ands = P(x), giving gls = d(P(x)) which is reduced tx in n(111(AnX));
(c) q = d(x) ands= ¥, givingqls = d(x?) which is reduced to @) + A(xD)? in »(111(ALX));
(d) q = d"(x) ands= d(x), giving gls = d"*}(s) which is reduced to 0 in(111(A,X)).
Definition 4.7. A weakly monomial order on B(A,X) is a well-ordering< satisfying the fol-
lowing condition:
Foru,v € B(AxX), if u < v, theng], < qly if g € B*(AnX), or if g € B*(AxX) and
gly is normal.

Proposition 4.8. ([23]) The order<, defined in Eq.f9) is a weakly monomial order oB(AX).

4.2. Composition-Diamond lemma. In this section, we shall establish the composition-diadhon
lemma for the free commutativeft@rential Rota-Baxter algebra(k[A,X]) of ordern.

Definition 4.9.  (a) Letu,w € B(A,X). We callu a subword of w if w is in the operated
ideal of €(A,X) generated bw. In terms ofx-words,u is a subword ofw if there is a
g € B*(A,X) such thaw = q,.
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(b) Letu; andu, be two subwords ofv. Thenu; andu, are calledseparatedif u; € C(ApX),
U, € B(AnX) and there is @ € B*+*2(A,X) such thawv = gy, ,-

(c) For anyu € B(A,X), u can be expressed as= u; - - - Ui, whereug,--- ,u_; € ApX and
U € ApnX U P(B(A,X)). The expression is unique up to permutations of thosefadh
AnX. The integek is called thebreadth of u and is denoted by bre).

(d) Letf,ge B(AX). A pair (u,v) with u € B(A,X) andv € C(A,X) is called arintersection
pair for (f, Q) if the differential Rota-Baxter monomial := fu equalsvg and satisfies
brefnv) < bre(f) + bre@). Then we callf andg to beoverlapping. Note that iff andg
are overlapping, thef € C(A,X).

For example, letv = xyxywith x,y € X andu; = xy be the subword oiv on the left and
u; = xy be the subword ofv on the right. Thernu; andu, are separated. Letbe the subword
yxof w. Thenu; andg are overlapping. A systematic discussion on relative looat(separated,
overlapping and inclusion) of two subwords can be found@ [B7].

There are three kinds of compositions.

Definition 4.10. Let <, be the weakly monomial order db(A,X) defined in Eq.[{d), and let
f, g € kB(AnX) be monic with respect tg, such thatf # g.

(@) If T € C(AX)P(B(AnX)), then define @omposition of multiplication to be fu where
u e C(AX)P(B(AnX)). 3
(b) If there is an intersection paiu,(V) for (f,Q), then we define
(f. 9w = (f.g)y" == fu-vg
and call it anintersection compositionof f andg.
(c) If there exists @ € B*(A,X) such thatv := f = g, then we definef, g),, := (f,g)y :=

f — glg and call it aninclusion compositionof f andg with respect taj. Note that if this
is the case, theq|y is normal.

In the last two casesf(g),, is called theambiguity of the composition. For example, let
f = P(d(u)P(d(v)P(r))) — uPd(v)P(r)) + P(ud(v)P(r)) + AP(d(u)d(v)P(r))
and
g = P(d(v)P(r)) — vP(r) + P(vr) + AP(d(V)r)
with the first terms being the leading terms. Then we hEVEEC"g whereq: = P(d(u)x). Hence
we get an inclusion composition éfandg with the ambiguity
(.9, = ~uPAWP()) + PUdW)P(r) + P(d(u)d()P())
— (=P(d(u)vP(r)) + P(d(u)P(vr)) + AP(d(u)P(d(v)r))) .
Definition 4.11. Let <, be the weakly monomial order dB(A,X) defined in Eq.[9), S <
kB(AnX) be a set of monic dierential Rota-Baxter polynomials amde B(A,X).
(a) A composition of multiplicatiorfu is calledtrivial mod [S] if

fu= ZCiCHs,
i

wherec; € k, g € B*(AnX), s € S, gls Is normal andjls <n fu. If this is the case, we
write

fu=0mod [S].
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(b) Foru,v € kB(AX) andw € B(A,X), we sayu andv arecongruent modulo (S, w) and
denote this by

u=vmod S,w)

if u—v =Y, cqls, wherec €k, g € B*(AnX), § € S, Gl is normal andyls <, W.
(c) Forf,g e kB(AX) and suitablay, v or q that give an intersection compositiof )" or
an inclusion compositionf( g)a, the composition is callettivial modulo (S, w) if

(f, 9wV or (f,g)d = 0 mod S, w).

(d) The setS c kB(A,X) is a Grobner-Shirshov basisif all compositions of multiplica-
tion are trivial mod 8], and, for f,g € S, all intersection compositions (g).;” and all
inclusion compositionsf( g)y, are trivial modulo §, w).

Theorem 4.12.([23] Composition-Diamond Lemma) Lst, be the weakly monomial order on
B(AnX) defined in Eq.f3), S, a set of monic DRB polynomialskB(A,X) with d(S,)) € Sy, and
Id(S,) the Rota-Baxter ideal &B(A,X) generated by s Then with respect tg,, the following
conditions are equivalent:

(@) Sy is a Grobner-Shirshov basis kiB(AnX).

(b) If 0 # f € 1d(Sy,), thenf = s for some ae B*(AnX), S€ S, and ds is normal.

(c) The setlrr(Sy) = B(AX) \ {dls | g € B*(AnX),s € Sy, gsis norma} is a k-basis of
KB(AX)/1d(Sy). In other wordsklrr(S,) & 1d(S,) = kB(ARX).

4.3. Free commutative integro-diferential algebras by Grobner-Shirshov bases.In this sub-
section we begin with a finite se¢ and prove that the relation ideal of the free commutative
differential Rota-Baxter algebra ot of ordern > 1, defining the corresponding commutative
integro-diferential algebra of order possesses a Grobner-Shirshov basis. Then we apply the
Composition-Diamond Lemma in Theordhil2to construct a canonical basis for the free com-
mutative integro-dterential algebra of order. As n approaches infinity, we obtain a canonical
basis of the free commutative integrdfdrential algebra on the finite S¥t Finally for any well-
ordered sek, by showing that the canonical basis of the free commutanitegyro-diferential
algebra on each finite subsetXis compatible with the inclusion of the subseMnwe obtain a
canonical basis of the free commutative integrfiedtential algebra oix.

Theorem 4.13.([23]) Let
(29) S 1= {P(d(U)P(V)) — UP(v) + P(uV) + AP(d(u)v) | u, v € TI(K[AX])}

be the set of generators corresponding to the integratiopdoys axiom Eq.[{). Let <, be the
monomial order defined in ECZ§).

(a) With respect ta<,, S, is a Grobner-Shirshov basis imi(k[AnX]). Hencelrr(S;) in Theo-
remfI2is a linear basis oft1(k[A,X]) /1d(Sy).

(b) Let Ar = k{X}+ be as defined in EqEB), A, = K[AnX], Ant = Ay N Ar. Let Ip, be the
differential Rota-Baxter ideal afii(A,) generated by § Then we have the isomorphism
of modules

I(An)/lipn = An @ @%@Aﬁfl’T@)An .

k>0
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Let
(30) S = {P(d(u)P(v)) — uP(v) + P(uv) + AP(d(u)v) | u,v € 11(AX)} .
be the set of generators corresponding to the integratigratig axiom Eq.[{).

Theorem 4.14.([E3]) Let X be a nonempty well-ordered set, A k{X}t, 111(k{X}) = 11(AX) the
free commutative glerential Rota-Baxter algebra on X angIthe ideal ofiii(k{X}) generated
by S defined in EqB(). Then the composition

k>0

of the inclusion and the quotient map is an isomorphisik-ofodules.

It would be interesting to compare the two constructionsed tommutative integro-iierential
algebras in Theorefd.5 and Theorenfl.I4 The advantages of the first construction is that it ap-
plies to a large class of fierential algebras and that the product in the free algebcteasly
defined. The advantage of the second construction is thatoth&truction comes from a subset
of the free commutative fierential Rota-Baxter algebra from which the free integitdedential
algebra is obtained modulo an ideal. It is useful to have bbthe two constructions available in
order to study dterent aspects of free commutative integrGediential algebras. Further study
in this direction is being pursued in another work. The cartdion of free noncommutative
integro-diferential algebras is also under investigation.
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