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Abstract. We consider solution operators of linear ordinary boundary
problems with “too many” boundary conditions, which are not always
solvable. These generalized Green’s operators are a certain kind of gen-
eralized inverses of differential operators. We answer the question when
the product of two generalized Green’s operators is again a generalized
Green’s operator for the product of the corresponding differential oper-
ators and which boundary problem it solves. Moreover, we show that—
provided a factorization of the underlying differential operator—a gen-
eralized boundary problem can be factored into lower order problems
corresponding to a factorization of the respective Green’s operators. We
illustrate our results by examples using the Maple package IntDiffOp,
where the presented algorithms are implemented.

Keywords: Linear boundary problem, singular boundary problem, generalized
Green’s operator, reverse order law, factorization, integro-differential operator,
ordinary differential equation.

1 Introduction

Although linear boundary problems play an important role in applied math-
ematics [1,2,3,4], there is little algebraic theory and algorithmic treatment of
boundary problems. Current computer algebra systems provide many symbolic
tools for differential equations, but boundary conditions are usually left to a
backward solving procedure, which—depending on the forcing function and on
the conditions—may or may not work.

In [5], a new operator based approach for symbolic computation with linear
ordinary boundary problems was presented, which has constantly been extended
over the last years [6,7,8]; see also [9] for a recent overview. The results needed
are summarized in Section 2.

The most recent algorithms for regular boundary problems (that are uniquely
solvable) are implemented in the TH∃OREM∀ system [8,10], and in the Maple

package IntDiffOp [11,12,13]. They do not only allow to compute solution opera-
tors (Green’s operators), but also to factor regular boundary problems into lower
order problems provided a factorization of the underlying differential operator.
The factorization of boundary problems relies on the multiplicative structure

http://arxiv.org/abs/1310.8455v1


2 A. Korporal, G. Regensburger

introduced in [6], which for regular problems corresponds to the multiplication
of the respective solution operators in reverse order.

The IntDiffOp package also provides support for the class of singular prob-
lems treated in this paper: We consider boundary problems where the differential
equation per se is solvable, but where inconsistent boundary conditions allow so-
lutions only for forcing functions satisfying suitable compatibility conditions. As
a simple example, consider the boundary problem

u′′(x) = f(x)
u(1) = u′(1) = u′(0) = 0,

(1)

where the forcing function f clearly has to satisfy the compatibility condition
∫ 1

0 f(ξ) dξ = 0; see Example 1 for the corresponding code.

While Green’s operators for regular boundary problems are right inverses
of the differential operator, solution operators for singular problems can be
described as generalized inverses. Algorithms for computing such generalized
Green’s operators and the compatibility conditions of a singular boundary prob-
lem are presented in [11]; we briefly recall the basic results in Section 3. For
singular boundary problems and generalized or modified Green’s functions in
analysis, we refer for example to [4] and [14], and in the context of generalized
inverses to [15, Sec. 9.4], [16], and [17, Sec. H].

The goal of this paper is to extend the factorization algorithm for regular
boundary problems [6,8] to generalized boundary problems. To this end, we have
earlier investigated the multiplicative structure of generalized inverses in [18]. It
turns out that, in contrast to the regular case, the product of generalized Green’s
operators is not, in general, itself a generalized Green’s operator.

In Section 4, we define a new composition of generalized boundary problems,
which includes the composition of regular problems, based on results from [13,18].
Then we discuss algorithmic methods for testing when the so-called reverse or-
der law holds, that is, when the product of two generalized Green’s operators is
again a generalized Green’s operator of the product of the corresponding differ-
ential operators. Moreover, if the reverse order law holds, we can algorithmically
determine which boundary problem is solved by the product of two general-
ized Green’s operators. We present a first implementation of the new algorithms
in the framework of integro-differential operators and illustrate our results by
examples, carried out using the IntDiffOp package1.

Building on results of [13], we discuss in Section 5 a new algorithm and imple-
mentation for factoring a generalized boundary problem, such that the factoriza-
tion corresponds to the product of the respective generalized Green’s operators.
We illustrate the algorithm also with examples for differential equations with
non-constant coefficients. The right-hand factor computed by this method will
always be a regular boundary problem. However, we also present some first steps
for obtaining other possible factorizations in Section 6.

1 Available at http://www.risc.jku.at/people/akorpora/index.html.
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2 Symbolic Computation for Boundary Problems

The algebraic framework for treating linear ordinary boundary problems with
symbolic methods is given by the algebra of integro-differential operators over
an ordinary integro-differential algebra. This algebra was introduced in [5,7] as a
uniform language to express boundary problems—meaning differential equations
and boundary conditions—as well as their Green’s operators, which are integral
operators. We review the basic properties and refer the reader to [7] and [9]
for additional details. See also [19,20] for an extensive study on algebraic prop-
erties of integro-differential operators with polynomial coefficients and a single
evaluation (corresponding to initial value problems).

Extending differential algebras [21], where derivations are linear operators
satisfying the Leibniz rule, integro-differential algebras (F , ∂,

r
) are defined as a

differential algebra (F , ∂) along with an “integral”
r

that is a linear right inverse
of the derivation ∂ and satisfies an algebraic version of the integration by parts
formula. For the similar notion of differential Rota-Baxter algebras, see [22] and
for a detailed comparison [23].

We call an integro-differential algebra over a field K ordinary if ker ∂ = K.
The standard example of an ordinary integro-differential algebra is given by F =
C∞(R) with the usual derivation and the integral operator

r
: f 7→

r x

a
f(ξ) dξ

for a fixed a ∈ R. We call E = 1 −
r
◦ ∂ the evaluation of F . For representing

not only initial value problems, but arbitrary boundary problems, we include
additional characters (multiplicative linear functionals) Ec : f 7→ f(c) at various
evaluation points c ∈ R.

We write F〈∂〉 for the the ring of differential operators with coefficients in
F and F〈

r
〉 for integral operators of the form

∑n

i=1 fi
r
gi with fi, gi ∈ F . For

a set of characters Φ, the corresponding (two-sided ideal of) boundary operators
(Φ) are finite sums

∑

ϕ∈Φ





∑

i∈N

fi,ϕ ϕ∂i +
∑

j∈N

gj,ϕϕ
r
hj,ϕ





with fi,ϕ, gj,ϕ, hj,ϕ ∈ F . Stieltjes boundary conditions are boundary operators
where all the fi,ϕ ∈ K are constants and gj,ϕ = 1, so that they act on F as
linear functionals.

The integro-differential operators FΦ〈∂,
r
〉 are given as a direct sum of K-

vector spaces

FΦ〈∂,
r
〉 = F〈∂〉∔ F〈

r
〉∔ (Φ).

The representation of integral operators and boundary conditions is not unique
due to linearity of

r
, for normal forms of integro-differential operators; see [7].

For solving boundary problems, we restrict ourselves to monic (i.e., having
leading coefficient 1) differential operators that have a regular fundamental sys-
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tem u1, . . . , un, which means that the associated Wronskian matrix

W (u1, . . . , un) =











u1 · · · un

u′
1 · · · u′

n

...
. . .

...

u
(n−1)
1 · · · u

(n−1)
n











is regular. Then the fundamental right inverse (solving the initial value problem)
can be computed as an integro-differential operator in FΦ〈∂,

r
〉 by the variation

of constants formula

T� =

n
∑

i=1

ui

r
d−1 di, (2)

where d is the determinant of the Wronskian matrix, di = detWi, and Wi is the
matrix obtained from W by replacing the ith column by the nth unit vector.

Algorithms for solving and factoring regular ordinary boundary problems
are described in [7,6]. We recall the basic definitions and results. A boundary
problem is defined as a pair (T,B) consisting of a monic differential operator T
of order n with a regular fundamental system and a space of boundary conditions
B = span(β1, . . . , βn) generated by n linearly independent Stieltjes boundary
conditions. We think of T as a surjective linear operator between suitable K-
vector spaces of “functions” T : V → W and the boundary conditions βi acting as
linear functionals from the dual space V ∗. We describe the subspace of functions
satisfying the boundary conditions via the orthogonal

B
⊥ = {f ∈ V | β(f) = 0 for all β ∈ B},

i.e., u ∈ V is a solution of (T,B) for a given forcing function f ∈ W , if

Tu = f and u ∈ B
⊥.

One easily checks that a boundary problem has a unique solution for each forcing
function f if and only if KerT ∔ B⊥ = V : The sum KerT + B⊥ = V ensures
the existence of a solution, the trivial intersection KerT ∩ B⊥ = {0} implies
its uniqueness. Such boundary problems are called regular, and the solution
operator G that maps each f ∈ W to its unique solution u ∈ V is called Green’s
operator. The Green’s operator is a right inverse of T and can be computed as
G = (1 − P )T�, where P is the projector onto KerT along B⊥, see also [7].
We will use the notation G = (T,B)−1 for the Green’s operator G of a regular
problem (T,B).

Regularity of a boundary problem can be tested via its evaluation matrix :
Let (u1, . . . , un) be a basis of KerT and (β1, . . . , βn) a basis of B. Then (T,B)
is regular iff

β(u) =







β1(u1) . . . β1(un)
...

. . .
...

βn(u1) . . . βn(un)






∈ Kn×n

is regular.
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For factoring regular boundary problems and their Green’s operators, we
recall the composition of boundary problems in [6]. This composition corresponds
to the product of their Green’s operators in reverse order. Since G1 = (T1,B1)

−1

and G2 = (T2,B2)
−1 are right inverses of T1 : V → W and T2 : U → V , the

product G2G1 obviously is a right inverse of T1T2. Defining the composition of
boundary problems as

(T1,B1) ◦ (T2,B2) = (T1T2,B2 + T ∗
2 (B1)), (3)

where T ∗
2 : W

∗ → V ∗ denotes the transpose map β 7→ β◦T2, the reverse order law

(

(T1,B1) ◦ (T2,B2)
)−1

= (T2,B2)
−1(T1,B1)

−1 (4)

always holds for regular problems. Using this multiplicative structure of bound-
ary problems, it is always possible to split a regular boundary problem (T,B)
into regular lower order problems, provided there exists a factorization T = T1T2

of the differential operator; see [8] for a constructive proof that requires only a
fundamental system of T2.

We conclude this section with a remark on the “function spaces” V and W

on which we let the differential operator T act. The assumption V = W = F
used for example in [7,11]—ensuring well-definedness of arbitrary operations—
for some applications is too restrictive. For a given boundary problem (T,B) of
order n, it is for example sufficient to consider n times continuously differentiable
functions, i.e., V = Cn[a, b] and W = C[a, b], where a and b are the minimal and
maximal evaluation point appearing in the Stieltjes conditions of B. Similarly,
for composing boundary problems (T1,B1) and (T2,B2) of order m and n, it
suffices to restrict the domains as to consider T2 : C

m+n[a, b] → Cm[a, b] and
T1 : C

m[a, b] → C[a, b] (with suitable choices of a and b).

3 Generalized Green’s Operators

In [11], several methods of the previous section are generalized to boundary
problems with “too many” boundary conditions, meaning that ordT < dimB.
These problems are not solvable for all forcing functions f ; but we keep the
condition KerT ∩ B⊥ = {0} to ensure unique solutions. We briefly recall the
basic results from [11].

Definition 1. We call a boundary problem (T,B) semi-regular if

KerT ∩ B
⊥ = {0}. (5)

Let (T,B) be a boundary problem with T : V → W and E ≤ W . We call the
triple (T,B, E) regular, if (T,B) is semi-regular and

T (B⊥)∔ E = W. (6)

In this case, we call E an exceptional space for (T,B) and (T,B, E) a gener-
alized boundary problem.
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For simplicity, we also refer to the triple (T,B, E) as a boundary problem
and identify (T,B) with (T,B, {0}). One easily checks that regularity of (T,B)
implies regularity of (T,B, {0}) and vice versa, see also [13, Sec. 4.1].

For solving generalized boundary problems in analysis the forcing function
f is projected onto T (B⊥), the space of admissible forcing functions; see for
example [4,14]. This leads to the following algebraic definition of generalized
Green’s operators.

Definition 2. Let (T,B, E) be regular with T : V → W , and let Q be the pro-
jector onto T (B⊥) along E. Then u ∈ V is called a solution for f ∈ W if

Tu = Qf and u ∈ B
⊥. (7)

The generalized Green’s operator maps each f ∈ W to the unique solution ac-
cording to (7).

As in the regular case, we use the notation G = (T,B, E)−1 for the general-
ized Green’s operator for a regular boundary problem (T,B, E).

For testing semi-regularity of a boundary problem (T,B) with ordT = m

and dimB = n, we have to check whether the associated evaluation matrix
β(u) ∈ Kn×m has full column rank, see also [11, Lem. 1]. Condition (6) can be
checked analogously, provided an implicit description of T (B⊥) via compatibility
conditions C = T (B⊥)⊥: If (γ1, . . . , γr) is a basis of C and (e1, . . . , er) is a basis
of E, then the corresponding evaluation matrix γ(e) ∈ Kr×r has to be regular.
Moreover, in [11, Prop. 1] a method is presented to compute a basis of C ; we
have

C = G∗(B ∩ (KerT )⊥) (8)

for any right inverse G of T . Note that equation (8) requires computing the in-
tersection of the finite dimensional space B with the finite codimensional space
(KerT )⊥, which can be done using the following observation; see for exam-
ple [18].

Lemma 1. Let the subspaces U ≤ V and B ≤ V ∗ be generated respectively
by u = (u1, . . . , um) and β = (β1, . . . , βn). Let k1, . . . , kr ∈ Fm be a basis of
Kerβ(u), and κ1, . . . , κs ∈ Fn a basis of Ker(β(u))T . Then

(i) U ∩ B⊥ is generated by
∑m

i=1 k
1
i ui, . . . ,

∑m

i=1 k
r
i ui and

(ii) U⊥ ∩ B is generated by
∑n

i=1 κ
1
iβi, . . . ,

∑n

i=1 κ
s
iβi.

Example 1. We consider the boundary problem (1)

u′′(x) = f(x)
u(1) = u′(1) = u′(0) = 0,

which reads in operator notation as (∂2, span(E1, E1∂, E0∂)). We employ the
standard integro-differential algebra C∞(R) with the usual derivation and in-
tegral operator

r
: f 7→

r x

0
f(ξ) dξ that is implemented in the Maple package

IntDiffOp as presented in [11,12].
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In [11], we have already computed the compatibility conditions and the gen-
eralized Green’s operator with respect to the exceptional space E = R. We again
carry out the computations in the IntDiffOp package, but using the interface
IntDiffOperations for input of integro-differential operators. There, we use the
symbols d and a for input of the differential and integral operator, and e(c) for the
evaluation at c ∈ R. For the Maple output, the respective capital letters D, A,
and E[c] are used, and the non-commutative multiplication of integro-differential
operators is denoted by “ .”. The constructors BP,GBP,BC and ES are used
for input of respectively boundary problems, generalized boundary problems,
boundary conditions, and exceptional spaces.

> with(IntDiffOp):

> with(IntDiffOperations):

> t1 := d^2: #input differential operator

> b1 := e(1): b2 := e(1).d: b3 := e(0).d: #boundary conditions

> B1 := BC(b1, b2, b3):

> C1 := CompatibilityConditions(BP(t1, B1));

BC(E[1].A)

> E1 := ES(1): #exceptional space

> bp1 := GBP(t1, B1, E1): #generalized boundary problem

> g1 := GreensOperator(bp1);

x.A−A .x+
(

−

1

2
x
2
−

1

2

)

.E1.A+E1.A .x

4 Composition of Generalized Green’s Operators

In Section 2, we have already recalled the multiplicative structure for boundary
problems introduced in [7,6]. In contrast to the regular case, where Green’s
operators always satisfy the reverse order law, the situation is more involved for
generalized Green’s operators since they are not right inverses of the differential
operator.

Proposition 1. Let (T,B, E) be regular with T : V → W and G = (T,B, E)−1

its generalized Green’s operator. Then GTG = G, that is, G is an outer inverse
of T .

Proof. By definition of generalized Green’s operators, we have Tu = Qf for all
f ∈ W , as well as Gf = GQf = u, where Q denotes the projector onto T (B⊥)
along E. Hence TGf = Tu = Qf , and GTGf = GQf = Gf for all f ∈ W .

In terms of generalized inverses, the Green’s operator of a regular prob-
lem (T,B, E) can therefore also be defined as the unique outer inverse G of T
with ImG = B⊥ and KerG = E. In particular, for an outer inverse G of T ,
the boundary problem (T, (ImG)⊥,KerG) is regular, and G is its generalized
Green’s operator; see also [13, Rmk. 4.7].
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The composition G2G1 of two outer inverses of T1 and T2 is in general not
an outer inverse of the product T1T2. However, from the above considerations it
is clear that if G2G1 is an outer inverse of T1T2, then computing its kernel and
image yields the boundary problem it solves. For a proof of the following result,
see [18, Thm. 6.2] or [13, Thm. 3.27].

Theorem 1. Let (T1,B1, E1) and (T2,B2, E2) be regular with T1 : V → W ,
T2 : U → V and G1 = (T1,B1, E1)

−1, G2 = (T2,B2, E2)
−1 their generalized

Green’s operators. If G2G1 is an outer inverse of T1T2, the boundary problem

(

T1T2,B2 + T ∗
2 (B1 ∩E⊥

2 ), E1 + T1(B
⊥
1 ∩ E2)

)

(9)

is regular with generalized Green’s operator G2G1. Furthermore, the two sums
B2 ∔ T ∗

2 (B1 ∩E⊥
2 ) and E1 ∔ T1(B

⊥
1 ∩ E2) are direct.

Based on Equation (9), we define the composition of two arbitrary boundary
problems as follows.

Definition 3. The composition of two boundary problems is defined as

(T1,B1, E1)◦(T2,B2, E2) =
(

T1T2,B2+T ∗
2 (B1∩E

⊥
2 ), E1+T1(B

⊥
1 ∩E2)

)

, (10)

assuming that the composition T1T2 is defined.

This definition clearly reduces to the composition of regular boundary prob-
lems (3) when E1 = E2 = {0}. The composition of generalized boundary prob-
lems is implemented in the following algorithm.

Algorithm 1 (Composition)

Input Two boundary problems (T1,B1, E1) and (T2,B2, E2),
β1, . . . , βn and β̃1, . . . , β̃ν bases of B1 and B2,
e1, . . . , et and ẽ1, . . . , ẽτ bases of E1 and E2.

Output The composite boundary problem (T1,B1, E1) ◦ (T2,B2, E2).

1. Multiply T = T1T2 ∈ FΦ〈∂,
r
〉.

2. Compute a basis γ1, . . . , γk of B1 ∩E⊥
2 using Lemma 1.

3. Compute a basis v1, . . . , vℓ of B⊥
1 ∩ E2 using Lemma 1.

4. For 1 ≤ i ≤ k multiply δi = γiT2 ∈ FΦ〈∂,
r
〉.

5. For 1 ≤ j ≤ ℓ compute tj = T1(vj).

6. Compute a basis α1, . . . , αq of span(β̃1, . . . , β̃ν , δ1, . . . , δk).
7. Compute a basis f1, . . . , fr of span(e1, . . . , et, t1, . . . , tℓ).
8. Return (T, (α1, . . . , αq), (f1, . . . , fr)).

We are especially interested in the situation of Theorem 1, that is, the case
where the composition of boundary problems corresponds to the composition of
their generalized Green’s operators. For testing when G2G1 is an outer inverse
of T1T2, we use the following characterization from [18,13], which is based on
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results from [24] and [25]. It gives necessary and sufficient conditions on the
subspaces B⊥

1 , T2(B
⊥
2 ), E2, and T−1

1 (E1) such that the revers order law

((T1,B1, E1) ◦ (T2,B2, E2))
−1 = (T2,B2, E2)

−1(T1,B1, E1)
−1 (11)

for the respective generalized Green’s operators holds. The conditions can be
checked using only the input data, in particular, without computing G2 or G1.

Theorem 2. Let (T1,B1, E1) and (T2,B2, E2) be regular with T1 : V → W ,
T2 : U → V and G1 = (T1,B1, E1)

−1, G2 = (T2,B2, E2)
−1 their generalized

Green’s operators. Let C2 = T2(B
⊥
2 )⊥ and K1 = T−1

1 (E1). The following condi-
tions are equivalent:

(i) G2G1 is an outer inverse of T1T2,
(ii) (T1,B1, E1) ◦ (T2,B2, E2) is regular with Green’s operator G2G1,
(iii) C2 + (B1 ∩E⊥

2 ) ≥ B1 ∩ (E2 ∩K1)
⊥,

(iv) B1 ≥ C2 ∩ (E2 ∩ B⊥
1 )⊥ ∩ (E2 ∩K1)

⊥,
(v) K1 ∔ (E2 ∩ B⊥

1 ) ≥ E2 ∩ (B1 ∩ C2)
⊥,

(vi) E2 ≥ K1 ∩ (B1 ∩ E⊥
2 )⊥ ∩ (B1 ∩ C2)

⊥.

All conditions are formulated so that they can be checked algorithmically
with the methods from the end of Section 2. For non-algorithmic purposes, also
the equivalent dual conditions are useful, as for example

B
⊥
1 ≤ C

⊥
2 ∔ (E2 ∩ B

⊥
1 )∔ (E2 ∩K1), (12)

which is the dual statement of Condition (iv).
For testing the conditions of Theorem 2, it is necessary to determine the

space K1 = T−1
1 (E1). This can be done using the identity

T−1(E) = G(E)∔KerT (13)

for the inverse image of a subspace, where G is an arbitrary right inverse of T . It
can be verified directly, see also [6, Prop. A.12]. As always, we assume a regular
fundamental system to be given, which allows to construct the fundamental right
inverse. Since any right inverse of T is injective and because of the direct sum
in (13), the output of the following algorithm is indeed a basis of T−1(E).

Algorithm 2 (Inverse Image)

Input A monic differential operator T : V → W and a basis e1, . . . , er of
E ≤ W . A regular fundamental system s1, . . . , sm of T .

Output A basis of T−1(E).

1. Compute the fundamental right inverse T� according to (2).
2. For 1 ≤ i ≤ r compute ki = T�(ei).
3. Return s1, . . . , sm, k1, . . . , kr.
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For testing the necessary and sufficient conditions of Theorem 2, we assume
that for finite-dimensional subspaces of V or V ∗, we can compute sums and inter-
sections and check inclusions. For the heuristic approach used in the IntDiffOp

package, see [13, Sec. 7.4].

The following algorithm implements a test of Condition (iii), the others can
be implemented similarly. (None of them seems to be particularly preferable
from computational aspects.)

Algorithm 3 (Check Reverse Order Law)

Input Two boundary problems (T1,B1, E1) and (T2,B2, E2),
β1, . . . , βn and β̃1, . . . , β̃ν bases of B1 and B2,
e1, . . . , et and ẽ1, . . . , ẽτ bases of E1 and E2.
Regular fundamental systems s1, . . . , sm of T1 and s̃1, . . . , s̃ℓ of T2.

Output true if the reverse order law holds and false otherwise.

1. Compute a basis of T−1
1 (E1) with Algorithm 2.

2. Compute a basis of J = E2 ∩ T−1
1 (E1).

3. Compute a basis of B = B1 ∩ J⊥ using Lemma 1.
4. Compute a basis of K = B1 ∩E⊥

2 using Lemma 1.
5. Compute the compatibility conditions γ1, . . . , γr of (T2,B2) due to (8).
6. Compute C = span(γ1, . . . , γr) +K.
7. If B ≤ C return true, else return false.

Example 2. As a first example, we consider the generalized boundary problem
(D2, span(E1, E1 D, E0 D),R) from Example 1. As a second boundary problem, we
consider the differential operator T2 = D2 −1, also with the boundary conditions
span(E1, E1 D, E0 D), or, in usual notation

u′′(x)− u(x) = f(x)
u(1) = u′(1) = u′(0) = 0.

As we will see below, the forcing function f has to satisfy the compatibility
condition

∫ 1

0
exp(−ξ)f(ξ) dξ +

∫ 1

0
exp(ξ)f(ξ) dξ = 0,

so that E2 = span(x) is a suitable exceptional space for the second boundary
problem. Moreover, we compute the inverse image K1 = T−1

1 (E1) for testing the
conditions of Theorem 2.
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> t2 := d^2-1: B2 := B1:

> C2 := CompatibilityConditions(BP(t2, B2)));

BC(E[1].A . exp(−x) + E[1].A . exp(x))

> E2 := ES(x): bp2 := GBP(t2, B2, E2):

> IsRegular(GBP(t2, B2, E2));
true

> K1 := InverseImage(t1, E1);

ES(1, x, x2)

In this case E2 = span(x) ≤ span(1, x, x2) = K1, so Condition (iv) of The-
orem 2 is trivially satisfied. We check that the reverse order law holds for the
respective Green’s operators.

> p1 := MultiplyBoundaryProblem(bp1, bp2);

GBP(D4
−D2

,BC(E[0].D, E[0].D3
−E[1].D3

, E[1], E[1].D, E[1].D2
−E[1].D3),ES(1))

> g := GreensOperator(p1):

> g2 := GreensOperator(bp2):

> IsZero(g-g2.g1); #check reverse order law
true

Since for the boundary problems in the previous example, we have T1T2 =
T2T1 = D4 −D2, we can also consider the product of Green’s operators in reverse
order, that is, test if (T1,B1, E1)

−1(T2,B2, E2)
−1 is an outer inverse of T1T2.

Example 3. We follow the steps of Algorithm 3, interchanging the indices ac-
cordingly. Recall from Example 1 that C1 is generated by E1 A and that we have
chosen the exceptional space E1 = R.

> K2 := InverseImage(t2, E2);

ES(x, exp(x), exp(−x))

> J := Intersection(E1, K2);

ES()

> B := Intersection(B2, J, space = dual);

BC(E[1], E[1].D, E[0].D)

> K := Intersection(B2, E1, space = dual);

BC(E[1].D, E[0].D)

> TestComposition(bp2, bp1); #check reverse order law

false



12 A. Korporal, G. Regensburger

We see that in the above example Algorithm 3 returns false since the inclusion

C1 + (B2 ∩ E⊥
1 ) ≥ B2 ∩ (E1 ∩K2)

⊥

from Theorem 2 (ii) is not satisfied: the left-hand side does not contain the
evaluation E1. We also verify directly that the product G1G2 indeed is not an
outer inverse of T1T2.

> t := t2.t1: g:= g1.g2:

> IsZero((g.t).g-g);
false

> p2 := MultiplyBoundaryProblem(bp2, bp1);

GBP(D
4
−D

2
,BC(E[0].D, E[0].D

3
, E[1], E[1].D, E[1].D

3
),ES(x))

> IsRegular(p2);
true

Although G1G2 is not an outer inverse of T2T1, in this case the composite
boundary problem (T2,B2, E2) ◦ (T1,B1, E1) is regular. In general, we do not
even obtain semi-regularity of (T1T2,B2 + T ∗

2 (B1 ∩ E⊥
2 )), see [13, Thm. 4.21]

for more details.

5 Factorization of Generalized Boundary Problems

In this section, we discuss certain classes of factorizations of generalized bound-
ary problems. We start with a regular boundary problem (T,B, E) and a fac-
torization T = T1T2 of the underlying differential operator. The factorization
algorithm presented in this section works for arbitrary factorizations of T , re-
gardless of the coefficient domain, as long as a regular fundamental system of T2

is known. In our package, we use the function DFactor from the Maple DETools

package to factor differential operators with rational coefficients (Example 6),
unless a particular factorization is specified in the input.

As in [6] for regular boundary problems, the overall goal would be to char-
acterize all regular boundary problems (T1,B1, E1) and (T2,B2, E2) such that

(T,B, E) = (T1,B1, E1) ◦ (T2,B2, E2).

For generalized boundary problems, we additionally have to require that the
reverse order law

((T1,B1, E1) ◦ (T2,B2, E2))
−1 = (T2,B2, E2)

−1(T1,B1, E1)
−1

holds, which is always valid for regular boundary problems (4). Due to the struc-
ture of the composite (10), where information about B1 gets lost when intersect-
ing with E2, and the rather involved interactions of the subspaces B⊥

1 ,K1,C
⊥
2

and E2 in Theorem 2, it is a difficult task to describe all possible factorizations.
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In the following, we discuss a special case of factoring a regular boundary
problem (T,B, E): As a right factor, we strive for a regular problem (T2,B2),
meaning that E2 = {0}. Then the reverse order law is trivially satisfied, and the
composite takes the easier form

(T1,B1, E1) ◦ (T2,B2) = (T1T2,B2 ∔ T ∗
2 (B1), E1).

The existence of such a factorization was proven in [13]. It relies on the fact that
for a semi-regular boundary problem (T,B) and a factorization T = T1T2, there
always exists B2 ≤ B such that (T2,B) is regular. (For ordinary differential
equations, this can be seen immediately by inspecting the evaluation matrix.)

Theorem 3. Let (T,B) be a semi-regular boundary problem and let T = T1T2

be a factorization of T into monic differential operators. For each exceptional
space E of (T,B) there exists a unique regular boundary problem (T1,B1, E)
such that for each B2 ≤ B for which (T2,B2) is regular, we have

(T,B, E) = (T1,B1, E) ◦ (T2,B2) = (T1T2,B2 ∔ T ∗
2 (B1), E) (14)

and (T,B, E)−1 = (T2,B2)
−1(T1,B1, E)−1. The boundary conditions of the left

factor are given by B1 = H∗
2 (B ∩ (KerT2)

⊥), where H2 is an arbitrary right
inverse of T2.

Example 4. We consider the factorization of the boundary problem p2 from Ex-
ample 3 with D4 −D2 = (D2 −1) ·D2:

(D4 −D2, span(E0 D, E0 D
3, E1, E1 D, E1 D

3), span(x))

= (D2 −1, span(E0 D, E1 D, E1 A), span(x)) ◦ (D
2, span(E0 D, E1)).

The following Maple session shows that the reverse order law holds for the
respective Green’s operators.

> p2;
GBP(D4

−D2
,BC(E[0].D, E[0].D3

, E[1], E[1].D, E[1].D3),ES(x))

> g := GreensOperator(p2):

> f1, f2 := FactorBoundaryProblem(p2, t2, t1);

GBP(D2
− 1,BC(E[0].D, E[1].D, E[1].A),ES(x)),BP(D2

,BC(E[0].D, E[1]))

> g1 := GreensOperator(f1): g2:= GreensOperator(f2):

> IsZero(g-g2.g1);
true

We now show how to construct the above factorization algorithmically, gen-
eralizing the method presented in [8]. We assume a given factorization T = T1T2

of the differential operator and a regular fundamental system of T2, which is
needed in Step 4 to construct a right inverse of T2.
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Algorithm 4 (Right Regular Factorization)

Input A regular boundary problem (T,B, E),
β1, . . . , βn a basis of B, e1, . . . , er a basis of E.
A factorization T = T1T2, a reg. fundamental system s1, . . . , sµ of T2.

Output Two regular boundary problems (T1,B1, E) and (T2,B2) with
(T,B, E) = (T1,B1, E) ◦ (T2,B2).

1. Compute the evaluation matrix M = β(s) ∈ Fn×µ.
2. Compute S = (si,j) ∈ Fn×n s.t. SM is in reduced row echelon form.

3. For 1 ≤ i ≤ n set β̃i =
∑n

k=1 si,kβk.
4. Compute a right inverse H2 of T2 according to (2).
5. For µ+ 1 ≤ j ≤ n multiply αj−µ = β̃jH2 ∈ FΦ〈∂,

r
〉.

6. Return (T1, (α1, . . . , αn−µ), (e1, . . . , er)) and (T2, (β̃1, . . . , β̃µ)).

Theorem 4. Let (T,B, E) be regular and T = T1T2. The boundary problems
(T1,B1, E) and (T2,B2) computed by Algorithm 4 are regular and satisfy

(T,B, E) = (T1,B1, E) ◦ (T2,B2).

Proof. In view of Theorem 3, we only have to show that (T2, span(β̃1, . . . , β̃µ)) is

regular with β̃i ∈ B for 1 ≤ i ≤ µ, and that the Stieltjes conditions β̃µ+1, . . . , β̃n

computed in Step 3, are a basis of B ∩ (KerT2)
⊥.

First we observe that in Step 3 we obviously have β̃i ∈ B for all i. Since
KerT2 ≤ KerT and since (T,B) is semi-regular, (T2,B) is also semi-regular.
Hence the evaluation matrix M computed in Step 1 has rank µ, and the first µ

rows of SM in Step 2 give the µ×µ identity matrix. Since SM is the evaluation
matrix β̃(s)—meaning that the β̃ are applied to the fundamental system of
KerT2—the boundary problem (T2, span(β̃1, . . . , β̃µ)) is regular.

The lower part of SM is the (n− µ)× µ zero matrix, hence we know that

span(β̃µ+1, . . . , β̃n) ≤ B ∩ (KerT2)
⊥.

Moreover, β̃µ+1, . . . , β̃n are linearly independent, since S is regular. For proving
that the spaces are equal, it suffices to show that dim(B ∩ (KerT2)

⊥) = n− µ.
Since B is finite dimensional, also dim(B ∩ (KerT2)

⊥) < ∞, and we have

dim(B ∩ (KerT2)
⊥) = codim(B ∩ (KerT2)

⊥)⊥ = codim(B⊥ +KerT2),

where we use the duality principle for switching between a vector space and its
dual as explained in [6, Sec. A.1]. Furthermore, [6, Cor. A.15] yields

codim(B ∩ (KerT2)
⊥)⊥ = dim(KerT2 ∩ B

⊥) + codimB
⊥ − dimKerT2.

Since (T2,B) is semi-regular, the first summand vanishes, and moreover using
that codimB⊥ = dimB, we obtain dim(B ∩ (KerT2)

⊥) = n− µ.
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Example 5. We demonstrate the steps of the algorithm in detail, continuing
Example 4. Obviously, a regular fundamental system of D2 is given by (1, x) and
a right inverse of D2 is A2. The evaluation matrix M and the transformation
matrix S are given as

M =













0 1
0 0
1 1
0 1
0 0













and S =













−1 0 1 0 0
1 0 0 0 0
0 1 0 0 0
−1 0 0 1 0
0 0 0 0 1













.

Hence we compute the β̃ as follows

β̃1 = E1 − E0 D, β̃2 = E0 D, β̃3 = E0 D
3, β̃4 = E1 D−E0 D, β̃5 = E1 D

3 .

The space of boundary conditions for the right-hand factor is spanned by β̃1

and β̃2, which means that B2 = span(E1, E0 D). We multiply β̃3, β̃4 and β̃5 by
A2 to obtain a basis of B1. Since DA = 1 and E0 A = 0, this yields B1 =
span(E0 D, E1 A, E1 D), as already seen in Example 4.

The previous example shows that the computation of the boundary condi-
tions B1 and B2 reduces to a linear algebra problem, which in our implemen-
tation is solved by the Maple procedures from the LinearAlgebra package. In
the IntDiffOp package, the most time-consuming operations—factoring the dif-
ferential operator and computing a fundamental system for the right factor—are
done in preprocessing steps via the Maple commands dsolve and DFactor.

Example 6. On the interval [0, 1], we consider the differential operator

D4 +
5x2 + 4x+ 1

(x+ 1)(x2 + 1)
D3 +

x7 + x6 + 2x5 + 2x4 − x3 − 5x2 + 14x+ 10

(x+ 1)(x2 + 1)2
D2

+
2(2x8 + 2x7 + 4x6 + 4x5 + x4 + 2x3 − 14x2 − 16x+ 3)

(x2 + 1)3(x + 1)
D

+
2(x7 + x6 + 2x5 + 2x4 + 5x3 + 7x2 − 4x− 2)

(x2 + 1)3(x+ 1)

with coefficients in Q(x).

> a3 := (5*x^2+4*x+1)/((x+1)*(x^2+1)):

> a2 := (x^7 + x^6 + 2*x^5 + 2*x^4-x^3-5*x^2+14*x+10)/((x+1)*(x^2+1)^2):

> a1 := 2*(2*x^8+2*x^7+4*x^6+4*x^5+x^4+2*x^3-14*x^2-16*x+3)/((x^2+1)^3*(x+1)):

> a0 := 2*(x^7+x^6+2*x^5+2*x^4+5*x^3+7*x^2-4*x-2)/((x^2+1)^3*(x+1)):

> t := d^4 + a3.(d^3) + a2.(d^2) + a1.d + a0:

> b1 := e(0): b2 := e(0).d: b3 :=e(0).(d^2): b4 := e(1): b5 := e(1).d:

> bp := GBP(t, BC(b1, b2, b3, b4, b5), ES(1)):

> FactorBoundaryProblem(bp);

GBP(x2 +
1

1 + x
.D+D2

,BC(E[0], E[1].A .x
2 + E[1].A, E[1].A .x

3 + E[1].A .x),ES(1)),

BP(
2x

x2 + 1
+ D,BC(E[0])), BP(

2x

x2 + 1
+ D,BC(E[0]))
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We conclude this section with an example for a more general differential
operator, which cannot be factored with the DFactor command. In this case, a
factorization of the differential operator has to be provided in the input data.

Example 7. We consider a differential operator on Ω = (0,∞) with coefficients
in C∞(Ω).

D2 −
exp(x) + exp(2x)− 1

exp(x)− 1
D+

exp(2x)

exp(x) − 1

with boundary conditions E1, E2, E3, and the factorization

T1 = D−
exp(2x)

exp(x)− 1
and T2 = D−1.

> t := d^2-(exp(x)+exp(2*x)-1)/(exp(x)-1).d+exp(2*x)/(exp(x)-1):

> t1 := d-exp(2*x)/(exp(x)-1):

> t2 := d-1:

> b1 := e(1): b2 := e(2): b3 := e(3):

> bp := GBP(t, BC(b1, b2, b3), ES(1)):

> FactorBoundaryProblem(bp, t1, t2);

GBP(
− exp(2x)

exp(x) − 1
+ D,BC(E[1].A . exp(−x), E[2].A . exp(−x)− E[3].A . exp(−x)),ES(1)),

BP(−1 + D,BC(E[1]))

6 Conclusion and Outlook

As outlined in the previous section, describing all possible factorizations of a
generalized boundary problem along a fixed factorization of the differential op-
erator is quite involved. Nevertheless, it would sometimes be preferable to have
the generalized factor on the right, for which we assume symbolic solutions for
the differential operator. In this section, we describe some first steps in this
direction that rely on the following result.

Theorem 5. Let (T1,B1) and (T2,B2) be semi-regular with T1 : V → W and
T2 : U → V . Then there exists an exceptional space E2 ≤ V of (T2,B2) such
that the respective generalized Green’s operators satisfy the reverse order law for
all possible exceptional spaces E1 ≤ W of (T1,B1).

Proof. Let V1 be a complement of B
⊥
1 ∩ T2(B

⊥
2 ) in B

⊥
1 , i.e.,

B
⊥
1 =

(

B
⊥
1 ∩ T2(B

⊥
2 )

)

∔ V1.

Since V1 ≤ B⊥
1 and because of the direct sum, we then have

V1 ∩ T2(B
⊥
2 ) =

(

V1 ∩ T2(B
⊥
2 )

)

∩ B
⊥
1 = V1 ∩

(

T2(B
⊥
2 ) ∩ B

⊥
1

)

= {0}.
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Enlarging V1 to a complement E2 of T2(B
⊥
2 ), so that V1 ≤ E2 and T2(B

⊥
2 )∔E2 =

V yields
B

⊥
1 =

(

B
⊥
1 ∩ T2(B

⊥
2 )

)

∔ V1 ≤ T2(B
⊥
2 ) + (E2 ∩ B

⊥
1 ).

Hence Condition (12) is satisfied.

The previous proof is not constructive; choosing exceptional spaces for ar-
bitrary Stieltjes boundary conditions leads to an interpolation problem with
integral conditions. However, one can apply the following strategy to obtain a
factorization of a semi-regular boundary problem (T,B) into a regular problem
(T1,B1) as a left factor and a generalized boundary problem as a right factor.
In this case we will ignore the exceptional space in the beginning and (try to)
choose it accordingly in the end.

1. Apply (a version of) Algorithm 4 to compute a semi-regular factor (T1,B1)
and a regular factor (T2,B2).

2. Let α1, . . . , αn be a basis of B1. Choose a subset (wlog we write α1, . . . , αm),
such that (T1, span(α1, . . . , αm)) is regular. Such a subset exists by Lemma 1
and can also be computed.

3. Compute T ∗
2 (αm+1), . . . , T

∗
2 (αn).

4. Since (T2,B2) is regular, (T2,B2 + span(T ∗
2 (αm+1), . . . , T

∗
2 (αn)) is semi-

regular, and from Theorem 5 we obtain an appropriate exceptional space.

Example 8. In Example 5, we have computed the spaces of boundary conditions

B1 = span(E0 D, E1 D, E1 A) and B2 = span(E0 D, E1)

for the differential operators T1 = D2 −1 and T2 = D2. The boundary problem
(T1, spanE0 D, E1 D) is regular, and we compute

T ∗
2 (E1 A) = E1 AD2 = E1 D−E0 D .

Computation of the compatibility conditions for the modified right-hand factor
(T2, span(E0 D, E1, E1 D)) yields C2 = span(E1 A), hence we may choose for exam-
ple E2 = span(exp(x)). Then, since E2 ≤ KerT1, Condition (iii) of Theorem 2
is trivially fulfilled.

Closer investigation of Algorithm 4 and the above procedure indicates some
redundancy in first applying H∗

2 and afterwards T ∗
2 . However, we cannot decide

in advance for which choices of αi the boundary problem (T1, span(α1, . . . , αm))
will be regular. We will study this and related question for obtaining different
factorizations of generalized boundary problems in future work.

We are also investigating algebraic and algorithmic aspects of generalized
Green’s operators for certain classes of linear partial differential equations and
boundary conditions. While the linear algebra setting used in this paper is in
principle applicable to partial differential equations, examples and constructive
methods for singular partial boundary problems are to be studied. In this con-
text, we refer to [6,8,10,26] for regular partial boundary problems. The setting
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in [26] includes also inhomogeneous boundary conditions and a rewrite system
for partial integro-differential operators (PIDOS) including linear substitution.
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